首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 903 毫秒
1.
Effect of acid irrigation and liming on root growth of Norway spruce   总被引:3,自引:0,他引:3  
Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):11-22
The effect of acid irrigation and liming on fine root growth of Norway spruce (Picea abies [L.] Karst.) was studied in an approximately 80-year-old forest stand in southern Germany (Höglwald). Root growth was measured mainly on root windows and in addition by soil core sampling. Root growth rate showed a typical pattern in the course of a year with a maximum in August. Acid irrigation depressed root growth rate, whereas liming, particularly in combination with acid irrigation, markedly increased root growth in the humic layer and the upper 0–5 cm of the mineral soil. The treatment effects on root growth in the mineral soil below 5 cm were small and not significant. Root growth rate was not correlated with the concentration of aluminium (Al) or the molar ratio of calcium (Ca) to Al in the soil solution. The results suggest that inhibition of root growth by acid irrigation is a direct effect of high proton concentrations in the irrigation water, and that enhancement of root growth by liming is caused by an improved supply of mineral nutrients and higher biological activity.  相似文献   

2.
Nowotny  I.  Dähne  J.  Klingelhöfer  D.  Rothe  G.M. 《Plant and Soil》1998,199(1):29-40
Effects of soil acidification and liming on biomass responses and free Al, Ca, K, Mg, Mn and P contents of mycorrhizal roots of mature Norway spruce (Picea abies [L.] Karst.) were studied at Höglwald Forest in Southern Germany.At the untreated site, mycorrhizal root biomass was lower in the acid humus (pH = 3.3) than in the less acid upper (0–5 cm) mineral soil (pH 4.1). Mycorrhizal roots from the humus contained 10% of the level free Al in mycorrhizal roots from the upper mineral soil. During seven years of soil acidification the quantity of mycorrhizal roots remained unaffected in the humus and the upper mineral soil, perhaps due to the high buffering capacity of the humus which prevented a significant alteration of the nutrient status of the roots. However, two years after soil acidification had been terminated, the percentage of mycorrhizal roots in the humus decreased, possibly because the free root concentrations of K had decreased.On the other hand, six years after liming, there was a two-fold increase of the annual mean quantity of mycorrhizal roots in the humus. Compensatory liming (acid irrigation after liming) had a similar effect on mycorrhizal root production in the humus. However, two years after acid irrigation had been terminated a decrease of mycorrhizal roots in the upper mineral soil (0–5 cm) was observed. Since the total amount of mycorrhizal roots in the humus and upper mineral soil remained constant, compensatory liming produced a shift in fine roots to the humus layer.The higher mass of living mycorrhizal roots in the upper mineral soil (0–5 cm) as compared to the humus of the untreated plot as well as the increased mass of mycorrhizal roots in the humus after liming or compensatory liming are both attributed to an increase in pH to 4.5 rather than alleviation of Al toxicity.  相似文献   

3.
Increasing evidence suggests that forest soils in central and northern Europe as well as in North America have been significantly acidified by acid deposition during the last decades. The present investigation was undertaken to examine the effect of soil acidity on rooting patterns of 40-year-old Norway spruce trees by comparing fine and coarse roots among four stands which differed in soil acidity and Mg (and Ca) nutrition. The coarse root systems of four to five 40-year-old Norway spruce trees per stand were manually excavated. The sum of cross sectional area (CSA) at 60 cm soil depth and below of all vertical coarse roots, as a measure of vertical rooting intensity, was strongly reduced with increasing subsoil acidity of the stands. This pattern was confirmed when 5 additional acidic sites were included in the analysis. Fine root biomass in the mineral soil estimated by repeated soil coring was strongly reduced in the heavily acidified stands, but increased in the humic layer. Using ingrowth cores and a screen technique, we showed that the higher root biomass in the humic layer of the more acidic stands was a result of higher root production. Thus, reduced fine root biomass and coarse root CSA in deeper soil layers coincided with increased root growth in the humic layer. Root mineral analysis showed Ca/Al ratios decreased with decreasing base saturation in the deeper mineral soil (20–40 cm). In the top mineral soil, only minor differences were observed among stands. In general, low Ca/Al ratios coincided with low fine root biomass. Calcium/aluminum ratios determined in cortical cell walls using X-ray microanalysis showed a similar pattern as Ca/Al ratios based on analysis of whole fine roots, although the amplitude of changes among the stands was much greater. Aluminum concentrations and Ca/Al ratios in cortical cell walls were at levels found to inhibit root growth of spruce seedlings in laboratory experiments. The data support the idea that Al (or Ca/Al ratios) and acid deposition-induced Mg (and possibly Ca) deficiency are important factors influencing root growth and distribution in acidic forest soils. Changes in carbon partitioning within the root system may contribute to a reduction in deep root growth.  相似文献   

