首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Glutaconyl-CoA decarboxylase from Acidaminococcus fermentans was inactivated by incubation with n-alkanols at 37 degrees C. The concentration of the alcohol required for complete inactivation decreased with increasing chain length; e.g. 2 M ethanol was as potent as 2 mM hexanol or 0.5 mM decanol. The data indicate a binding of the alcohol to the enzyme with an energy of about 4 kJ/methylene group. Sodium ions prevented the inactivation (50% at 30 mM NaCl). K+, NH4+, Cs+ and Mg2+ had no influence, whereas Li+ was ten times less effective than Na+. The enzyme was cleaved during the inactivation into a soluble part, consisting of the alpha (Mr 120,000) and beta polypeptide chains (60,000), whereas the hydrophobic gamma chain (30,000) precipitated. The soluble part catalysed the sodium-ion-independent but avidin-sensitive glutaconyl-CoA/crotonyl-CoA exchange as measured with the substrates [3-3H]crotonyl-CoA and unlabelled glutaconate and with glutaconate CoA-transferase as auxiliary enzyme. In the presence of free biotin or its methyl ester the soluble part catalysed the formation of crotonyl-CoA from glutaconyl-CoA (apparent Km for biotin 40 mM, Vmax 1% of the native decarboxylation reaction). This apparent reactivation was most likely caused by the carboxylation of free biotin. Based on these and other observations the following functions may be assigned to the different polypeptide chains of glutaconyl-CoA decarboxylase: biotin carrier (alpha), carboxytransferase (beta) and carboxylase, the actual sodium pump (gamma).  相似文献   

2.
Oxaloacetate decarboxylase was reconstituted from the purified alpha subunit and a Triton X-100 extract of bacterial membranes devoid of this protein. Upon freezing of oxaloacetate decarboxylase in salt solutions, the enzyme was split into subunits and the catalytic activity was abolished. The catalytically active decarboxylase complex was reconstituted by decreasing the salt concentration of the dissociated sample. The conditions for the inactivation were critical for an optimum recovery of catalytically active enzyme during reconstitution, and modest dissociating conditions generally improved the yield of the reconstitutively active decarboxylase. The dissociated enzyme has been separated by chromatography on avidin-Sepharose into two fractions: fraction I, that was not retained on the column, consisted of the beta + gamma subunits, and fraction II consisted of the biotin-containing alpha subunit. Oxaloacetate decarboxylase was reconstituted from a mixture of the isolated alpha and beta + gamma subunits. The Na+ transport activity was recovered, if a mixture of subunits alpha and beta + gamma was incorporated into liposomes, or by a sequential reconstitution, starting with the formation of proteoliposomes with the integral membrane proteins beta + gamma and completed by an attachment of the peripheral subunit alpha.  相似文献   

3.
Oxaloacetate decarboxylase from Klebsiella aerogenes was shown to be composed of three different subunits alpha, beta, gamma with Mr 65 000, 34 000 and 12 000, respectively. On dodecylsulfate/polyacrylamide gels the smallest of these subunits was heavily stained with silver but poorly with Coomassie brilliant blue. All three subunits were resolved and clearly detectable by high-performance liquid chromatography in a dodecylsulfate-containing buffer. Biotin was localized exclusively in the alpha chain. Freezing and thawing of the isolated membranes in the presence of 1 M LiCl released the alpha chain which was subsequently purified to near homogeniety by affinity chromatography on monomeric avidin-Sepharose. No beta or gamma chain were detectable in this alpha chain preparation and no oxaloacetate decarboxylation was catalyzed. The isolated alpha chain, however, was a catalytically active carboxyltransferase as evidenced from the isotopic exchange between [1-14C]pyruvate and oxaloacetate. The rate of this exchange reaction was about 9 U/mg protein and was completely independent of the presence of Na+ ions. The ease with which the alpha chain was released from the membrane characterize this subunit as a peripheral membrane protein. The beta and gamma chain, on the other hand, stick so firmly in the membrane that they are only released by detergents, thus indicating that these are integral membrane proteins. Limited tryptic digestion of oxaloacetate decarboxylase led to a rapid cleavage of the alpha chain, yielding a polypeptide of Mr 51 000 which was devoid of biotin. Degradation of the beta chain required prolonged incubation periods and was markedly influenced by Na+ ions which had a protective effect against proteolysis. A proton is required in the decarboxylation of oxaloacetate and CO2 arises as primary product. The other alternative, i.e. generation of HCO3- with H2O as substrate, has been excluded.  相似文献   

