首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
该研究2011年1月开始在鼎湖山针阔叶混交林(混交林)进行模拟酸雨实验,设置4个不同处理水平,即对照(CK)(pH为4.5左右的天然湖水)、T_1(pH=4.0)、T_2(pH=3.25)和T_3(pH=2.5)。2013年1—12月对不同酸雨强度处理下的森林凋落物CO_2释放速率进行为期1 a的连续观测,探讨酸雨对混交林凋落物C排放的影响。结果表明:凋落物CO2释放通量在对照样方为(1 507.41±155.19) g CO_2·m~(-2)·a~(-1),其中湿季和旱季分别占年通量的68.7%和31.3%。模拟酸雨抑制了森林凋落物CO_2释放,与CK相比,T_2和T_3处理下的CO_2释放通量分别显著降低15.4%和42.7%(P0.05);且这种抑制作用具有季节差异性,处理间的显著差异只出现在湿季。凋落物CO_2释放速率与土壤温度和土壤湿度分别呈显著指数相关和显著直线相关,同时,酸雨处理降低了凋落物CO_2释放的温度敏感性。混交林凋落物CO_2释放在模拟酸雨下的抑制效应与土壤累积酸化而导致的土壤微生物活性变化有关,表现为模拟酸雨作用下土壤pH值和微生物量碳显著下降。上述结果说明酸雨是影响混交林土壤碳循环的重要因子之一。  相似文献   

2.
Although numerous studies indicate that increasing atmospheric CO2 or temperature stimulate soil CO2 efflux, few data are available on the responses of three major components of soil respiration [i.e. rhizosphere respiration (root and root exudates), litter decomposition, and oxidation of soil organic matter] to different CO2 and temperature conditions. In this study, we applied a dual stable isotope approach to investigate the impact of elevated CO2 and elevated temperature on these components of soil CO2 efflux in Douglas-fir terracosms. We measured both soil CO2 efflux rates and the 13C and 18O isotopic compositions of soil CO2 efflux in 12 sun-lit and environmentally controlled terracosms with 4-year-old Douglas fir seedlings and reconstructed forest soils under two CO2 concentrations (ambient and 200 ppmv above ambient) and two air temperature regimes (ambient and 4 °C above ambient). The stable isotope data were used to estimate the relative contributions of different components to the overall soil CO2 efflux. In most cases, litter decomposition was the dominant component of soil CO2 efflux in this system, followed by rhizosphere respiration and soil organic matter oxidation. Both elevated atmospheric CO2 concentration and elevated temperature stimulated rhizosphere respiration and litter decomposition. The oxidation of soil organic matter was stimulated only by increasing temperature. Release of newly fixed carbon as root respiration was the most responsive to elevated CO2, while soil organic matter decomposition was most responsive to increasing temperature. Although some assumptions associated with this new method need to be further validated, application of this dual-isotope approach can provide new insights into the responses of soil carbon dynamics in forest ecosystems to future climate changes.  相似文献   

3.
An experimental study to estimate the effect of clear-cutting on CO2 emission from the soil surface was performed using the chamber method. For field measurements, several experimental plots within the clear-cut with different degrees of damage of the upper organic soil layer and different amounts of litter and logging residue on the surface were selected. Soil CO2 fluxes were simultaneously measured both on the clear-cutting plots and on two plots within the spruce forest stand located close to the clear-cut area. The results show a significant seasonal and diurnal variability of soil CO2 emission. It was found that the soil respiration rate varies significantly among plots and depends on the damage to the upper soil layer and the availability of litter and logging residue on the soil surface. It was found that the rate of CO2 emission from soil surface is strongly dependent on the air and soil temperature and moisture of the upper soil layer. Different rates of soil respiration are also revealed on the plots located at different distances from tree trunks within the control forest stand.  相似文献   