4.
Wissemeier  A.H.  Hahn  G.  Marschner†  H. 《Plant and Soil》1998,199(1):53-57
Under controlled environmental conditions in nutrient solution experiments induction of non-constitutive callose in roots has been shown to be a symptom of aluminium (Al) toxicity. In the present study roots of Norway spruce were sampled from a forest site where soil conditions had been modified by acidic irrigation and liming (Höglwald Experiment in Bavaria, Germany). A significant positive relationship was found between the callose content in short roots and the Al concentration in the soil solution, particularly if free Al, rather than total concentrations of soluble Al, were used for prediction. At the same sites root growth of Norway spruce was not affected by free Al concentrations in the range of 2.5 to 199 µM Al. The results show that also under field conditions a positive relationship between Al supply and callose content can be established. In Norway spruce callose content in roots is a much more sensitive parameter for Al supply than root growth.  相似文献   

5.
Nowotny  I.  Schwanz  J.  Rothe  G.M. 《Plant and Soil》1998,199(1):41-51
Effects of soil acidification and liming on the activities of three enzymes of the carbohydrate metabolism and the quantities of two of the major organic acids of mycorrhizal roots of Norway spruce (Picea abies [L.) Karst.) were studied at Höglwald Forest in southern Germany. The enzymes investigated were glucosephosphate isomerase, pyruvate kinase and 6-phosphogluconate dehydrogenase. The organic acids studied were citric acid and malic acid.Annual mean activities of the three enzymes were equal in mycorrhizal roots of the humus and the upper mineral soil. But in autumn and winter the activities of each of the three enzymes were higher than in summer. Of the various soil treatments only soil acidification affected the activities of the three enzymes. It stimulated activities by a factor of 1.5 in mycorrhizal roots of the humus but had no effect on mycorrhizal roots from the upper mineral soil.Mycorrhizal roots in the humus contained approximately 10 times more citrate and two times more malate than mycorrhizal roots from the upper mineral soil (0–5 cm). In mycorrhizal roots from the humus citrate and malate were of similar concentrations. In mycorrhizal roots from the upper mineral soil malate was approximately four times more concentrated than citrate. In the humus the citric acid concentration of mycorrhizal roots decreased under soil acidification by a factor of 1.4 while it increased under liming and compensatory liming (acid irrigation after liming) by a factor of 1.5. Malic acid concentrations increased exclusively under liming in mycorrhizal roots of the humus by a factor of 1.3.  相似文献   

6.
Fine root systems may respond to soil chemical conditions, but contrasting results have been obtained from field studies in non-manipulated forests with distinct soil chemical properties. We investigated biomass, necromass, live/dead ratios, morphology and nutrient concentrations of fine roots (<2 mm) in four mature Norway spruce (Picea abies [L.] Karst.) stands of south-east Germany, encompassing variations in soil chemical properties and climate. All stands were established on acidic soils (pH (CaCl2) range 2.8–3.8 in the humus layer), two of the four stands had molar ratios in soil solution below 1 and one of the four stands had received a liming treatment 22 years before the study. Soil cores down to 40 cm mineral soil depth were taken in autumn and separated into four fractions: humus layer, 0–10 cm, 10–20 cm and 20–40 cm. We found no indications of negative effects of N availability on fine root properties despite large variations in inorganic N seepage fluxes (4–34 kg N ha−1 yr−1), suggesting that the variation in N deposition between 17 and 26 kg N ha−1 yr−1 does not affect the fine root system of Norway spruce. Fine root biomass was largest in the humus layer and increased with the amount of organic matter stored in the humus layer, indicating that the vertical pattern of fine roots is largely affected by the thickness of this horizon. Only two stands showed significant differences in fine root biomass of the mineral soil which can be explained by differences in soil chemical conditions. The stand with the lowest total biomass had the lowest Ca/Al ratio of 0.1 in seepage, however, Al, Ca, Mg and K concentrations of fine roots were not different among the stands. The Ca/Al ratio in seepage might be a less reliable stress parameter because another stand also had Ca/Al ratios in seepage far below the critical value of 1.0 without any signs of fine root damages. Large differences in the live/dead ratio were positively correlated with the Mn concentration of live fine roots from the mineral soil. This relationship was attributed to faster decay of dead fine roots because Mn is known as an essential element of lignin degrading enzymes. It is questionable if the live/dead ratio can be used as a vitality parameter of fine roots since both longevity of fine roots and decay of root litter may affect this parameter. Morphological properties were different in the humus layer of one stand that was limed in 1983, indicating that a single lime dose of 3–4 Mg ha−1 has a long-lasting effect on fine root architecture of Norway spruce. Almost no differences were found in morphological properties in the mineral soil among the stands, but vertical patterns were apparently different. Two stands with high base saturation in the subsoil showed a vertical decrease in specific root length and specific root tip density whereas the other two stands showed an opposite pattern or no effect. Our results suggest that proliferation of fine roots increased with decreasing base saturation in the subsoil of Norway spruce stands.  相似文献   