4.
Upon resolution of the particulate cell fraction of Veillonella alcalescens by gel chromatography, membranes and ribosomes were clearly resolved. Methylmalonyl-CoA decarboxylase was bound to the membranes and not to ribosomes as reported earlier. Membrane vesicles containing methylmalonyl-CoA decarboxylase were prepared by disrupting V. alcalescens cells with a French pressure chamber. About 64% of the decarboxylase was oriented in these vesicles with the substrate binding site facing to the outside. The vesicles performed a rapid accumulation of Na+ ions in response to the decarboxylation of methylmalonyl-CoA. Decarboxylation and transport were highly uncoupled. The efficiency of the transport was considerably increased if methylmalonyl-CoA decarboxylation was retarded by using a low temperature or by slowly generating the substrate enzymically from propionyl-CoA. Under optimized conditions Na+ was concentrated inside the inverted vesicles eight-times higher than in the incubation medium. Methylmalonyl-CoA decarboxylase was solubilized from the membranes with Triton X-100 and purified about 20-fold by affinity chromatography on monomeric avidin-Sepharose columns. The decarboxylase was specifically activated by Na+ ions (apparent Km approximately equal to 0.6 mM). Whereas (S)-methylmalonyl-CoA was the superior substrate (apparent Km approximately equal to 7 microM), malonyl-CoA was also decarboxylated (apparent Km approximately equal to 35 microM). The decarboxylation of methylmalonyl-CoA yielded CO2 and not HCO-3 as the primary reaction product. Analysis of the purified enzyme by dodecylsulfate gel electrophoresis indicated the presence of four different polypeptides alpha, beta, gamma, delta with Mr 60 000, 33 000, 18 5000 and 14 000. The latter of these polypeptides was clearly visible only after silver staining but not after staining with Coomassie brilliant blue. A low molecular weight polypeptide with similar staining properties was also found in oxaloacetate decarboxylase. Methylmalonyl-CoA decarboxylase contained about 1 mol covalently bound biotin per 125 500 g protein which was localized exclusively in the gamma-subunit. This subunit therefore represents the biotin carboxyl carrier protein of methylmalonyl-CoA decarboxylase. A new very sensitive method for the detection of biotin-containing proteins is described.  相似文献   

5.
The mechanism of oxaloacetate decarboxylase of Klebsiella aerogenes was investigated by enzyme kinetic methods. The activity of the decarboxylase was strictly dependent on the presence of Na+ or Li+ ions. For Li+ the Km was about 17 times higher and the Vmax about 4 times lower than for Na+. No activity was detectable at Na+ concentrations less than 5 microM. The curve for initial velocity versus Na+ concentration was hyperbolic. Initial velocity patterns with oxaloacetate or Na+ as the varied substrate at various fixed concentrations of the cosubstrate produced a pattern of parallel lines which is characteristic for a ping-pong mechanism. Product inhibition by pyruvate was competitive versus oxaloacetate and noncompetitive versus Na+. Oxalate, a dead-end inhibitor, was competitive versus oxaloacetate and uncompetitive versus Na+. The inhibition patterns are not consistent with a ping-pong mechanism comprising a single catalytic site but are analogous to kinetic patterns observed with the related biotin enzyme transcarboxylase, for which a catalytic mechanism at two different and independent sites has been demonstrated. The kinetic and other data support an oxaloacetate decarboxylase mechanism at two different sites of the enzyme with the intermediate formation of a carboxybiotin-enzyme complex. The first site is the carboxyltransferase which is localized on the alpha chain and the second site is the carboxybiotin-enzyme decarboxylase which is probably localized on the beta and/or gamma subunit. Binding studies with oxalate indicated that this is bound with high affinity to the alpha chain. The affinity was not affected by Na+ or by complex formation with the beta and gamma subunits. Oxalate protected the decarboxylase from heat inactivation but not from tryptic hydrolysis. The carboxybiotin-enzyme intermediate prepared from oxaloacetate decarboxylase with high specific activity was rapidly decarboxylated in the presence of Na+ ions alone. The effect of pyruvate on this reaction, noted previously, probably results from inhomogeneity of the enzyme preparation used which contained a considerable amount of free alpha subunits.  相似文献   

