首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Models of atomic structure of eukaryotic translation termination complex containing mRNA, P-site tRNAPhe, human class-1 polypeptide release factor eRF1 and 80S ribosome were constructed. The method of computational modeling was applied. The modeling was based on the functional and structural similarity between tRNA and eFR1 bound in the ribosomal A site. Structural template for the modeling was a known structure of the 70S ribosome complexed with mRNA, P- and A-site tRNAsPhe. The eRF1 molecule bound to the ribosome undergone substantial conformational changes resulting in the mutual configuration of the N- and M-domains similar to tRNA shape. Two models of binding of eRF1 to mRNA at the A-site in the presence of P-site tRNA were generated and characterized by a shape complementarity between the mRNA stop codon and grooves of the different sides of the molecular surface of the fragment of alpha2-helix, NIKS loop and alpha-helix of the N-domain. In the model 1 the stop-codon nucleotides were at the equal distances from the N- and C-domains. In the model 2 the stop-codon was proximal to the NIKS and YxCxxxF motifs of the N-domain. Both models fit the genetic and biochemical data available so far.  相似文献   

2.
Positioning of stop codon and the adjacent triplet downstream of it with respect to the components of human 80S termination complex was studied with the use of mRNA analogues that bore stop signal UPuPuPu (Pu is A or G) and photoactivatable perfluoroaryl azide group. This group was attached to one of nucleotides of the stop signal or 3' of it (in positions +4 to +9 with respect to the first nucleotide of the P site codon). It was shown that upon mild UV irradiation the mRNA analogues crosslinked to components of model complexes imitating state of 80S ribosome in the course of translation termination. It was found that termination factors eRF1 and eRF3 do not affect mutual arrangement of stop signal and the 18S rRNA. Factor eRF1 was shown to cross-link to modified nucleotides in positions +5 to +9 (ability of eRF1 to cross-link to stop codon nucleotide in position +4 was shown earlier). Fragments of eRF1 containing cross-linking sites of the mRNA analogues were determined. In fragment 52-195 (containing the N-domain and a part of the M-domain) we have found cross-linking sites of the analogues that bore modifying groups on A or G in positions +5 to +9 or at the terminal phosphate of nucleotide in position +7. For mRNA analogues bearing modifying groups on G site of cross-linking from positions +5 to +7 was found in the eRF1 fragment  相似文献   

3.
Models of the atomic structure of the eukaryotic translation termination complex containing mRNA, P-site tRNAPhe, human class 1 release factor eRF1, and 80S ribosome, were constructed by computational modeling. The modeling was based on the assumed structural-functional similarity between the tRNA and eFR1 molecules in the ribosomal A site. The known atomic structure of the 70S ribosome complexed with mRNA as well as the P-and A-site tRNAsPhe was used as a structural template for the modeling. The eRF1 molecule bound in the A site undergoes substantial conformational changes so that the mutual configuration of the N and M domains matches the overall tRNA shape. Two models of eRF1 binding to mRNA at the A site in the presence of P-site tRNAPhe were generated. A characteristic of these models is complementary interactions between the mRNA stop codon and the grooves at different sides of the surface of the eRF1 fragment, containing helix α2, NIKS loop, and helix α3 of the N domain. In model 1, the nucleotides of the mRNA stop codon at the A site are approximately equidistant (~15 Å) from the N (motifs NIKS and YxCxxxF) and C domains. In model 2, the stop codon is close to the N-domain motifs NIKS and YxCxxxF. Both models fit genetic and biochemical experimental data. The choice of a particular model requires additional studies.  相似文献   

4.
A study was made of the properties of the two structural models that had previously been constructed for the eukaryotic triple complex eRF1 · mRNA · tRNAPhe with eRF1 accommodated in the A site and tRNAPhe, in the P site of the ribosome. The structure of the complex was described using a high-resolution NMR structure of the human eRF1 M domain. The distribution of chemical crosslinks between mRNA and eRF1 was studied for the two models, which made it possible to decide about the positioning of eRF1 in the A site relative to the mRNA stop codon. Molecular dynamics was used to simulate the distribution of close contacts (<7 Å) between the photoactivatable azido group of modified mRNA analogs and eRF1 residues in the complex. Analysis of the structures of 12 analogs containing a modified nucleotide with the photoactivatable group in a position from +4 to +9 showed that only one model of eRF1 binding with mRNA in the A site well agreed with experimental data on chemical crosslinking. A new feature of the model selected is that the C domain of eRF1 is close to the mRNA stop-codon nucleotides, which explained the experimental findings.  相似文献   