7.
Wood ash was applied to a forest ecosystem with the aim to recycle nutrients taken from the forest and to mitigate the negative effects of intensive harvesting. After two years, the application of 8,000 kg ha−1 of wood ash increased soil exchangeable Ca and Mg. Similarly, an increase in Ca and Mg in the Norway spruce fine roots was recorded, leading to significant linear correlations between soil and root Ca and soil and root Mg. In contrast to these macronutrients, the micronutrients Fe and Zn and the toxic element Al decreased in the soil exchangeable fraction with the addition of wood ash, but not in the fine roots. Only Mn decreased in soil and in fine roots leading to a significant linear correlation between soil and root Mn. In soil, as well as in fine roots, strong positive correlations were found between the elements Ca and Mg and between Fe and Al. This indicates that the uptake of Mg resembles that of Ca and that of Al that of Fe. With the wood ash application, the pH increased from 3.2 to 4.8, the base saturation from 30% to 86%, the molar basic cations/Al ratio (BC/Al) of the soil solution from 1.5 to 5.5, and the molar Ca/Al ratio of the fine roots from 1.3 to 3.7. Overall, all below-ground indicators of soil acidification responded positively to the wood ash application within two years. Nitrate concentrations increased only slightly in the soil solution at a soil depth of 75–80 cm, and no signs of increased heavy metal concentrations in the soils or in the fine roots were apparent. This suggests that the recycling of wood ash could be an integral part of sustainable forest management because it closes the nutrient cycle and reverses soil acidification.  相似文献   

8.
Effects of liming and boron fertilization on boron uptake of Picea abies   总被引:1,自引:0,他引:1  
The effects of liming on concentrations of boron and other elements in Norway spruce [Picea abies (L) Karst.] needles and in the mor humus layer were studied in long-term field experiments with and without B fertilizer on podzolic soils in Finland. Liming (2000+4000 kg ha-1 last applied 12 years before sampling) decreased needle B concentrations in the four youngest needle age classes from 6–10 mg kg-1 to 5 mg kg-1. In boron fertilized plots the corresponding concentrations were 23–35 mg kg-1 in control plots and 21–29 mg kg-1 in limed plots. Both liming and B fertilizer decreased the Mn concentrations of needles. In the humus layer, total B concentration was increased by both lime and B fertilizer, and Ca and Mg concentrations and pH were still considerably higher in the limed plots than controls. Liming decreased the organic matter concentration in humus layer, whilst B fertilizer increased it.The results about B uptake were confirmed in a pot experiment, in which additionally the roles of increased soil pH and increased soil Ca concentration were separated by means of comparing the effects of CaCO3 and CaSO4. Two-year-old bare-rooted Norway spruce seedlings were grown in mor humus during the extension growth of the new shoot. The two doses of lime increased the pH of soil from 4.1 to 5.6 to 6.1, and correspondingly decreased the B concentrations in new needles from 22 to 12 to 9 mg kg-1. However, CaSO4 did not affect the pH of the soil or needle B concentrations. Hence the liming effect on boron availability in these soils appeared to be caused by the increased pH rather than increased calcium concentration.  相似文献   

