首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel phylogenetic lineages of as yet uncultivated crenarchaeota have been frequently detected in low to moderate-temperature, marine and terrestrial environments. In order to gain a more comprehensive view on the distribution and diversity of Crenarchaeota in moderate habitats, we have studied 18 different terrestrial and freshwater samples by 16S rDNA-based phylogenetic surveys. In seven different soil samples of diverse geographic areas in Europe (forest, grassland, ruderal) and Asia (permafrost, ruderal) as well as in two microbial mats, we have consistently found one particular lineage of crenarchaeota. The diversity of Crenarchaeota in freshwater sediments was considerably higher with respresentative 16S rDNA sequences distributed over four different groups within the moderate crenarchaeota. Systematic analysis of a 16S rDNA universal library from a sandy ecosystem containing 800 clones exclusively revealed the presence of the soil-specific crenarchaeotal cluster. With primers specific for non-thermophilic crenarchaeota we established a rapid method to quantify archaeal 16S rDNA in real time PCR. The relative abundance of crenarchaeotal rDNA was 0.5-3% in the bulk soil sample and only 0.16% in the rhizosphere of the sandy ecosystem. A nearby agricultural setting yielded a relative abundance of 0.17% crenarchaeotal rDNA. In total our data suggest that soil crenarchaeota represent a stable and specific component of the microbiota in terrestrial habitats.  相似文献   

2.
Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilic Crenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.  相似文献   

3.
中国和美国原始土壤中非高温泉古菌的发现和鉴定   总被引:2,自引:0,他引:2  
近年来在非极端环境中已经发现有古菌(Archaea)的存在, 但在中国原始土壤中还未见报道。本研究的目的是调查古菌是否存在于两个分别取自中国新疆和广西的土壤及两个美国亚利桑那州南部地区的土壤中。我们分别构建了这四个原始土壤的古菌16S rDNA文库并对28个克隆的16S rDNA进行了鉴定。所有这些16S rDNA的序列都归类于古菌的泉古菌门(Crenarchaeota)。进化树分析表明, 这些泉古菌的16S rDNA属于非高温陆地环境中的泉古菌种群, 明显区别于海洋和淡水地带的泉古菌种群。这个泉古菌种群又有两个分支, 这两个分支在16S rDNA序列上和G C含量上有明显的区别。本研究在两个中国和两个美国原始土壤中鉴定了非高温泉古菌的存在, 由此证明泉古菌的存在范围不只局限于高温等极端环境。另外, 美国原始土壤中的泉古菌只属于一个进化分支, 这说明非高温泉古菌种群的类型和土壤的地理位置及土壤特性有关。  相似文献   

4.
We designed and tested a set of specific primers for specific PCR amplification of the biotin carboxylase subunit gene (accC) of the Acetyl CoA carboxylase (ACCase) enzyme. The primer set yielded a PCR product of c. 460 bp that was suitable for denaturing gradient gel electrophoresis (DGGE) fingerprinting followed by direct sequencing of excised DGGE bands and sequence analysis. Optimization of PCR conditions for selective amplification was carried out with pure cultures of different bacteria and archaea, and laboratory enrichments. Next, fingerprinting comparisons were done in several aerobic and anaerobic freshwater planktonic samples. The DGGE fingerprints showed between 2 and 19 bands in the different samples, and the primer set provided specific amplification in both pure cultures and natural samples. Most of the samples had sequences grouped with bacterial accC, hypothetically related to the anaplerotic fixation of inorganic carbon. Some other samples, however, yielded accC gene sequences that clustered with Crenarchaeota and were related to the 3-hydroxypropionate/4-hydroxybutyrate cycle of autotrophic crenarchaeota. Such samples came from oligotrophic high mountain lakes and the hypolimnia of a sulfide-rich lake, where crenarchaeotal populations had been previously reported by 16S rRNA surveys. This study provided a fast tool to look for presence of accC genes in natural environments as potential marker for studies of carbon dioxide assimilation in the dark. After further refinement for better specificity against archaea, the new and novel primers could be very helpful to establish a target for crenarchaeota with implications for our understanding of archaeal carbon biogeochemistry.  相似文献   