6.
The ATP-hydrolyzing activity of Propionigenium modestum was extracted from the membranes with Triton X-100 or by incubation with EDTA at low ionic strength. The ATPase in the Triton extract was highly sensitive to dicyclohexylcarbodiimide but not to vanadate. These properties are characteristic for enzymes of the F1 F0 type. The ATPase was specifically activated by Na+ ions yielding a 15-fold increase in catalytic activity at 5 mM Na+ concentration. The additional presence of 1% Triton X-100 caused a further 1.5-fold activation. In the absence of Na+ Triton stimulated the ATPase about 13-fold. The Triton-stimulated ATPase was further activated about 1.5-2-fold by Na+ addition. The ATPase extracted by the low-ionic-strength treatment was purified to homogeneity by fractionation with poly(ethylene glycol) and gel chromatography. The enzyme had the characteristic F1-ATPase subunit structure with Mr values of 58,000 (alpha), 56,000 (beta), 37,600 (gamma), 22,700 (delta), and 14,000 (epsilon). The F1-ATPase was not stimulated by Na+ ions. The membrane-bound ATPase was reconstituted from the purified F1 part and F1-depleted membranes, thus further indicating an F1 F0 structure for the ATPase of P. modestum. Upon reconstitution the ATPase recovered its stimulation by Na+ ions, suggesting that the binding site for Na+ is localized on the membrane-bound F0 part of the enzyme complex.  相似文献   

7.
W Buckel  R Semmler 《FEBS letters》1982,148(1):35-38
The decarboxylation of glutaconyl-CoA to crotonyl-CoA in the anaerobic bacterium Acidaminococcus fermentans is catalysed by a membrane-bound, biotin-dependent enzyme which requires Na+ for activity. Inverted vesicles from A. fermentans accumulated Na+ only if glutaconyl-CoA was decarboxylated. The Na+ uptake was inhibited by avidin but not by the avidin biotin complex. Detergents and ionophores such as monensin also prevented the Na+ transport. The results indicate that the enzyme is able to convert the free energy of decarboxylation (delta Go' approximately equal to -30 kJ/mol) into a Na+ gradient.  相似文献   

8.
The review is concerned with three Na(+)-dependent biotin-containing decarboxylases, which catalyse the substitution of CO(2) by H(+) with retention of configuration (DeltaG degrees '=-30 kJ/mol): oxaloacetate decarboxylase from enterobacteria, methylmalonyl-CoA decarboxylase from Veillonella parvula and Propiogenium modestum, and glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. The enzymes represent complexes of four functional domains or subunits, a carboxytransferase, a mobile alanine- and proline-rich biotin carrier, a 9-11 membrane-spanning helix-containing Na(+)-dependent carboxybiotin decarboxylase and a membrane anchor. In the first catalytic step the carboxyl group of the substrate is converted to a kinetically activated carboxylate in N-carboxybiotin. After swing-over to the decarboxylase, an electrochemical Na(+) gradient is generated; the free energy of the decarboxylation is used to translocate 1-2 Na(+) from the inside to the outside, whereas the proton comes from the outside. At high [Na(+)], however, the decarboxylases appear to catalyse a mere Na(+)/Na(+) exchange. This finding has implications for the life of P. modestum in sea water, which relies on the synthesis of ATP via Delta(mu)Na(+) generated by decarboxylation. In many sequenced genomes from Bacteria and Archaea homologues of the carboxybiotin decarboxylase from A. fermentans with up to 80% sequence identity have been detected.  相似文献   