9.
Majdi  Hooshang  Persson  Hans 《Plant and Soil》1995,(1):151-160
The effect of ammonium sulphate application on the bulk and rhizosphere soil chemistry, elemental concentration of living fine roots (<2 mm in diameter), amounts of living and dead fine roots, root length density and specific root length density were investigated in a 28 year old Norway spruce stand in SW Sweden. The treatments started in 1988. Core samples of the LFH layer and mineral soil layers were sampled in control (C) and ammonium sulphate (NS) treatment plots in 1988, 1989 and 1990. Soil pH and NO3-S and SO4-S, Al, Ca, Mg, Mn and K concentrations were measured for both the bulk soil and rhizosphere soil.The pH-values of the bulk and rhizosphere soil decreased in 1989 and 1990 in NS plots compared to control plots, while the SO4-S concentration increased. The Ca, Mg and K concentration increased in the NS treatment in almost all layers in the bulk and the rhizosphere soil. Ammonium ions may have replaced these elements in the soil organic matter. The NS treatment reduced Mg concentration in fine roots in all layers in 1990. The Al concentrations in the rhizosphere and bulk soil were higher in NS plots in all layers, except at 0–10 cm depth, both in 1989 and 1990. The Al content of living fine roots was higher in NS plots than C plots but the differences were not significant. The NS addition did not affect the P and K contents of fine roots in any soil layer, but the S concentrations of fine roots were significantly higher in NS plots in 1989 and 1990. The fine root necromass was higher in NS than in C in 1990, in the LFH layer, indicating a gradual decrease in the vitality of the fine roots. It was suggested that the NS treatment resulted in displacement of Mg and K from exchange sites in the LFH layer leading to leaching of these cations to the mineral soil. Further application of ammonium sulphate may damage the fine roots and consequently adversely affect the water and nutrient uptake of root systems.  相似文献   

10.
Summary The distribution and storage of major elements in acid soils from a spruce and a beech forest was investigated after fertilization of NH4NO3 and KCl followed by Ca and Mg fertilization by 2 liming applications. All fertilizers were applied on top of the soil without mixing. Most of the added Ca and Mg was detected in the humus layer, a significant part of it still in carbonatic form. The effect of liming on mineral soil pH is very low, and was only observed in the 0–10 cm layer. However, base saturation of the mineral soil increased. The storage of C and N of the humus layer was not affected. N fertilization increased the N storage of the soil only under beech, but was followed by heavy NO3-losses with seepage water under spruce. High leaching rates for K were also found in the spruce stand. The amount of K that was not leached increased the pool of exchangeable K in the deeper soil layer.  相似文献   