5.
To assess the distribution and diversity of members of the recently identified bacterial kingdom Acidobacterium, members of this kingdom present in 43 environmental samples were surveyed by PCR amplification. A primer designed to amplify rRNA gene sequences (ribosomal DNAs [rDNAs]) from most known members of the kingdom was used to interrogate bulk DNA extracted from the samples. Positive PCR results were obtained with all temperate soil and sediment samples tested, as well as some hot spring samples, indicating that members of this kingdom are very widespread in terrestrial environments. PCR primers specific for four phylogenetic subgroups within the kingdom were used in similar surveys. All four subgroups were detected in most neutral soils and some sediments, while only two of the groups were seen in most low-pH environments. The combined use of these primers allowed identification of a novel lineage within the kingdom in a hot spring environment. Phylogenetic analysis of rDNA sequences from our survey and the literature outlines at least six major subgroups within the kingdom. Taken together, these data suggest that members of the Acidobacterium kingdom are as genetically and metabolically diverse, environmentally widespread and perhaps as ecologically important as the well-known Proteobacteria and gram-positive bacterial kingdoms.  相似文献   

6.
Marine planktonic crenarchaeota have escaped all cultivation attempts to date, all crenarchaeota growing in pure culture so far being hyperthermophiles. Here, we present a comparative genomic analysis of a 16S- plus 23S-rDNA-containing fragment of a crenarchaeote retrieved from an environmental genomic library constructed from picoplankton collected at 500 m depth in the Antarctic Polar Front. The clone DeepAnt-EC39 contained an insert of 33.3 kbp, which was completely sequenced. DeepAnt-EC39 appears to represent a lineage specific to deep-sea waters but widespread geographically, as revealed by the analysis of the 16S-23S-rDNA intergenic spacer region. A comparison with previously sequenced marine crenarchaeotal genomic clones also containing an rrn operon (74A4, 4B7 and Cenarchaeum symbiosum strains A and B) revealed a highly variable structure involving gene rearrangements and insertions/deletions. The surroundings of the rrn operon and the contiguous glutamate-1-semialdehyde aminotransferase gene appear hot spots for recombination. Phylogenetic analyses of all individual predicted proteins revealed the existence of several likely cases of horizontal gene transfer both, between the two archaeal kingdoms and between the two prokaryotic domains. The most frequent horizontal transfers appear to involve genes from mesophilic methanogenic euryarchaeota related to Methanosarcinales. We hypothesise that the acquisition of genes from mesophilic bacteria and euryarchaeota has played a major role in the adaptation of Group I crenarchaeota to life at lower temperatures.  相似文献   

7.
To assess the distribution and diversity of members of the recently identified bacterial kingdom Acidobacterium, members of this kingdom present in 43 environmental samples were surveyed by PCR amplification. A primer designed to amplify rRNA gene sequences (ribosomal DNAs [rDNAs]) from most known members of the kingdom was used to interrogate bulk DNA extracted from the samples. Positive PCR results were obtained with all temperate soil and sediment samples tested, as well as some hot spring samples, indicating that members of this kingdom are very widespread in terrestrial environments. PCR primers specific for four phylogenetic subgroups within the kingdom were used in similar surveys. All four subgroups were detected in most neutral soils and some sediments, while only two of the groups were seen in most low-pH environments. The combined use of these primers allowed identification of a novel lineage within the kingdom in a hot spring environment. Phylogenetic analysis of rDNA sequences from our survey and the literature outlines at least six major subgroups within the kingdom. Taken together, these data suggest that members of the Acidobacterium kingdom are as genetically and metabolically diverse, environmentally widespread and perhaps as ecologically important as the well-known Proteobacteria and gram-positive bacterial kingdoms.  相似文献   