4.
Keith  H.  Jacobsen  K.L.  Raison  R.J. 《Plant and Soil》1997,190(1):127-141
Rates of soil respiration (CO2 efflux) were measured for a year in a mature Eucalyptus pauciflora forest in unfertilized and phosphorus-fertilized plots. Soil CO2 efflux showed a distinct seasonal trend, and average daily rates ranged from 124 to 574 mg CO2 m–2 hr–1. Temperature and moisture are the main variables that cause variation in soil CO2 efflux; hence their effects were investigated over a year so as to then differentiate the treatment effect of phosphorus (P) nutrition.Soil temperature had the greatest effect on CO2 efflux and exhibited a highly significant logarithmic relationship (r2 = 0.81). Periods of low soil and litter moisture occurred during summer when temperatures were greater than 10 °C, and this resulted in depression of soil CO2 efflux. During winter, when temperatures were less than 10 °C, soil and litter moisture were consistently high and thus their variation had little effect on soil CO2 efflux. A multiple regression model including soil temperature, and soil and litter moisture accounted for 97% of the variance in rates of CO2 efflux, and thus can be used to predict soil CO2 efflux at this site with high accuracy. Total annual efflux of carbon from soil was estimated to be 7.11 t C ha–1 yr–1. The model was used to predict changes in this annual flux if temperature and moisture conditions were altered. The extent to which coefficients of the model differ among sites and forest types requires testing.Increased soil P availability resulted in a large increase in stem growth of trees but a reduction in the rate of soil CO2 efflux by approximately 8%. This reduction is suggested to be due to lower root activity resulting from reduced allocation of assimilate belowground. Root activity changed when P was added to microsites within plots, and via the whole tree root system at the plot level. These relationships of belowground carbon fluxes with temperature, moisture and nutrient availability provide essential information for understanding and predicting potential changes in forest ecosystems in response to land use management or climate change.  相似文献   

5.
The ongoing increase in atmospheric CO2 concentration ([CO2]) can potentially alter litter decomposition rates by changing: (i) the litter quality of individual species, (ii) allocation patterns of individual species, (iii) the species composition of ecosystems (which could alter ecosystem‐level litter quality and allocation), (iv) patterns of soil moisture, and (v) the composition and size of microbial communities. To determine the relative importance of these mechanisms in a California annual grassland, we created four mixtures of litter that differed in species composition (the annual legume Lotus wrangelianus Fischer & C. Meyer comprised either 10% or 40% of the initial mass) and atmospheric [CO2] during growth (ambient or double‐ambient). These mixtures decomposed for 33 weeks at three positions (above, on, and below the soil surface) in four types of grassland microcosms (fertilized and unfertilized microcosms exposed to elevated or ambient [CO2]) and at a common field site. Initially, legume‐rich litter mixtures had higher nitrogen concentrations ([N]) than legume‐poor mixtures. In most positions and environments, the different litter mixtures decomposed at approximately the same rate. Fertilization and CO2 enrichment of microcosms had no effect on mass loss of litter within them. However, mass loss was strongly related to litter position in both microcosms and the field. Nitrogen dynamics of litter were significantly related to the initial [N] of litter on the soil surface, but not in other positions. We conclude that changes in allocation patterns and species composition are likely to be the dominant mechanisms through which ecosystem‐level decomposition rates respond to increasing atmospheric [CO2].  相似文献   