11.
Bakker  M.R.  Kerisit  R.  Verbist  K.  Nys  C. 《Plant and Soil》1999,217(1-2):243-255
Soil acidification can be detrimental to root growth and nutrient uptake, and liming may alleviate such acidification. In the following study, seedlings of sessile oak (Quercus petraea Liebl. M.) were grown in rhizotrons and subjected to liming (L) or gypsum (G) treatments and compared with the control (C). In order to study and interpret the impact of these calcium rich treatments on fine root development and tree growth, the following parameters were assessed: fine root biomass, fine root length, seedling development (height, diameter, leaves), seedling biomass, nutrient content of roots and seedlings, bulk soil and soil solution chemistry and rhizosphere soil chemistry. The results show that liming increased bulk soil pH, exchangeable Mg, Ca and the Ca/Al molar ratio, and decreased exchangeable Al, mainly in the A-horizon. Gypsum had a similar but smaller impact on exchangeable Al, Ca, H+ and the Ca/Al molar ratio in the A-horizon, but reacted with depth, so that exchangeable Mn, Mg and Ca were increased in the B-horizon. In the rhizosphere, the general pattern was determined by the treatment effects of the bulk soil. Most elements were more concentrated in the rhizosphere than in bulk soil, except for Ca which was less concentrated after liming or gypsum application. In the B-horizon rhizosphere pH was increased by the treatments (L > G,C) close to the root tips. Furthermore, the length of the zone with a positive root-induced pH increase was greater for the limed roots as compared with both the other treatments. Fine root growth was stimulated by liming (L > G,C) both in terms of biomass and length, whereas specific root length was not obviously affected apart from the indication of some stimulation after liming at the beginning. The live:dead ratio of fine roots was significantly higher in the limed rhizotrons as compared to the control (G not assessed), indicating lower mortality (higher longevity). Shoot growth showed greater lime-induced stimulation (L > G,C) as compared to root growth. As a result the shoot:root ratio was higher in the limed rhizotrons than in the control (L > G,C). Liming induced a higher allocation of P, S, Mg, Ca and K to the leaves, stem and twigs. Gypsum showed similar effects, but was only significant for S. Liming increased the foliar Ca/Al ratio by both increasing foliar Ca and decreasing foliar Al, whereas gypsum did not clearly improve foliar nutrition. This study suggests that a moderate application of lime can be successful in stimulating seedling growth, but that gypsum had no effect on seedling growth. It can be concluded that this lime-induced growth stimulation is directly related to the improved soil fertility status, and the alleviation of Al toxicity and acid stress, resulting in better foliar nutrition. The impact of liming on fine roots, as a consequence, was not limited to a stimulation of the total amount of fine roots, but also improved the root uptake performance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The application of N-free fertilizer (i.e. lime combined with nutrients such as P, Ca, K and Mg) has been suggested as one way of compensating for nitrogen-caused eutrophication and losses of base cations due to atmospheric pollution. To study the effects of such a treatment on mycorrhizal fungi, fine-root samples were collected from the LFH-layer in four Norway spruce stands in southern Sweden. One stand was part of a larger experiment (Skogaby) and had four replicates. It was fertilized twice in 1988–89 (P:K:Ca:Mg:S 48:43:218:46:75 kg ha-1), and sampling was carried out once yearly during 1991–93. The other three stands were fertilized once in 1988–89 (P:K:Ca:Mg:S|25:62:33:12:54 kg ha-1) and sampled in 1992.Ectomycorrhizal fine-roots were classified into morphotypes on the basis of the structure and colours of their external hyphae and fungal mantle. The fungal biomass was estimated in 1992 using ergosterol analysis. In Skogaby, N-free fertilizer had no apparent effects on fungal biomass or on the total number of ECM types. Similar results were obtained for the other three stands. Previously reported 50% reductions in sporocarp production on the fertilized plots at Skogaby can probably be explained by a decrease in carbon allocation to the roots and by a decline in the abundance of a single morphotype which accounted for 3% of the total number of root tips, but ca. 30% of the sporocarp biomass in the control plots in the present study. It is concluded that moderate levels of N-free fertilization are not likely to drastically affect the community structure of the dominating ectomycorrhizal fungi. This result should be interpreted with some caution, however, since it remains to be determined whether the fertilizer treatments affect the function of the nutrient-absorbing soil mycelium of the mycorrhizal fungi.  相似文献   

13.
Rodenkirchen  H. 《Plant and Soil》1998,199(1):141-152
This paper reports on the mean cover, biometric and vitality parameters and mineral nutrient status of wood-sorrel (Oxalis acetosella L.) on the control and experimental plots of a mature Norway spruce stand on acid soil (Höglwald Experiment).On the control plot Oxalis showed relatively poor leaf growth and chloroses on young and older leaf blades. Mineral analyses in the Höglwald and comparative studies on other forest sites indicated a very good to good supply of N and P, a moderate Ca nutrition and very high Mn concentrations of the leaves.The input of dolomitic lime led to a drastic propagation and vitalization of the wood-sorrel. The long-lasting effect of treatment was independent of pH dynamics in the root zone. The leaf chloroses of Oxalis disappeared completely after that treatment. The level of Ca and Mg supply clearly improved, whereas the concentrations of P, N, Mn and Zn diminished. Surprisingly, the K nutrition also improved after liming.Oxalis reacted to acid irrigation (sulfuric acid; pH 2.7-2.8) in comparison to normal watering (pH 5.0-5.5) with a continuous decrease in cover, but without visible leaf necroses. The concentrations of total sulphur, SO4-S and Sorg were raised, while the concentrations of Ca, Mn and Zn of the leaf blades decreased. After termination of acid input a recovery of nutrition occurred and a slow recolonization began. Preceding lime application prevented the growth-inhibiting effect of the acid irrigation.The study leads to the working hypothesis, that Ca nutrition may be the controlling factor for leaf growth and vegetative propagation of Oxalis in the Höglwald Experiment.  相似文献   