9.
An improved procedure was developed for the isolation of pyruvate decarboxylase from wheat germ. Its final step, an electrophoresis of the native apoenzyme in concave pore gradient polyacrylamide gels, followed by superficial activity-staining, produced two bands of different molecular masses and chain compositions. The high-molecular-mass band occurred in low quantity and consisted of, probably eight, apparently identical chains of Mr = 33,000, as judged from sodium dodecyl sulfate electrophoreses. The low-molecular-mass band contained two types of chains with Mr alpha = 63,000-65,000 and Mr beta = 61,000-62,000. The N termini of both chains were threonine, whereas their C-terminal sequences were different: alpha, -(Val)-(Ser)-(Ala)-Leu; beta, -(His)-(Asp)-(Ala)-Ser. Their amino acid composition was too different to be compatible with our original concept of one chain being produced from the other by proteolytic shortening. Limited proteolysis by Staphylococcus aureus V8 proteinase yielded peptides partly identical size and partly quite different. In all properties investigated, the low-molecular-mass enzyme largely resembled yeast pyruvate decarboxylase; the holoenzyme appeared to possess (alpha beta)2 structure, the apoenzyme alpha beta. SH reagents inactivated the enzyme. Binding and fluorescence of 2-p-toluidinonaphthalene-6-sulfonate indicated a similar lipophilicity of the active site as found earlier for the yeast enzyme. 2-Hydroxy-5-nitrobenzyl modification of exposed tryptophan residues left the holoenzyme intact, but in the apoenzyme it destroyed most of the cofactor-binding ability and hence the activity. The strength of cofactor binding and the maximal specific activity were found somewhat lower than in yeast pyruvate decarboxylase.  相似文献   

10.
Mechanisms of sodium transport in bacteria   总被引:5,自引:0,他引:5  
In some bacteria, an Na+ circuit is an important link between exergonic and endergonic membrane reactions. The physiological importance of Na+ ion cycling is described in detail for three different bacteria. Klebsiella pneumoniae fermenting citrate pumps Na+ outwards by oxaloacetate decarboxylase and uses the Na+ ion gradient thus established for citrate uptake. Another possible function of the Na+ gradient may be to drive the endergonic reduction of NAD+ with ubiquinol as electron donor. In Vibrio alginolyticus, an Na+ gradient is established by the NADH: ubiquinone oxidoreductase segment of the respiratory chain; the Na+ gradient drives solute uptake, flagellar motion and possibly ATP synthesis. In Propionigenium modestum, ATP biosynthesis is entirely dependent on the Na+ ion gradient established upon decarboxylation of methylmalonyl-CoA. The three Na(+)-translocating enzymes, oxaloacetate decarboxylase of Klebsiella pneumoniae, NADH: ubiquinone oxidoreductase of Vibrio alginolyticus and ATPase (F1F0) of Propionigenium modestum have been isolated and studied with respect to structure and function. Oxaloacetate decarboxylase consists of a peripheral subunit (alpha), that catalyses the carboxyltransfer from oxaloacetate to enzyme-bound biotin. The subunits beta and gamma are firmly embedded in the membrane and catalyse the decarboxylation of the carboxybiotin enzyme, coupled to Na+ transport. A two-step mechanism has also been demonstrated for the respiratory Na+ pump. Semiquinone radicals are first formed with the electrons from NADH; subsequently, these radicals dismutate in an Na(+)-dependent reaction to quinone and quinol. The ATPase of P. modestum is closely related in its structure to the F1F0 ATPase of E. coli, but uses Na+ as the coupling ion. A specific role of protons in the ATP synthesis mechanism is therefore excluded.  相似文献   