8.
We compared the phylogenetic compositions of marine planktonic archaeal populations in different marine provinces. Samples from eight different environments were collected at two depths (surface and aphotic zone), and 16 genetic libraries of PCR-amplified archaeal 16S rRNA genes were constructed. The libraries were analyzed by using a three-step hierarchical approach. Membrane hybridization experiments revealed that most of the archaeal clones were affiliated with one of the two groups of marine archaea described previously, crenarchaeotal group I and euryarchaeotal group II. One of the 2,328 ribosomal DNA clones analyzed was related to a different euryarchaeal lineage, which was recently recovered from deep-water marine plankton. In temperate regions (Pacific Ocean, Atlantic Ocean, and Mediterranean Sea) both major groups were found at the two depths investigated; group II predominated at the surface, and group I predominated at depth. In Antarctic and subantarctic waters group II was practically absent. The clonal compositions of archaeal libraries were investigated by performing a restriction fragment length polymorphism (RFLP) analysis with two tetrameric restriction enzymes, which defined discrete operational taxonomic units (OTUs). The OTUs defined in this way were phylogenetically consistent; clones belonging to the same OTU were closely related. The clonal diversity as determined by the RFLP analysis was low, and most libraries were dominated by only one or two OTUs. Some OTUs were found in samples obtained from very distant places, indicating that some phylotypes were ubiquitous. A tree containing one example of each OTU detected was constructed, and this tree revealed that there were several clusters within archaeal group I and group II. The members of some of these clusters had different depth distributions.  相似文献   

9.
We compared the phylogenetic compositions of marine planktonic archaeal populations in different marine provinces. Samples from eight different environments were collected at two depths (surface and aphotic zone), and 16 genetic libraries of PCR-amplified archaeal 16S rRNA genes were constructed. The libraries were analyzed by using a three-step hierarchical approach. Membrane hybridization experiments revealed that most of the archaeal clones were affiliated with one of the two groups of marine archaea described previously, crenarchaeotal group I and euryarchaeotal group II. One of the 2,328 ribosomal DNA clones analyzed was related to a different euryarchaeal lineage, which was recently recovered from deep-water marine plankton. In temperate regions (Pacific Ocean, Atlantic Ocean, and Mediterranean Sea) both major groups were found at the two depths investigated; group II predominated at the surface, and group I predominated at depth. In Antarctic and subantarctic waters group II was practically absent. The clonal compositions of archaeal libraries were investigated by performing a restriction fragment length polymorphism (RFLP) analysis with two tetrameric restriction enzymes, which defined discrete operational taxonomic units (OTUs). The OTUs defined in this way were phylogenetically consistent; clones belonging to the same OTU were closely related. The clonal diversity as determined by the RFLP analysis was low, and most libraries were dominated by only one or two OTUs. Some OTUs were found in samples obtained from very distant places, indicating that some phylotypes were ubiquitous. A tree containing one example of each OTU detected was constructed, and this tree revealed that there were several clusters within archaeal group I and group II. The members of some of these clusters had different depth distributions.  相似文献   

10.
A study was undertaken to investigate the presence of archaeal diversity in saltpan sediments of Goa, India by 16S rDNA-dependent molecular phylogeny. Small subunit rRNA (16S rDNA) from saltpan sediment metagenome were amplified by polymerase chain reaction (PCR) using primers specific to the domain archaea. 10 unique phylotypes were obtained by PCR based RFLP of 16S rRNA genes using endonuclease Msp 1, which was most suitable to score the genetic diversity. These phylotypes spanned a wide range within the domain archaea including both crenarchaeota and euryarcheaota. None of the retrieved crenarchaeota sequences could be grouped with previously cultured crenarchaeota however; two sequences were related with haloarchaea. Most of the sequences determined were closely related to the sequences that had been previously obtained from metagenome of a variety of marine environments. The phylogenetic study of a site investigated for the first time revealed the presence of low archaeal population but showed yet unclassified species, may specially adapted to the salt pan sediment of Goa.  相似文献   