14.
G. Ogner  O. Teigen 《Plant and Soil》1980,57(2-3):305-321
Summary The effect of acid irrigation on the growth of rooted cuttings ofPicea abies (L.) Karst, was investigated in a pot experiment lasting 3 years. It involved two clones of Norway spruce, H 253 Bogstad I and H 254 Bogstad II. Irrigation water of pH 5.4, 4.0, 3.0 and 2.5 was used. Liming was included in the experiment.After the experimental period, the plants of all treatments were growing reasonably well. However, those plants irrigated at pH 2.5 were slightly discoloured. The plant mortality was only 3% throughout the experiment, and was not connected to acid irrigation. The limiting growth factor was N. All other nutrient elements measured in the plants were close to optimal concentration. Plants irrigated at pH 2.5, and to some extent at pH 3, contained excessively high concentrations of Al, t-S and SO4. The total amount of Ca, Fe and Mn taken up by the plants decreased with increasing soil acidity. The increased growth of clone H 254 relative to H 253, produces a corresponding impression on soil characteristics. Soil acidity is governed by acid irrigation and CaCO3 application, but the clonal effects are also of importance. Norway spruce appears to be tolerant to Al concentrations as high as 50 mmol/kg in the needles.  相似文献   

15.
Aluminium (Al), mobilized by acidic deposition, has been claimed to be a major threat to forest vitality. Fine root mortality, decreased root growth and reduced nutrient uptake have been observed in controlled laboratory experiments where roots of tree seedlings were exposed to elevated concentrations of Al. Yet, evidence for Al-induced root damage from forest stands is scarcely reported. Nevertheless, Al dissolved in soil water has received a key role in the critical load concept for forests. Here, we present effects of artificially elevated concentrations of Al in the soil solution on fine roots in a middle-aged stand of Norway spruce (Picea abies (L.) Karst.). Although the inorganic Al concentrations about 200 µM and Ca:Al ratio about 0.7 that were established in the soil solution within this experiment have been associated with reduction of root growth and root mortality for spruce seedlings in hydroponic studies, no acute damage on fine roots was observed. Three years of treatment did not cause visual root damage, nor were effects on fine root necromass observed. Fine root necromass made up about 10% of fine root biomass for all treatments. However, significantly lower molar Ca:Al and Mg:Al ratios in living and dead fine roots were found in the plots where Al concentrations were highest and ratios of Ca to Al in the soil solution were lowest. The lack of response on fine root biomass suggests that forest stands tolerate higher Al levels than results from laboratory experiments indicate. We conclude that effect studies in the laboratory have limited value for field conditions. The key role of Al toxicity, expressed as the Ca/Al ratio, in critical load calculations for forests may have to be reconsidered.  相似文献   

16.
Effects of forest liming on soil processes   总被引:14,自引:1,他引:14  
Kreutzer  Karl 《Plant and Soil》1995,(1):447-470
On the basis of a field experiment in Norway spruce with acid irrigation and compensatory liming of the soil surface (Höglwald, S-Bavaria), liming effects are described as lime dissolution rate, transformation of carbonate buffer to exchange buffer, time required for deacidification of soil and drainage water, mobilization of Cu and Pb, changes in soil organisms, humus decomposition, and nitrogen turnover. It was shown that lime dissolution followed an exponentially decreasing curve. 4 t ha-1 dolomitic lime were dissolved within 6 years. Additional acid irrigation of 4 kmol H+ ha-1 yr-1 as sulphuric acid speeded up the lime dissolution to about 4 years. After dissolution of lime about 70% of Ca and about 30% of Mg, both originating from lime dissolution, are retained in the surface humus layer, loading the exchange buffer capacity there. Liming acted as a protection against acid irrigation but the extension of soil deacidification downwards proceeded slowly due to the high base neutralizing capacity of protonated functional groups of the organic matter. The main depth effect is caused by Mg translocation. A significant increase of organic Cu complexes occurred due to mobilization of water soluble humus decomposition products. The effect of liming on litter decomposing organisms is demonstrated with microorganisms, collembolae and earthworms regarding the abundance and the structure of dominance. It was shown that liming may induce unusually large changes in biocenoses of forest soils. The decay of surface humus accounted for 7.2 t ha-1 or 23% of the store within 7 years. Within the same time span, liming caused a loss of about 170 kg N ha-1 or 14% of the store of the surface humus layer. The nitrate concentration in the drainage water thus increased by about 50 to 60 mg NO3 - L-1. Site-specific conditions are discussed, which produce such negative liming effects as increased nitrate concentration of seepage, humus decay and heavy metal mobilization. Redistribution of tree roots, induction of boron deficiency and root rot are also considered. It is indicated that liming may aggravate the increasing problem of nitrate contamination of forest ground water resources which is associated with deposition of atmogenous nitrogen compounds. Some recommendations are given regarding forest practice.  相似文献   