11.
The oxaloacetate decarboxylase Na(+) pump of Klebsiella pneumoniae is an enzyme complex composed of the peripheral alpha subunit and the two integral membrane-bound subunits beta and gamma. The alpha subunit consists of the N-terminal carboxyltransferase domain and the C-terminal biotin domain, which are connected by a flexible proline/alanine-rich linker peptide. To probe interactions between the two domains of the alpha subunit and between alpha-subunit domains and the gamma subunit, the relevant polypeptides were synthesized in Escherichia coli and subjected to copurification studies. The two alpha-subunit domains had no distinct affinity toward each other and could, therefore, not be purified as a unit on avidin-sepharose. The two domains reacted together catalytically, however, performing the carboxyl transfer from oxaloacetate to protein-bound biotin. This reaction was enhanced up to 6-fold in the presence of the Zn(2+)-containing gamma subunit. On the basis of copurification with different tagged proteins, the C-terminal biotin domain but not the N-terminal carboxyltransferase domain of the alpha subunit formed a strong complex with the gamma subunit. Upon the mutation of gamma H78 to alanine, the binding affinity to subunit alpha was lost, indicating that this amino acid may be essential for formation of the oxaloacetate decarboxylase enzyme complex. The binding residues for the Zn(2+) metal ion were identified by site-directed and deletion mutagenesis. In the gamma D62A or gamma H77A mutant, the Zn(2+) content of the decarboxylase decreased to 35% or 10% of the wild-type enzyme, respectively. Less than 5% of the Zn(2+) present in the wild-type enzyme was found if the two C-terminal gamma-subunit residues H82 and P83 were deleted. Corresponding with the reduced Zn(2+) contents in these mutants, the oxaloacetate decarboxylase activities were diminished. These results indicate that aspartate 62, histidine 77, and histidine 82 of the gamma subunit are ligands for the catalytically important Zn(2+) metal ion.  相似文献   

12.
Polyacrylamide gel electrophoresis in urea and Triton X-100 of a hemolysate from human fetal red blood cells produces four major protein bands: alpha, beta, and 2 gamma globin chains. We have verified that the latter two are the G gamma and A gamma globin chains which have respectively glycine or alanine at position 136. After incorporation of either [3H] alanine or [3H] glycine into newly synthesized globin each gamma chain was isolated by preparative electrophoresis. The chains were cleaved with cyanogen bromide at methionines 55 and 133, then subjected to automated sequencing, and the residues from each sequencer turn counted. Glycine incorporation was detected for the third turn (position 136) of the G gamma chain and alanine for the A gamma. Substantial metabolic conversion of [3H] glycine to serine and proline was also noted.  相似文献   

13.
Using the non-ionic detergent Triton X-100 and gel-chromatography, an anion-sensitive ATPase was isolated from rat and rabbit erythrocyte membranes. The ATPase preparations possess no Na, K- or Mg, Ca-ATPase activities. ATPase from rat erythrocyte membranes is made up of five subunits with molecular weights of 58 000 (alpha), 50 000 (beta), 36 000 (gamma), 25 000 (delta) and 12 000 (epsilon) and can be represented by the formula alpha 3 beta 3 gamma delta epsilon.  相似文献   

14.
Jockel P  Schmid M  Steuber J  Dimroth P 《Biochemistry》2000,39(9):2307-2315
The oxaloacetate decarboxylase Na+ pump consists of subunits alpha, beta, and gamma, and contains biotin as the prosthetic group. Membrane-bound subunit beta catalyzes the decarboxylation of carboxybiotin coupled to Na+ translocation, and consumes a periplasmically derived proton. Site-directed mutagenesis of conserved amino acids of transmembrane helix VIII indicated that residues N373, G377, S382, and R389 are functionally important. The polar side groups of these amino acids may constitute together with D203 a network of ionizable groups which promotes the translocation of Na+ and the oppositely oriented H+ across the membrane. Evidence is presented that two Na+ ions are bound simultaneously to subunit beta during transport with D203 and S382 acting as binding sites. Sodium ion binding from the cytoplasm to both sites elicits decarboxylation of carboxybiotin, and a conformational switch exposes the bound Na+ ions toward the periplasm. After dissociation of Na+ and binding of H+, the cytoplasmically exposed conformation is regained.  相似文献   