6.
The area under the cultivation of perennial bioenergy crops on organic soils in the northern countries is fast increasing. To understand the impact of reed canary grass (RCG, Phalaris arundinaceae L.) cultivation on the carbon dioxide (CO2) balance of an organic soil, net ecosystem CO2 exchange (NEE) was measured for four years in a RCG cultivated cutover peatland in eastern Finland using the eddy covariance technique. There were striking differences among the years in the annual precipitation. The annual precipitation was higher during 2004 and 2007 and lower during 2005 and 2006 than the 1971–2000 regional mean. During wet growing seasons, moderate temperatures, high surface soil moisture and low evaporative demand favoured high CO2 uptake. During dry seasons, owing to soil moisture and atmospheric stress, photosynthetic activity was severely restricted. The CO2 uptake [gross primary productivity (GPP)] was positively correlated with soil moisture, air temperature and inversely with vapour pressure deficit. Total ecosystem respiration (TER) increased with increasing soil temperature but decreased with increasing soil moisture. The relative responses of GPP and TER to moisture stress were different. While changes in TER for a given change in soil moisture were moderate, variations in GPP were drastic. Also, the seasonal variations in TER were not as conspicuous as those in GPP implying that GPP is the primary regulator of the interannual variability in NEE in this ecosystem. The ecosystem accumulated a total of 398 g C m?2 from the beginning of 2004 until the end of 2007. It retained some carbon during a wet year such as 2004 even after accounting for the loss of carbon in the form of harvested biomass. Based on this CO2 balance analysis, RCG cultivation is found to be a promising after‐use option on an organic soil.  相似文献   

7.
Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.  相似文献   

8.
改变凋落物输入对川西亚高山天然次生林土壤呼吸的影响   总被引:1,自引:0,他引:1  
2019年5月-10月,采用LI-8100A土壤碳通量自动测量分析仪对川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的岷江冷杉(Abies faxoniana)次生针叶林(针叶林)、红桦(Betula albo-sinensis)+青榨槭(Acer davidii)+岷江冷杉次生针阔混交林(针阔混交林)和青榨槭+红桦+陕甘花楸(Sorbus koehneana Schneid)次生阔叶林(阔叶林)的土壤呼吸及土壤温湿度因子(对照、去除凋落物和加倍凋落物)进行观测。结果显示:去除和加倍凋落物对土壤温湿度的影响不显著,且3种林型之间的土壤呼吸速率差异不显著。与对照相比,去除凋落物使针叶林、针阔混交林、阔叶林的土壤呼吸速率分别降低了17.65%、21.01%和19.83%(P<0.05);加倍凋落物则分别增加6.76%、7.28%、8.16%(P>0.05)。3种林分土壤呼吸速率均与土壤温度极显著指数相关,与土壤湿度不相关。对照Q10值变幅为2.01-3.29,去除凋落物降低了3种林型的Q10值;加倍凋落物分别提高了针叶林和降低了针阔混交林和阔叶林的Q10值。土壤呼吸速率仅表现在天然次生林对照处理中受到土壤pH、有机质、可溶性有机氮和草本Pielou均匀度指数的显著影响。研究结果表明,天然次生阔叶林和针阔混交林凋落物对土壤呼吸的贡献及Q10值高于天然次生针叶林,说明在未来CO2浓度及温度升高背景下,地表凋落物增加并未引起天然次生林土壤呼吸速率成倍增加,更有利于该区域天然次生林尤其是针叶林的土壤碳吸存。  相似文献   

9.
Currently, it is unknown what role tropical forest soils will play in the future global carbon cycle under higher temperatures. Many tropical forests grow on deeply weathered soils and although it is generally accepted that soil carbon decomposition increases with higher temperatures, it is not known whether subsurface carbon pools are particularly responsive to increasing soil temperatures. Carbon dioxide (CO2) diffusing out of soils is an important flux in the global carbon. Although soil CO2 efflux has been the subject of many studies in recent years, it remains difficult to deduct controls of this flux because of the different sources that produce CO2 and because potential environmental controls like soil temperature and soil moisture often covary. Here, we report results of a 5‐year study in which we measured soil CO2 production on two deeply weathered soil types at different depths in an old‐growth tropical wet forest in Costa Rica. Three sites were developed on old river terraces (old alluvium) and the other three were developed on old lava flows (residual). Annual soil CO2 efflux varied between 2.8–3.6 μmol CO2‐C m?2 s?1 (old alluvium) and 3.4–3.9 μmol CO2‐C m?2 s?1 (residual). More than 75% of the CO2 was produced in the upper 0.5 m (including litter layer) and less than 7% originated from the soil below 1 m depth. This low contribution was explained by the lack of water stress in this tropical wet forest which has resulted in very low root biomass below 2 m depth. In the top 0.5 m CO2 production was positively correlated with both temperature and soil moisture; between 0.6 and 2 m depth CO2 production correlated negatively with soil moisture in one soil and positively with photosynthetically active radiation in the other soil type. Below 2 m soil CO2 production strongly increased with increasing temperature. In combination with reduced tree growth that has been shown for this ecosystem, this would be a strong positive feedback to ecosystem warming.  相似文献   