11.
Here, we have identified a protist (dinoflagellate) lineage that has diversified recently in evolutionary terms. The species members of this lineage inhabit cold-water marine and lacustrine habitats, which are distributed along a broad range of salinities (0–32) and geographic distances (0–18 000 km). Moreover, the species present different degrees of morphological and sometimes physiological variability. Altogether, we analysed 30 strains, generating 55 new DNA sequences. The nuclear ribosomal DNA (nrDNA) sequences (including rapidly evolving introns) were very similar or identical among all the analysed isolates. This very low nrDNA differentiation was contrasted by a relatively high cytochrome b (COB) mitochondrial DNA (mtDNA) polymorphism, even though the COB evolves very slowly in dinoflagellates. The 16 Maximum Likelihood and Bayesian phylogenies constructed using nr/mtDNA indicated that the studied cold-water dinoflagellates constitute a monophyletic group (supported also by the morphological analyses), which appears to be evolutionary related to marine-brackish and sometimes toxic Pfiesteria species. We conclude that the studied dinoflagellates belong to a lineage which has diversified recently and spread, sometimes over long distances, across low-temperature environments which differ markedly in ecology (marine versus lacustrine communities) and salinity. Probably, this evolutionary diversification was promoted by the variety of natural selection regimes encountered in the different environments.  相似文献   

12.
The 13 "D-genome"cotton species are a monophyletic assemblage of morphologically diverse diploids that inhabit arid to semiarid regions in Mexico, with 1 disjunct species each in Peru and the Galapagos Islands and 1 species whose range extends northward into Arizona. While these species lack commercially significant fiber (i. e., cotton), they are important in that they represent one of the parental genomes of the cultivated tetraploid cottons. To assess phylogenetic relationships among these species, we sequenced and analyzed a region of a nuclear-encoded alcohol dehydrogenase gene (AdhA). Phylogenetic analysis resulted in a topology that is generally consistent with current taxonomic alignment of the species, although the phylogeny based on AdhA sequences conflicts with those inferred from cpDNA and ITS data sets, most notably in the position of the anomalous species Gossypium gossypioides. In one lineage, we detected both gene duplication and sequence polymorphisms that transcend species boundaries; sequences in this lineage formed a monophyletic clade, yet no taxon within the clade contained a monophyletic collection of sequences. Potential explanations for this latter phenomenon, including gene duplication, gene flow, and lineage sorting, are discussed.  相似文献   

13.
The diversity of Archaea from three different hypersaline environments was analyzed and compared by polymerase chain reaction (PCR)-based molecular phylogenetic techniques and cultivation approaches. The samples originated from a crystallization pond of a solar saltern in Spain (FC); an alkaline lake in Nevada, USA, (EMF); and a small pond from a slag heap of a potassium mine in Germany (DIE). Except for two 16S rDNA sequences that were related to crenarchaeota from soil and did not apparently belong to the indigenous halophilic community, all sequences recovered from environmental DNA or cultivated strains grouped within the Halobacteriaceae. Mostly 16S rDNA sequences related to the genera Halorubrum and Haloarcula were detected in sample FC, and organisms belonging to these genera were also recovered by cultivation. In contrast, sequences related to five different groups of halophilic archaea were amplified from sample DIE (including novel lineages with only uncultivated phylotypes), but the organisms that were cultivated from this sample fell into different groups (i.e., Natronococcus, Halorubrum, or unaffiliated) and did not overlap with those predicted using the culture-independent approach. With respect to the highly alkaline sample, EMF, four groups were predicted from the environmental 16S rDNA sequences, two of which ( Natronomonas and Haloarcula) were also recovered through cultivation together with Natronococcus isolates. In summary, we found that halophilic archaea dominate the archaeal populations in these three hypersaline environments and show that culturability of the organisms predicted by molecular surveys might strongly depend on the habitat chosen. While a number of novel halophilic archaea have been isolated, we have not been able to cultivate representatives of the new lineages that were detected in this and several other environmental studies.  相似文献   

14.
通过构建16S rRNA基因片段的克隆文库对腾冲热海两温泉中泉古菌的多样性和系统发育关系进行了初步的研究.一共得到18个泉古茵克隆序列,可分为12个OTUs,两温泉的克隆序列与已知GenBank上关系最近序列的平均相似性较低,无名泉为92.56%,热爆区为93%.从基于16S rRNA基因片段序列构建的系统发育树来看,74℃的无名泉样点中既有属于超高温环境类群的泉古菌,同时又有属于和常温环境较接近的泉古菌;45℃的热爆区样点的泉古茵,相对来说则更接近于常温类群.本次研究表明,腾冲热泉与世界其它同类热泉之间的泉古茵类群存在着一定的差异;而且两实验样点代表了超高温和高温环境泉古菌逐渐向常温过度的两个重要环境.  相似文献   