5.
The arrangement of the stop codon and its 3′-flanking codon relative to the components of translation termination complexes of human 80S ribosomes was studied using mRNA analogs containing the stop signal UPuPuPu (Pu is A or G) and the photoreactive perfluoroarylazido group, which was linked to a stop-signal or 3′-flanking nucleotide (positions from +4 to +9 relative to the first nucleotide of the P-site codon). Upon mild UV irradiation, the analogs crosslinked to components of the model complexes, mimicking the state of the 80S ribosome at translation termination. Termination factors eRF1 and eRF3 did not change the relative arrangement of the stop signal and 18S rRNA. Crosslinking to eRF1 was observed for modified nucleotides in positions +5 to +9 (that for stop-codon nucleotide +4 was detected earlier). The eRF1 fragments crosslinked to the mRNA analogs were identified. Fragment 52–195, including the N domain and part of the M domain, crosslinked to the analogs carrying the reactive group at A or G in positions +5 to +9 or at the terminal phosphate of nucleotide +7. The site crosslinking to mRNA analogs containing modified G in positions +5 to +7 was assigned to eRF1 fragment 82–166 (beyond the NIKS motif). All but one analog (that with modified G in position +4) crosslinked to the C domain of eRF1 (fragment 330–422). The efficiency of crosslinking to the C domain was higher than to the N domain in most cases. It was assumed that the C domain of eRF1 bound in the A site is close to nucleotides +5 to +9, especially +7 and +8, and that eRF1 undergoes substantial conformational changes when binding to the ribosome.  相似文献   

6.
Eukaryote ribosomal translation is terminated when release factor eRF1, in a complex with eRF3, binds to one of the three stop codons. The tertiary structure and dimensions of eRF1 are similar to that of a tRNA, supporting the hypothesis that release factors may act as molecular mimics of tRNAs. To identify the yeast eRF1 stop codon recognition domain (analogous to a tRNA anticodon), a genetic screen was performed to select for mutants with disabled recognition of only one of the three stop codons. Nine out of ten mutations isolated map to conserved residues within the eRF1 N-terminal domain 1. A subset of these mutants, although wild-type for ribosome and eRF3 interaction, differ in their respective abilities to recognize each of the three stop codons, indicating codon-specific discrimination defects. Five of six of these stop codon-specific mutants define yeast domain 1 residues (I32, M48, V68, L123, and H129) that locate at three pockets on the eRF1 domain 1 molecular surface into which a stop codon can be modeled. The genetic screen results and the mutant phenotypes are therefore consistent with a role for domain 1 in stop codon recognition; the topology of this eRF1 domain, together with eRF1-stop codon complex modeling further supports the proposal that this domain may represent the site of stop codon binding itself.  相似文献   

7.
The protein environment of mRNA 3' of the A-site codon (the decoding site) in the human 80S ribosome was studied using a set of oligoribonucleotide derivatives bearing a UUU triplet at the 5'-end and a perfluoroarylazide group at one of the nucleotide residues at the 3'-end of this triplet. Analogues of mRNA were phased into the ribosome using binding at the tRNAPhe P-site, which recognizes the UUU codon. Mild UV irradiation of ribosome complexes with tRNAPhe and mRNA analogues resulted in the predominant crosslinking of the analogues with the 40S subunit components, mainly with proteins and, to a lesser extent, with rRNA. Among the 40S subunit ribosomal proteins, the S3 protein was the main target for modification in all cases. In addition, minor crosslinking with the S2 protein was observed. The crosslinking with the S3 and S2 proteins occurred both in triple complexes and in the absence of tRNA. Within triple complexes, crosslinking with S15 protein was also found, its efficiency considerably falling when the modified nucleotide was moved from positions +5 to +12 relative to the first codon nucleotide in the P-site. In some cases, crosslinking with the S30 protein was observed, it was most efficient for the derivative containing a photoreactive group at the +7 adenosine residue. The results indicate that the S3 protein in the human ribosome plays a key role in the formation of the mRNA binding site 3' of the codon in the decoding site.  相似文献   

8.
The 18S rRNA nucleotides close to the 80S ribosome template nucleotide adjacent to the A-site codon on the 3-end (i.e., the nucleotide in position +7 relative to the first nucleotide of the P-site codon) were identified using template-controlled chemical affinity ligation. For this purpose, used the photoreactive mRNA analogues with a perfluorophenylazido group attached through various linkers to the uridine C5,3'-terminal phosphate, or guanosine N7 were used. The position of the mRNA analogues on the ribosome was preset using tRNAPhe, which recognized the phenylalanine codon directed to the P-site. An analysis of the rRNAs isolated from the irradiated complexes of 80S ribosomes showed that all the analogues are almost equally ligated to the 18S rRNA nucleotides we attributed to the A-site codon environment: namely, to nucleotides A1823, A1824, and A1825 of the 3'-minidomain and to the 620-630 fragment of the 18S rRNA 5'-domain. In addition, we identified a new component of the mRNA binding site of human ribosomes, nucleotide C1698 belonging to the 18S rRNA 3-minidomain, using analogues bearing a perfluorophenylazido group on uridine and guanine residues. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2005, vol. 31, no. 3; see also http://www.maik.ru.  相似文献   