10.
Some single-factor experiments suggest that elevated CO2 concentrations can increase soil carbon, but few experiments have examined the effects of interacting environmental factors on soil carbon dynamics. We undertook studies of soil carbon and nitrogen in a multi-factor (CO2 × temperature × soil moisture) climate change experiment on a constructed old-field ecosystem. After four growing seasons, elevated CO2 had no measurable effect on carbon and nitrogen concentrations in whole soil, particulate organic matter (POM), and mineral-associated organic matter (MOM). Analysis of stable carbon isotopes, under elevated CO2, indicated between 14 and 19% new soil carbon under two different watering treatments with as much as 48% new carbon in POM. Despite significant belowground inputs of new organic matter, soil carbon concentrations and stocks in POM declined over four years under soil moisture conditions that corresponded to prevailing precipitation inputs (1,300 mm yr?1). Changes over time in soil carbon and nitrogen under a drought treatment (approximately 20% lower soil water content) were not statistically significant. Reduced soil moisture lowered soil CO2 efflux and slowed soil carbon cycling in the POM pool. In this experiment, soil moisture (produced by different watering treatments) was more important than elevated CO2 and temperature as a control on soil carbon dynamics.  相似文献   

11.
The magnitude of soil CO2 emission varying significantly among different vegetation types for plants could alter the microclimatic environment of soil. In a Pinus tabulaeformis plantation and an adjacent Quercus aliena var. acuteserrata shrub, which are located in a dry-hot valley region of Minjiang River in the Southwest of China, the daily soil CO2 emission dynamics was measured in August 2004 and in May, July, and October 2005. The results showed that the soil CO2 emission in the oak shrub was significantly higher than the pine plantation in each measurement period. Additionally, soil organic matter, microbial biomass carbon, and the leaf litter decomposition rate in the two vegetations differed significantly from each other. The variation of soil organic matter and microbial biomass carbon partially contributed to the evident difference in soil CO2 emission. Moreover, the correlations between soil CO2 emission, soil temperature, and soil water content were evaluated in this study. The soil temperature positively controlled soil CO2 emission in the pine plantation and the oak shrub, while the soil water content negatively influenced soil CO2 emission in the two vegetation types. However, the soil temperature and soil water content played varied roles in the different vegetation types. By the means of stepwise regression, the soil temperature more significantly influenced the dynamics of soil CO2 emission for the plantation than the soil water content; oppositely, the soil water content was the more significant controlling factor for the shrub. Based on the exponent model between the soil CO2 emission and soil temperature, the Q 10 values were estimated, which was 1.7 in the pine plantation and 3.0 in the oak shrub. The former was lower than the global average level of 2.0, whereas the latter was higher than the global average level.  相似文献   

12.
This study aims to evaluate the impacts of changes in litter quantity under simulated N deposition on litter decomposition, CO2 release, and soil C loss potential in a larch plantation in Northeast China. We conducted a laboratory incubation experiment using soil and litter collected from control and N addition (100 kg ha−1 year−1 for 10 years) plots. Different quantities of litter (0, 1, 2 and 4 g) were placed on 150 g soils collected from the same plots and incubated in microcosms for 270 days. We found that increased litter input strongly stimulated litter decomposition rate and CO2 release in both control and N fertilization microcosms, though reduced soil microbial biomass C (MBC) and dissolved inorganic N (DIN) concentration. Carbon input (C loss from litter decomposition) and carbon output (the cumulative C loss due to respiration) elevated with increasing litter input in both control and N fertilization microcosms. However, soil C loss potentials (C output–C input) reduced by 62% in control microcosms and 111% in N fertilization microcosms when litter addition increased from 1 g to 4 g, respectively. Our results indicated that increased litter input had a potential to suppress soil organic C loss especially for N addition plots.  相似文献   

