首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The metal(II) complexes [M(4-Me-5-NH2-1-iqtsc- H)Cl2] (M = Co(II), Ni(II) or Cu(II) and 4-Me-5- NH2-1-iqtsc-H = 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone), [Zn(4-Me-5-NH2-1-iqtsc-H)- (OAc)2]· H2O and [Pt(4-Me-5-NH2-1-iqtsc)Cl)] were isolated and characterized by elemental analysis, conductance measurement, magnetic moments (300- 78 K)and spectral studies. On the basis of these studies distorted trigonal-bipyramidal structures for the Co(II), Ni(II), Cu(II) and Zn(II) complexes and a square-planar structure for the Pt(II) complex are proposed. All these complexes were screened for their antitumour activity in the P388 lymphocytic leukaemia test system in mice. With the exception of the Pt(II) and Zn(II) complexes, the complexes showed no significant activity; the Zn(II) and Pt(II) complexes showed T/C (%) values of 150 and 144 at a much lesser extent [2].  相似文献   

2.
The transport of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) was studied in resting cells of Saccharomyces cerevisiae. Hydroxymethylpyrimidine uptake was an energy- and temperature-dependent process which has an optimal pH at 4.5. The apparent Km for hydroxymethylpyrimidine uptake was 0.37 microM, and the uptake was inhibited by 2-methyl-4-amino-5-aminomethylpyrimidine, thiamin and pyrithiamin. Furthermore, hydroxymethylpyrimidine uptake was inhibited by 4-azido-2-nitrobenzoylthiamin, a specific and irreversible inhibitor of the yeast thiamin transport system and it was greatly impaired in the thiamin transport mutant of S. cerevisiae. Thus, hydroxymethylpyrimidine is taken up by a common transport system with thiamin in S. cerevisiae, but in contrast to thiamin transport, accumulated hydroxymethylpyrimidine is released from yeast cells showing an overshoot phenomenon.  相似文献   

3.
The transport overshoot during 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) uptake by the thiamin transport system in Saccharomyces cerevisiae was investigated. The overshoot was found to be temperature- and energy-dependent and affected by the growth phase of the yeast. The efflux system for hydroxymethylpyrimidine appeared to be more sensitive to 2,4-dinitrophenol than the influx system, resulting in the loss of the overshoot of the pyrimidine in the presence of the uncoupler. Furthermore, the overshoot did not occur after the preincubation of yeast cells with inhibitors of protein synthesis such as cycloheximide and anisomycin. These results suggest that an active efflux system for hydroxymethylpyrimidine, which is rapidly synthesized, is involved in the overshoot of this pyrimidine during its transport in S. cerevisiae.  相似文献   

4.
5.
A mutant of Saccharomyces cerevisiae highly resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole (2-aminohydroxyethylthiazole), an antimetabolite of 4-methyl-5-beta-hydroxyethylthiazole (hydroxyethylthiazole), has been isolated. Its resistance to 2-aminohydroxyethylthiazole was about 10(4) times that of the sensitive parent strain. The amount of thiamin synthesized in the cells of the resistant strain grown in minimal medium was less than half of that of the sensitive strain. The ability to synthesize thiamin from 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) and hydroxyethylthiazole in the resistant strain was low compared with that of the sensitive strain. These results were found to be due to a deficiency of hydroxyethylthiazole kinase in the resistant strain: in sonic extracts of cells the enzyme activity was only 0.67% of that of the sensitive strain. Although the cells of the sensitive strain could accumulate exogenous hydroxyethylthiazole in the form of hydroxyethylthiazole monophosphate, no significant uptake of hydroxyethylthiazole by the cells of the resistant strain was observed. The possibilities that 2-aminohydroxyethylthiazole monophosphate may be the actual inhibitor of the growth of Saccharomyces cerevisiae, and that hydroxyethylthiazole may not be involved in the pathway of de novo synthesis of thiamin via hydroxyethylthiazole monophosphate, are discussed.  相似文献   

6.
Ribonucleotide reductase (RNR) of the yeast Saccharomyces cerevisiae is a tetrameric protein complex, consisting of two large and two small subunits. The small subunits Y2 and Y4 form a heterodimer and are encoded by yeast genes RNR2 and RNR4, respectively. Loss of Y4 in yeast mutant rnr4Delta can be compensated for by up-regulated expression of Y2, and the formation of a small subunit Y2Y2 homodimer that allows for a partially functional RNR. However, rnr4Delta mutants exhibit slower growth than wild-type (WT) cells and are sensitive to many mutagens, amongst them UVC and photo-activated mono- and bi-functional psoralens. Cells of the haploid rnr4Delta mutant also show a 3- to 4-fold higher sensitivity to the oxidative stress-inducing chemical stannous chloride than those of the isogenic WT. Both strains acquired increased resistance to SnCl2 with age of culture, i.e., 24-h cultures were more sensitive than cells grown for 2, 3, 4, and 5 days in liquid culture. However, the sensitivity factor of three to four (WT/mutant) did not change significantly. Cultures of the rnr4Delta mutant in stationary phase of growth always showed higher frequency of budding cells (budding index around 0.5) than those of the corresponding WT (budding index <0.1), pointing to a delay of mitosis/cytokinesis.  相似文献   