15.
PCR primers were designed to selectively recover partial (1100 bp) actinomycete 16S ribosomal DNA sequences from a temperate forest soil. A gene library was made and colony PCR was used to identify clones containing inserts. Unique clones were identified and partial or complete insert sequences were determined for 53 clones. Phylogenetic analyses revealed that 46 (87%) of the clones sampled contained 16S rDNA sequences which fell within the actinomycete radiation. The largest group of 34 sequences formed two closely related monophyletic groups in the 16S rRNA tree, which in turn formed a weakly supported sister group with the sequence fromActinomadura madurae. Four novel 16S rDNA lineages were detected inMycobacterium, one inPropionibacterium and one inCorynebacterium. Three novel sequences weakly grouped withSporichthya polymorpha. Two sequences formed an isolated lineage not closely related to any of the reference actinomycetes. Our results lend strong support to the hypothesis that cultured (and sequenced) actinomycetes do not adequately describe the diversity of this group in the environment.  相似文献   

16.
Labral spines are sharp projections of the apertural lip found in some marine gastropods that are used to penetrate hard-shelled prey. The majority of gastropod genera that contain labral spine-bearing species are found in the subfamily Ocenebrinae (Gastropoda: Muricidae). To reconstruct the evolutionary history of labral spine-bearing and labral spine-lacking gastropods in the eastern Pacific (EP) Ocean, partial sequences of two mitochondrial genes (cytochrome oxidase I and 12S rRNA) were obtained from representative taxa. Despite high nucleotide bias, a variety of phylogenetic reconstruction methods produced the same tree topology. The traditional taxonomic view that all "Nucella-like" spine-bearing taxa in the EP belong to a monophyletic "Acanthina" is rejected due to nonmonophyly of this group. The more recently recognized "Acanthinucella" is also not monophyletic, and we therefore propose the new genus Mexacanthina for two Mexican species formerly assigned to Acanthinucella. The genus Ocinebrina, which first appears in the middle Eocene, is not a stem EP ocenebrine lineage and may also not be a monophyletic clade. Tracing the evolutionary history of labral spines among extant lineages indicates that the absence of a labral spine is ancestral for all EP ocenebrines. Ancestral conditions could not be resolved unambiguously for all nodes of the phylogeny based on extant taxa. However, by jointly considering both molecular phylogenetic relationships and the phylogenetic affinities of several extinct taxa, all remaining character state transformation can be inferred unambiguously. Based on this analysis, a labral spine likely evolved independently in at least four lineages of EP ocenebrines. Although homoplasy appears to characterize labral spine evolution among ocenebrine gastropods, the structural position of a labral spine was evolutionarily altered in one lineage, indicating that different types of labral spines do not necessarily reflect convergent evolution.  相似文献   

17.
The suborder Myrmeleontiformia is a derived lineage of lacewings (Insecta: Neuroptera) including the families Psychopsidae, Nemopteridae, Nymphidae, Ascalaphidae and Myrmeleontidae. In particular, Myrmeleontidae (antlions) are the most diverse neuropteran family, representing a conspicuous component of the insect fauna of xeric environments. We present the first detailed quantitative phylogenetic analysis of Myrmeleontiformia, based on 107 larval morphological and behavioural characters for 36 genera whose larvae are known (including at least one representative of all the subfamilies of the suborder). Four related families were used as outgroups to polarize character states. Phylogenetic analyses were conducted using both parsimony and Bayesian methods. The reconstructions resulting from our analyses corroborate the monophyly of Myrmeleontiformia. Within this clade, Psychopsidae are recovered as the sister family to all the remaining taxa. Nemopteridae (including both subfamilies Nemopterinae and Crocinae) are recovered as monophyletic and sister to the clade comprising Nymphidae + (Myrmeleontidae + Ascalaphidae). Nymphidae consist of two well‐supported clades corresponding to the subfamilies Nymphinae and Myiodactylinae. Our results suggest that Ascalaphidae may not be monophyletic, as they collapse into an unresolved polytomy under the Bayesian analysis. In addition, the recovered phylogenetic relationships diverge from the traditional classification scheme for ascalaphids. Myrmeleontidae are reconstructed as monophyletic, with the subfamilies Stilbopteryginae, Palparinae and Myrmeleontinae. We retrieved a strongly supported clade comprising taxa with a fossorial habit of the preimaginal instars, which represents a major antlion radiation, also including the monophyletic pit‐trap building species.  相似文献   