13.
We examined the importance of temperature (7°C or 15°C) and soil moisture regime (saturated or field capacity) on the carbon (C) balance of arctic tussock tundra microcosms (intact blocks of soil and vegetation) in growth chambers over an 81-day simulated growing season. We measured gaseous CO2 exchanges, methane (CH4) emissions, and dissolved C losses on intact blocks of tussock (Eriophorum vaginatum) and intertussock (moss-dominated). We hypothesized that under increased temperature and/or enhanced drainage, C losses from ecosystem respiration (CO2 respired by plants and heterotrophs) would exceed gains from gross photosynthesis causing tussock tundra to become a net source of C to the atmosphere. The field capacity moisture regime caused a decrease in net CO2 storage (NEP) in tussock tundra micrososms. This resulted from a stimulation of ecosystem respiration (probably mostly microbial) with enhanced drainage, rather than a decrease in gross photosynthesis. Elevated temperature alone had no effect on NEP because CO2 losses from increased ecosystem respiration at elevated temperature were compensated by increased CO2 uptake (gross photosynthesis). Although CO2 losses from ecosystem respiration were primarily limited by drainage, CH4 emissions, in contrast, were dependent on temperature. Furthermore, substantial dissolved C losses, especially organic C, and important microhabitat differences must be considered in estimating C balance for the tussock tundra system. As much as 20% of total C fixed in photosynthesis was lost as dissolved organic C. Tussocks stored 2x more C and emitted 5x more methane than intertussocks. In spite of the limitations of this microcosm experiment, this study has further elucidated the critical role of soil moisture regime and dissolved C losses in regulating net C balance of arctic tussock tundra.  相似文献   

14.
Soil carbon dioxide (CO2) emission is one of the largest fluxes in the global carbon cycle. Therefore small changes in the size of this flux can have a large effect on atmospheric CO2 concentrations and potentially constitute a powerful positive feedback to the climate system. Soil CO2 fluxes in the alpine steppe ecosystem of Northern Tibet and their responses to short-term experimental warming were investigated during the growing season in 2011. The results showed that the total soil CO2 emission fluxes during the entire growing season were 55.82 and 104.31 g C m-2 for the control and warming plots, respectively. Thus, the soil CO2 emission fluxes increased 86.86% with the air temperature increasing 3.74°C. Moreover, the temperature sensitivity coefficient (Q 10) of the control and warming plots were 2.10 and 1.41, respectively. The soil temperature and soil moisture could partially explain the temporal variations of soil CO2 fluxes. The relationship between the temporal variation of soil CO2 fluxes and the soil temperature can be described by exponential equation. These results suggest that warming significantly promoted soil CO2 emission in the alpine steppe ecosystem of Northern Tibet and indicate that this alpine ecosystem is very vulnerable to climate change. In addition, soil temperature and soil moisture are the key factors that controls soil organic matter decomposition and soil CO2 emission, but temperature sensitivity significantly decreases due to the rise in temperature.  相似文献   