7.
8.
9.
Hydroxyurea is a specific inhibitor of ribonucleotide reductase, which is a rate-limiting enzyme activity in DNA synthesis. Cells selected for resistance to hydroxyurea contain alterations in ribonucleotide reductase activity. An unstable hydroxyurea resistant population of hamster cells has been used to isolate a stable drug resistant cell line, and two stable revertant lines with different sensitivities to hydroxyurea cytotoxicity and different ribonucleotide reductase activity levels. We show for the first time that a decrease in hydroxyurea resistance is accompanied by a parallel decline in gene copies for the M2 component of ribonucleotide reductase, ornithine decarboxylase and a gene of unknown function called p5-8, indicating that the co-amplification of the three genes is associated with drug resistance, and supporting the concept that M2, ornithine decarboxylase and p5-8 are closely linked, and form part of a single amplicon in hamster cells.  相似文献   

10.
The COP9 Signalosome protein complex (CSN) is a pleiotropic regulator of plant development and contains eight-subunits. Six of these subunits contain the PCI motif which mediates specific protein interactions necessary for the integrity of the complex. COP9 complex subunit 7 (CSN7) contains an N-terminal PCI motif followed by a C-terminal extension which is also necessary for CSN function. A yeast-interaction trap assay identified the small subunit of ribonucelotide reductase (RNR2) from Arabidopsis as interacting with the C-terminal section of CSN7. This interaction was confirmed in planta by both bimolecular fluorescence complementation and immuoprecipitation assays with endogenous proteins. The subcellular localization of RNR2 was primarily nuclear in meristematic regions, and cytoplasmic in adult cells. RNR2 was constitutively nuclear in csn7 mutant seedlings, and was also primarily nuclear in wild type seedlings following exposure to UV-C. These two results correlate with constitutive expression of several DNA-damage response genes in csn7 mutants, and to increased tolerance of csn7 seedlings to UV-C treatment. We propose that the CSN is a negative regulator of RNR activity in Arabidopsis.  相似文献   

11.
N4-(2-Acetoxyethoxymethyl)-2-acetylpyridine thiosemicarbazone (AATSC) belongs to a series of molecules known to have broad antimicrobial inhibitory activity. These molecules contain the 2-acetoxyethoxy moiety which could conceivably take up a conformation analogous to that of the ribosyl group. Moreover, the thiosemicarbazone moiety, when in the presence of a suitable enzymatic site, could mimic the triazine group, which is found in a number of antifolate drugs. AATSC, which has both bacterial inhibitory activity and water solubility, was accordingly evaluated for its antifolate activity against the bovine liver dihydrofolate reductase. AATSC is shown to be a fully uncompetitive inhibitor of that enzyme. Furthermore, AATSC enhances the activity of methotrexate. Such a potentiation could be useful for therapeutic purposes.  相似文献   

12.
13.
14.
15.
A recently discovered subgroup of class I ribonucleotide reductase (RNR) found in the infectious bacterium Chlamydia trachomatis (C. trachomatis) was shown to exhibit a high-valent Fe(III)Fe(IV) center instead of the tyrosyl radical observed normally in all class I RNRs. The X-ray structure showed that C. trachomatis WT RNR has a phenylalanine at the position of the active tyrosine in Escherichia coli RNR. In this paper the X-ray structure of variant F127Y is presented, where the tyrosine is restored. Using (1)H- and (57)Fe-ENDOR spectroscopy it is shown, that in WT and variants F127Y and Y129F of C. trachomatis RNR, the Fe(III)Fe(IV) center is virtually identical with the short-lived intermediate X observed during the iron oxygen reconstitution reaction in class I RNR from E. coli. The experimental data are consistent with a recent theoretical model for X, proposing two bridging oxo ligands and one terminal water ligand. A surprising extension of the lifetime of the Fe(III)Fe(IV) state in C. trachomatis from a few seconds to several hours at room temperature was observed under catalytic conditions in the presence of substrate. These findings suggest a possible new role for the Fe(III)Fe(IV) state also in other class I RNR, during the catalytic radical transfer reaction, by which the substrate turnover is started.  相似文献   

16.
17.
18.
19.
D E Ehmann  A M Gehring  C T Walsh 《Biochemistry》1999,38(19):6171-6177
A key step in fungal biosynthesis of lysine, enzymatic reduction of alpha-aminoadipate at C6 to the semialdehyde, requires two gene products in Saccharomyces cerevisiae, Lys2 and Lys5. Here, we show that the 31-kDa Lys5 is a specific posttranslational modification catalyst, using coenzyme A (CoASH) as a cosubstrate to phosphopantetheinylate Ser880 of the 155-kDa Lys2 and activate it for catalysis. Lys2 was subcloned from S. cerevisiae and expressed in and purified from Escherichia coli as a full-length 155-kDa enzyme, as a 105-kDa adenylation/peptidyl carrier protein (A/PCP) fragment (residues 1-924), and as a 14-kDa PCP fragment (residues 809-924). The apo-PCP fragment was covalently modified to phosphopantetheinylated holo-PCP by pure Lys5 and CoASH with a Km of 1 microM and kcat of 3 min-1 for both the PCP and CoASH substrates. The adenylation domain of the A/PCP fragment activated S-carboxymethyl-L-cysteine (kcat/Km = 840 mM-1 min-1) at 16% the efficiency of L-alpha-aminoadipate in [32P]PPi/ATP exchange assays. The holo form of the A/PCP 105-kDa fragment of Lys2 covalently aminoacylated itself with [35S]S-carboxymethyl-L-cysteine. Addition of NADPH discharged the covalent acyl-S-PCP Lys2, consistent with a reductive cleavage of the acyl-S-enzyme intermediate. These results identify the Lys5/Lys2 pair as a two-component system in which Lys5 covalently primes Lys2, allowing alpha-aminoadipate reductase activity by holo-Lys2 with catalytic cycles of autoaminoacylation and reductive cleavage. This is a novel mechanism for a fungal enzyme essential for amino acid metabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号