18.
Phylogenetic relationships among the Braconidae were examined using homologous 16S rDNA, 28S rDNA D2 region, and 18S rDNA gene sequences and morphological data using both PAUP* 4.0 and MRBAYES 3.0B4 from 88 in-group taxa representing 35 subfamilies. The monophyletic nature of almost all subfamilies, of which multiple representatives are present in this study, is well-supported except for two subfamilies, Cenocoelinae and Neoneurinae that should probably be treated as tribal rank taxa in the subfamily Euphorinae. The topology of the trees generated in the present study supported the existence of three large generally accepted lineage or groupings of subfamilies: two main entirely endoparasitic lineages of this family, referred to as the "helconoid complex" and the "microgastroid complex," and the third "the cyclostome." The Aphidiinae was recovered as a member of the non-cyclostomes, probably a sister group of Euphorinae or Euphorinae-complex. The basal position of the microgastroid complex among the non-cyclostomes has been found in all our analyses. The cyclostomes were resolved as a monophyletic group in all analyses if two putatively misplaced groups (Mesostoa and Aspilodemon) were excluded from them. Certain well-supported relationships evident in this family from the previous analyses were recovered, such as a sister-group relationships of Alysiinae+Opiinae, of Braconinae+Doryctinae, and a close relationship between Macrocentrinae, Xiphozelinae, Homolobinae, and Charmontinae. The relationships of "Ichneutinae + ((Adeliinae + Cheloninae) + (Miracinae + (Cardiochilinae + Microgastrinae)))" was confirmed within the microgastroid complex. The position of Acampsohelconinae, Blacinae, and Trachypetinae is problematic.  相似文献   

19.
We characterized Yersinia enterocolitica and Yersinia pseudotuberculosis insertion sequences related to insertion sequence 1541, recently identified in Yersinia pestis. For each of the two species, two insertion sequence copies were cloned and sequenced. Genetic elements from Y. pseudotuberculosis were almost identical to insertion sequence 1541, whereas these from Y. enterocolitica were less related. Phylogenetic analysis of the putative transposases encoded by insertion sequences from the three pathogenic members of the genus Yersinia showed that they clustered with those encoded by Escherichia coli and Salmonella enterica elements belonging to the insertion sequence 200/insertion sequence 605 group. Insertion sequences originating from Y. pestis and Y. pseudotuberculosis constitute a monophyletic lineage distinct from that of Y. enterocolitica.  相似文献   

20.
Phosphoglycerate kinase sequences were obtained for 313 aligned bases of 41 individuals from 39 marsupial species. In contrast to previous molecular analyses, the relationships suggested by these data show a high level of congruence with morphologically defined orders and families. Four main monophyletic lineages are recognizable. These are the monogeneric orders Microbiotheria (Dromiciops australis) and Notoryctemorphia (Notoryctes typhlops), a grouping of the American orders Didelphimorphia and Paucituberculata, and the Australasian species other than N. typhlops. Within the Australasian lineage, there are again four main monophyletic groups; the Dasyuridae, two peramelemorph (bandicoot) lineages (one comprised of pseudogene sequences) and the Diprotodontia. This topology is not greatly affected by the exclusion of pseudogenes except that a clade of syndactylous species (Peramelemorphia plus Diprotodontia) is recovered. Two other peramelemorph pseudogenes have inserts of about 1 kb with high levels of similarity to LINE 1 elements. The Diprotodontia is notable for its relative lack of intersequence variation in comparison to the Dasyuromorphia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号