15.
It has been hypothesized that greater production of total nonstructural carbohydrates (TNC) in foliage grown under elevated atmospheric carbon dioxide (CO2) will result in higher concentrations of defensive compounds in tree leaf litter, possibly leading to reduced rates of decomposition and nutrient cycling in forest ecosystems of the future. To evaluate the effects of elevated atmospheric CO2 on litter chemistry and decomposition, we performed a 111 day laboratory incubation with leaf litter of trembling aspen (Populus tremuloides Michaux) produced at 36 Pa and 56 Pa CO2 and two levels of soil nitrogen (N) availability. Decomposition was quantified as microbially respired CO2 and dissolved organic carbon (DOC) in soil solution, and concentrations of nonstructural carbohydrates, N, carbon (C), and condensed tannins were monitored throughout the incubation. Growth under elevated atmospheric CO2 did not significantly affect initial litter concentrations of TNC, N, or condensed tannins. Rates of decomposition, measured as both microbially respired CO2 and DOC did not differ between litter produced under ambient and elevated CO2. Total C lost from the samples was 38 mg g?1 litter as respired CO2 and 138 mg g?1 litter as DOC, suggesting short‐term pulses of dissolved C in soil solution are important components of the terrestrial C cycle. We conclude that litter chemistry and decomposition in trembling aspen are minimally affected by growth under higher concentrations of CO2.  相似文献   

16.
陶宝先  张保华  董杰  刘晨阳 《生态学报》2019,39(15):5564-5572
凋落物分解速率及其温度敏感性Q_(10)能够影响凋落物对土壤的碳归还及其对全球变暖的响应。然而,凋落物有机碳质量对凋落物分解及其温度敏感性的影响研究仍不充分。以黄河三角洲芦苇(Phragmites australi)为例,通过凋落物袋法、室内模拟实验及固态~(13)C核磁共振技术,研究有机碳质量对凋落物分解及其温度敏感性的影响,探讨预测凋落物分解及其温度敏感性的指标。结果表明:(1)随着凋落物分解,易分解碳组分(烷氧碳、双烷氧碳)相对含量逐渐降低,而难分解碳组分(芳香碳)相对含量显著增加,疏水碳/亲水碳、芳香碳/烷氧碳比值逐渐增大,凋落物有机碳更加稳定,凋落物呼吸速率及失重率呈下降趋势。(2)凋落物失重主要受烷基碳、烷氧碳相对含量及C/N的影响,凋落物CO_2累积释放量主要受烷氧碳及双烷氧碳相对含量的影响。羰基碳相对含量可以用来解释Q_(10)的变异。因此,相对于生态化学计量比,烷基碳、烷氧碳、双烷氧碳、羰基碳相对含量是预测凋落物分解及其温度敏感性的敏感性指标。  相似文献   

17.
Soil respiration from grasslands plays a critical role in determining carbon dioxide (CO2) feedbacks between soils and the atmosphere. In these often mesic systems, soil moisture and temperature tend to co-regulate soil respiration. Increasing variance of rainfall patterns may alter aboveground–belowground interactions and have important implications for the sensitivity of soil respiration to fluctuations in moisture and temperature. We conducted a set of field experiments to evaluate the independent and interactive effects of rainfall variability and plant–soil processes on respiration dynamics. Plant removal had strong effects on grassland soils, which included altered CO2 flux owing to absence of root respiration; increased soil moisture and temperature; and reduced availability of dissolved organic carbon (DOC) for heterotrophic respiration by microorganisms. These plant-mediated effects interacted with our rainfall variability treatments to determine the sensitivity of soil respiration to both moisture and temperature. Using time-series multiple regression, we found that plants dampened the sensitivity of respiration to moisture under high variability rainfall treatments, which may reflect the relative stability of root contributions to total soil respiration. In contrast, plants increased the sensitivity of respiration to temperature under low variability rainfall treatment suggesting that the environmental controls on soil CO2 dynamics in mesic habitats may be context dependent. Our results provide insight into the aboveground–belowground mechanisms controlling respiration in grasslands under variable rainfall regimes, which may be important for predicting CO2 dynamics under current and future climate scenarios.  相似文献   