15.
Glutaconyl-CoA decarboxylase from Acidaminococcus fermentans (clostridal cluster IX), a strict anaerobic inhabitant of animal intestines, uses the free energy of decarboxylation (delta G(o) approximately -30 kJ mol-1) in order to translocate Na+ from the inside through the cytoplasmic membrane. The proton, which is required for decarboxylation, most probably comes from the outside. The enzyme consists of four different subunits. The largest subunit, alpha or GcdA (65 kDa), catalyses the transfer of CO2 from glutaconyl-CoA to biotin covalently attached to the gamma-subunit, GcdC. The beta-subunit, GcdB, is responsible for the decarboxylation of carboxybiotin, which drives the Na+ translocation (approximate K(m) for Na+ 1 mM), whereas the function of the smallest subunit, delta or GcdD, is unclear. The gene gcdA is part of the 'hydroxyglutarate operon', which does not contain genes coding for the other three subunits. This paper describes that the genes, gcdDCB, are transcribed in this order from a distinct operon. The delta-subunit (GcdD, 12 kDa), with one potential transmembrane helix, probably serves as an anchor for GcdA. The biotin carrier (GcdC, 14 kDa) contains a flexible stretch of 50 amino acid residues (A26-A75), which consists of 34 alanines, 14 prolines, one valine and one lysine. The beta-subunit (GcdB, 39 kDa) comprising 11 putative transmembrane helices shares high amino acid sequence identities with corresponding deduced gene products from Veillonella parvula (80%, clostridial cluster IX), Archaeoglobus fulgidus (61%, Euryarchaeota), Propionigenium modestum (60%, clostridial cluster XIX), Salmonella typhimurium (51%, enterobacteria) and Klebsiella pneumoniae (50%, enterobacteria). Directly upstream of the promoter region of the gcdDCB operon, the 3' end of gctM was detected. It encodes a protein fragment with 73% sequence identity to the C-terminus of the alpha-subunit of methylmalonyl-CoA decarboxylase from V. parvula (MmdA). Hence, it appears that A. fermentans should be able to synthesize this enzyme by expression of gctM together with gdcDCB, but methylmalonyl-CoA decarboxylase activity could not be detected in cell-free extracts. Earlier observations of a second, lower affinity binding site for Na+ of glutaconyl-CoA decarboxylase (apparent K(m) 30 mM) were confirmed by identification of the cysteine residue 243 of GcdB between the putative hellces VII and VIII, which could be specifically protected from alkylation by Na+. The alpha-subunit was purified from an overproducing Escherichia coli strain and was characterized as a putative homotrimer able to catalyse the carboxylation of free biotin.  相似文献   

16.
Membrane preparations of Fusobacterium nucleatum grown on glutamate contain glutaconyl-CoA decarboxylase at a high specific activity (13.8 nkat/mg protein). The enzyme was solubilized with 2% Triton X-100 in 0.5M NaCl and purified 63-fold to a specific activity of 870 nkat/mg by affinity chromatography on monomeric avidin-Sepharose. The activity of the decarboxylase was strictly dependent on Na+ (K m=3 mM) and was stimulated up to 3-fold by phospholipids. The glutaconyl-CoA decarboxylases from the gram-positive bacteria Acidaminococcus fermentans and Clostridium symbiosum have a lower apparent K m for Na+ (1 mM) and were not stimulated by phospholipids. In addition only the fusobacterial decarboxylase required sodium ion for stability and was inactivated by potassium ion. By incorporation of this purified enzyme into phospholipids an electrogenic sodium ion pump was reconstituted. The enzyme consists of four subunits, (m=65 kDa), (33 kDa), (19 kDa), and (16 kDa) with the functions of a carboxy transferase (), a carboxy lyase ( and probably ) and a biotin carrier (). The subunits are very similar to those of the glutaconyl-CoA decarboxylases from the gram-positive bacteria. With an antiserum directed against the decarboxylase from A. fermentans the - and the biotin containing subunits of the three decarboxylases and that from Peptostreptoccus asaccharolyticus could be detected on Western blots.  相似文献   