17.
High levels of aluminium in the soil solution of forest soils cause stress to forest trees. Within the soil profile, pH and aluminium concentration in the soil solution vary considerably with soil depth. pH strongly influences the speciation of A1 in solution, and is a factor when considering toxicity of A1 to roots. Norway spruce ( Picea abies [L.] Karst.) seedlings were grown for 7 weeks in nutrient solutions at pH 3.2, 4.0 or 5.0 containing 0, 100 or 400 µ M A1. At the end of this period, seedling growth, the cation exchange capacity of the roots and the amount of exchangeable Ca and Mg in roots were determined. A1 concentrations in whole roots, root segments, and in needles were measured. Using X‐ray microanalysis, the concentrations of Al, Ca, Mg and P were determined in cortical cell walls. We wanted to test the hypotheses that (1) the amount of Al bound to cation exchange sites can be used as a marker for Al toxicity and (2) the Mg concentration of needles is controlled by the amount of Mg bound to cation exchange sites. Low pH reduced the inhibition of Al on root growth and shoot length. Both low pH and Al lowered the concentration of Ca and Mg in needles. Al concentrations in the roots decreased as the pH decreased. In the roots, Al displaced Mg and Ca from binding sites at the root cortical cell walls. A comparison of the effects of Al at the different pH values on root growth and Mg concentration in the needles, suggests that, at pH 5.0, an Al fraction in the apoplast inhibits root growth, but does not affect Mg uptake. This fraction of Al is not available for transport to the shoots. In contrast, Mg uptake is strongly affected by Al at pH 3.2, although only very low levels of Al were detected in the roots. Thus, Al accumulation in the apoplast is a positive marker for Al effects on root growth, but not Mg uptake. The Mg concentration of needles is not controlled by the amount of Mg bound to cation exchange sites.  相似文献   

18.
Nilsson  Lars-Owe  Wiklund  Karin 《Plant and Soil》1995,168(1):437-446
The nutrient balance and above ground accumulation of macro nutrients, except for N, resulting from improved or deteriorated availability of water and nutrients in a 25 year old Norway spruce stand in SW Sweden is presented. The site and the productivity of the stand is typical for the area. Treatment include irrigation (I); artificial drought (D1); ammonium sulphate addition (NS); N-free-fertilisation (V) and irrigation with liquid fertilisers including a complete set of nutrients according to the Ingestad principle (IF). At start of the experiment the stand contained 86.5 t dry mass, 342 kg N, 33 kg P, 142 kg K, 172 kg Ca, 36 kg Mg and 34 kg S ha-1. Enhanced accumulation vs control of S was seen in the NS and IF treatments. In the V and IF treatments P accumulation was 7–9 times higher and Ca and Mg, 2–4 times higher compared to the control. K accumulation was increased for the IF treatment. B that accumulated in the needles was decreased in the NS and D1 treatments and increased in the IF and V treatments, as compared to the control. The gross accumulation of nutrients relative to the amounts added was in the IF and V treatments 56 and 47% for P, 40 and 64% for K, 40 and 24% for Mg and, 22 and 8% for S, respectively. We conclude that application with N-free fertilizer, Skogvital (V), including macro nutrients and essential micro nutrients, results in a fast and efficient accumulation above ground of P, K, Ca, Mg and B. The treatment is efficient when aiming at restoring nutrient imbalances in Norway spruce. Application with ammonium sulphate at a rate of 5–6 times higher than the current deposition of N and S did not lead to decreased accumulation above ground of any of the macro nutrients P, K, Ca or Mg. The accumulation of B, however, was significantly reduced. Results from this and other studies indicate that today, N alone, generally is a growth limiting nutrient for Norway spruce in Southern Sweden.  相似文献   