18.
The capacity of forest ecosystems to sequester C in the soil relies on the net balance between litter production above, as well as, below ground, and decomposition processes. Nitrogen mineralization and its availability for plant growth and microbial activity often control the speed of both processes. Litter production, decomposition and N mineralization are strongly interdependent. Thus, their responses to global environmental changes (i.e. elevated CO2, climate, N deposition, etc.) cannot be fully understood if they are studied in isolation. In the present experiment, we investigated litter fall, litter decomposition and N dynamics in decomposing litter of three Populus spp., in the second and third growing season of a short rotation coppice under FACE. Elevated CO2 did not affect annual litter production but slightly retarded litter fall in the third growing season. In all species, elevated CO2 lowered N concentration, resulting in a reduction of N input to the soil via litter fall, but did not affect lignin concentrations. Litter decomposition was studied in bags incubated in situ both in control and FACE plots. Litter lost between 15% and 18% of the original mass during the eight months of field incubation. On average, litter produced under elevated CO2 attained higher residual mass than control litter. On the other end, when litter was incubated in FACE plots it exhibited higher decay rates. These responses were strongly species‐specific. All litter increased their N content during decomposition, indicating immobilization of N from external sources. Independent of the initial quality, litter incubated on FACE soils immobilized less N, possibly as a result of lower N availability in the soil. Indeed, our results refer to a short‐term decomposition experiment. However, according to a longer‐term model extrapolation of our results, we anticipate that in Mediterranean climate, under elevated atmospheric CO2, soil organic C pool of forest ecosystems may initially display faster turnover, but soil N availability will eventually limit the process.  相似文献   

19.
Microbial decomposition of soil organic matter produces a major flux of CO2 from terrestrial ecosystems and can act as a feedback to climate change. Although climate‐carbon models suggest that warming will accelerate the release of CO2 from soils, the magnitude of this feedback is uncertain, mostly due to uncertainty in the temperature sensitivity of soil organic matter decomposition. We examined how warming and altered precipitation affected the rate and temperature sensitivity of heterotrophic respiration (Rh) at the Boston‐Area Climate Experiment, in Massachusetts, USA. We measured Rh inside deep collars that excluded plant roots and litter inputs. In this mesic ecosystem, Rh responded strongly to precipitation. Drought reduced Rh, both annually and during the growing season. Warming increased Rh only in early spring. During the summer, when Rh was highest, we found evidence of threshold, hysteretic responses to soil moisture: Rh decreased sharply when volumetric soil moisture dropped below ~15% or exceeded ~26%, but Rh increased more gradually when soil moisture rose from the lower threshold. The effect of climate treatments on the temperature sensitivity of Rh depended on the season. Apparent Q10 decreased with high warming (~3.5 °C) in spring and fall. Presumably due to limiting soil moisture, warming and precipitation treatments did not affect apparent Q10 in summer. Drought decreased apparent Q10 in fall compared to ambient and wet precipitation treatments. To our knowledge, this is the first field study to examine the response of Rh and its temperature sensitivity to the combined effects of warming and altered precipitation. Our results highlight the complex responses of Rh to soil moisture, and to our knowledge identify for the first time the seasonal variation in the temperature sensitivity of microbial respiration in the field. We emphasize the importance of adequately simulating responses such as these when modeling trajectories of soil carbon stocks under climate change scenarios.  相似文献   

20.
The natural abundance of 15N in plant biomass has been used to infer how N dynamics change with elevated atmospheric CO2 and changing water availability. However, it remains unclear if atmospheric CO2 effects on plant biomass 15N are driven by CO2-induced changes in soil moisture. We tested whether 15N abundance (expressed as δ15N) in plant biomass would increase with increasing soil moisture content at two atmospheric CO2 levels. In a greenhouse experiment we grew sunflower (Helianthus annuus) at ambient and elevated CO2 (760 ppm) with three soil moisture levels maintained at 45, 65, and 85% of field capacity, thereby eliminating potential CO2-induced soil moisture effects. The δ15N value of total plant biomass increased significantly with increased soil moisture content at both CO2 levels, possibly due to increased uptake of 15N-rich organic N. Although not adequately replicated, plant biomass δ15N was lower under elevated than under ambient CO2 after adjusting for plant N uptake effects. Thus, increases in soil moisture can increase plant biomass δ15N, while elevated CO2 can decrease plant biomass δ15N other than by modifying soil moisture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号