17.
When (Na+ + K+)-ATPase is reacted with Cu2+ or Cu2+-phenanthroline, cross-linking of the two subunits (alpha and beta) occurs. The major products are alpha,beta- and alpha,alpha-dimers. The alpha,beta-dimer is unstable in the presence of EDTA, but becomes stable when it is first exposed to digitonin or Triton X-100. Conversion of alpha-CU2+-beta to alpha-S-S-beta is suggested. If the enzyme that is pretreated with these detergents is used, only the stable alpha,beta-dimer is obtained, and the formation of alpha,alpha-dimer is inhibited. The data are consistent with alpha 2 beta 2 quaternary structure of the enzyme.  相似文献   

18.
Yeast tRNA-splicing endonuclease is a heterotrimeric enzyme   总被引:12,自引:0,他引:12  
tRNA-splicing endonuclease from the yeast Saccharomyces cerevisiae was purified to homogeneity greater than 5000-fold over a crude Triton X-100 extract of yeast total membranes, with 5% overall yield. This nuclear enzyme has the unusual heterotrimeric subunit structure alpha beta gamma (alpha = 31 kDa, beta = 42 kDa, and gamma = 51 kDa), as determined by sodium dodecyl sulfate gel electrophoresis, and has a molecular mass close to the sum of the three subunits, as determined by gel filtration of the native enzyme. From the purification, we estimate that there are approximately 100 molecules of endonuclease/cell.  相似文献   

19.
We report here on the UV-induced vanadate-dependent cleavage of the alpha and beta heavy chains of the outer arm dynein from Chlamydomonas flagella. Both polypeptides are cleaved at a single site (termed the V1 site) by UV irradiation in the presence of Mg2+, ATP, and vanadate. The alpha chain yields fragments of Mr 290,000 and 190,000. Fragments of Mr 255,000 and 185,000 are obtained from the beta chain. Ultraviolet irradiation of the alpha and beta chains in the presence of vanadate and Mn2+ (but no nucleotide) induces cleavage of both molecules at sites (termed the V2 sites) distinct from the V1 sites. The single V2 site within the beta chain is located 75,000 daltons from the site of V1 cleavage within the Mr 255,000 V1 fragment. The alpha chain contains three distinct sites of V2 cleavage; all are located within the Mr 290,000 V1 fragment, 60,000, 90,000, and 100,000 daltons from the site of V1 cleavage. From these studies, we estimate the masses of the alpha and beta heavy chains to be 480,000 and 440,000 daltons, respectively.  相似文献   

20.
The 18 S dynein from the outer arm of Chlamydomonas flagella is composed of an alpha subunit containing an alpha heavy chain (Mr = approximately 340,000) and an Mr = 16,000 light chain, and a beta subunit containing a beta heavy chain (Mr = approximately 340,000), two intermediate chains (Mr = 78,000 and 69,000), and seven light chains (Mr = 8,000-20,000). Both subunits contain ATPase activity. We have used 8-azidoadenosine 5'-triphosphate (8-N3 ATP), a photoaffinity analog of ATP, to investigate the ATP-binding sites of intact 18 S dynein. 8-N3ATP is a competitive inhibitor of 18 S dynein's ATPase activity and is itself hydrolyzed by 18 S dynein; moreover, 18 S dynein's hydrolysis of ATP and 8-N3ATP is inhibited by vanadate to the same extent. 8-N3ATP therefore appears to interact with at least one of 18 S dynein's ATP hydrolytic sites in the same way as does ATP. When [alpha- or gamma-32P]8-N3ATP is incubated with 18 S dynein in the presence of UV irradiation, label is incorporated primarily into the alpha, beta, and Mr = 78,000 chains; a much smaller amount is incorporated into the Mr = 69,000 chain. The light chains are not labeled. The incorporation is UV-dependent, ATP-sensitive, and blocked by preincubation of the enzyme with vanadate plus low concentrations of ATP or ADP. These results suggest that the alpha heavy chain contains the site of ATP binding and hydrolysis in the alpha subunit. In the beta subunit, the beta heavy chain and one or both intermediate chains may contain ATP-binding sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号