19.
Kuhn  A. J.  Bauch  J.  Schröder  W. H. 《Plant and Soil》1995,168(1):135-150
In a model system using intact spruce trees (Picea abies [L.] Karst.) we followed the path of magnesium, calcium and potassium during uptake into the root and during long-range transport into the shoot, by multiple stable isotope labelling. The roots of two- and three-year-old spruce trees originating from soil culture were removed from the soil and, in part or in toto, exposed to labelling solutions containing the stable isotopes 25Mg or 26Mg, 41K and 42Ca or 44Ca. Optical-emission-spectroscopy (ICP-OES) of plant fractions and labelling solutions was combined with the quantitative analysis of stable isotope ratios in sections of shock frozen, cryosubstituted material using the laser-microprobe-mass-analyser (LAMMA). This combination allowed us to distinguish, both in bulk samples and on the cellular level between (i) the fraction of elements originally present in the plant before the start of the labelling, (ii) the material taken up from the labelling solution into the plant and (iii) any material released by the plant into the labelling solution.In single-root labelling experiments, roots of three-year-old spruce trees, grown in nursery soil, were exposed to various pH conditions. The exchange of Mg and Ca with the labelling solution was nearly 100% in the cell walls of the mycorrhized finest roots. This exchange was only slightly affected by a step down to pH 3.5. The absolute Mg and Ca content in the cell walls was moderately reduced by incubation at pH 3.5 and strongly reduced in the presence of Al at this pH. After a pH 3.5 and 2 mM Al treatment we found Al in the xylem cell walls and the cortex cell lumina at elevated concentrations. To analyse the combined effect of high Al and high proton concentrations on the long-range transport, we used a split-root system. The root mass of an intact two-year-old spruce tree, grown in mineral soil, was divided into even parts and both halves incubated in solutions with two sets of different stable isotopes of Mg and Ca (side A: no Al, 25Mg and 42Ca; side B: +Al, 26Mg and 44Ca) and 41K on both sides. We observed a large uptake of Mg, Ca and K into the plant and a pronounced release. The net uptake of all three elements was lower from the Al-doted solution. In cross-sections of the apical shoot we found after seven-day labelling period about 60–70% of the Mg and Ca and 30% of the K content in the xylem cell walls originating from both labelling solutions. The clear majority of the Mg and Ca label originated from the Al-doted side.  相似文献   

20.
Ten pairs of secondary pure spruce (Picea abies) and adjacent mixed spruce-beech (Fagus sylvatica) stands on comparable sites were selected on two different bedrocks for soil formation (Flysch: nutrient rich and high soil pH; Molasse: poor nutrient supply and acidic) to study how an admixture of beech to spruce stands affects nutrient cycling and consequently soil chemistry. Soil analyses indicated accumulation of Ca under the mixed stands while the top soil under pure spruce was acidified. It was hypothesized that changes of soil chemical properties due to species composition over the last six decades are reflected in the stem wood of spruce. Three healthy dominant spruce trees per plot were selected for coring. Cores were crossdated and half-decadal samples were analyzed for Ca, Mg, Mn and Al. Calcium and Mg concentrations in stem wood of spruce were significantly higher for the pure spruce than for the mixed stands in spite of lower Ca and Mg stores in the soil. We assume that acidification caused by pure spruce mobilized these cations temporarily, increasing soil solution contents and consequently stem wood concentrations. It was possible to reconstruct soil pH from the element ratios Ca/Al (pure stands) and Ca/Mg (mixed stands), since these ratios in the stem wood of the last half-decade did correlate with soil pH for selected soil depths. Reconstructed soil pH showed a decline over the last 60 years under both species compositions due to accumulation of base cations in the increasing biomass. Comparisons of reconstructed soil pH in 0–5 and 10–20 cm soil depth indicated more pronounced top soil acidification (lower soil pH in 0–5 cm) by spruce on the nutrient rich soil (Flysch) than on the acidic soil (Molasse). However, admixture of beech caused higher pH values in 0–5 cm than in 10–20 cm soil depth on Flysch due to the observed Ca-pump effect of beech (uptake of Ca from deeper soil horizons).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号