9.
mRNA analogues containing 4-thiouridine residues at selected sites were used to extend our analysis of photo-induced cross-links between mRNA and 16S RNA to cover the entire downstream range between positions +1 and +16 on the mRNA (position +1 is the 5'-base of the P-site codon). No tRNA-dependent cross-links were observed from positions +1, +2, +3 or +5. Position +4 on the mRNA was cross-linked in a tRNA-dependent manner to 16S RNA at a site between nucleotides ca 1402-1415 (most probably to the modified residue 1402), and this was absolutely specific for the +4 position. Similarly, the previously observed cross-link to nucleotide 1052 was absolutely specific for the +6 position. The previously observed cross-links from +7 to nucleotide 1395 and from +11 to 532 were however seen to a lesser extent with certain types of mRNA sequence from neighbouring positions (+6 to +10, and +10 to +13, respectively); no tRNA-dependent cross-links to other sites on 16S RNA were found from these positions, and no cross-linking was seen from positions +14 to +16. In each case the effect of a second cognate tRNA (at the ribosomal A-site) on the level of cross-linking was studied, and the specificity of each cross-link was confirmed by translocation experiments with elongation factor G, using appropriate mRNA analogues.  相似文献   

10.
To study positioning of the polypeptide release factor eRF1 toward a stop signal in the ribosomal decoding site, we applied photoactivatable mRNA analogs, derivatives of oligoribonucleotides. The human eRF1 peptides cross-linked to these short mRNAs were identified. Cross-linkers on the guanines at the second, third, and fourth stop signal positions modified fragment 31–33, and to lesser extent amino acids within region 121–131 (the “YxCxxxF loop”) in the N domain. Hence, both regions are involved in the recognition of the purines. A cross-linker at the first uridine of the stop codon modifies Val66 near the NIKS loop (positions 61–64), and this region is important for recognition of the first uridine of stop codons. Since the N domain distinct regions of eRF1 are involved in a stop-codon decoding, the eRF1 decoding site is discontinuous and is not of “protein anticodon” type. By molecular modeling, the eRF1 molecule can be fitted to the A site proximal to the P-site-bound tRNA and to a stop codon in mRNA via a large conformational change to one of its three domains. In the simulated eRF1 conformation, the YxCxxxF motif and positions 31–33 are very close to a stop codon, which becomes also proximal to several parts of the C domain. Thus, in the A-site-bound state, the eRF1 conformation significantly differs from those in crystals and solution. The model suggested for eRF1 conformation in the ribosomal A site and cross-linking data are compatible.  相似文献   

11.
During eukaryotic translation termination, eRF1 responds to three stop codons. However, in ciliates with variant genetic codes, only one or two codons function as a stop signal. To localize the region of ciliate eRF1 implicated in stop codon discrimination, we have constructed ciliate-human hybrid eRF1s by swapping regions of human eRF1 for the equivalent region of ciliate Euplotes eRF1. We have examined the formation of a cross-link between recombinant eRF1s and mRNA analogs containing the photoactivable 4-thiouridine (s(4)U) at the first position of stop and control sense codons. With human eRF1, this cross-link can be detected only when either stop or UGG codons are located in the ribosomal A site. Here we show that the cross-link of the Euplotes-human hybrid eRF1 is restricted to mRNAs containing UAG and UAA codons, and that the entire N-terminal domain of Euplotes eRF1 is involved in discriminating against UGA and UGG. On the basis of these results, we discuss the steps of the selection process that determine the accuracy of stop codon recognition in eukaryotes.  相似文献   

12.
Protein S3 fragments were determined that crosslink to modified mRNA analogues in positions +5 to +12 relative to the first nucleotide in the P-site bound codon in model complexes mimicking states of ribosomes at the elongation and translation termination steps. The mRNA analogues contained a Phe codon UUU/UUC at the 5′-termini that could predetermine the position of the tRNAPhe on the ribosome by the P-site binding and perfluorophenylazidobenzoyl group at a nucleotide in various positions 3′ of the UUU/UUC codon. The crosslinked S3 protein was isolated from 80S ribosomal complexes irradiated with mild UV light and subjected to cyanogen bromide—induced cleavage at methionine residues with subsequent identification of the crosslinked oligopeptides. An analysis of the positions of modified oligopeptides resulting from the cleavage showed that, in dependence on the positions of modified nucleotides in the mRNA analogue, the crosslinking sites were found in the N-terminal half of the protein (fragment 2–217) and/or in the C-terminal fragment 190–236; the latter reflects a new peculiarity in the structure of the mRNA binding center in the ribosome, unknown to date. The results of crosslinking did not depend on the type of A-site codon or on the presence of translation termination factor eRF1.  相似文献   

13.
To investigate the codon dependence of human eRF1 binding to the mRNA-ribosome complex, we examined the formation of photocrosslinks between ribosomal components and mRNAs bearing a photoactivable 4-thiouridine probe in the first position of the codon located in the A site. Addition of eRF1 to the phased mRNA-ribosome complexes triggers a codon-dependent quenching of crosslink formation. The concentration of eRF1 triggering half quenching ranges from low for the three stop codons, to intermediate for s4UGG and high for other near-cognate triplets. A theoretical analysis of the photochemical processes occurring in a two-state bimolecular model raises a number of stringent conditions, fulfilled by the system studied here, and shows that in any case sound KD values can be extracted if the ratio mT/KD<1 (mT is total concentration of mRNA added). Considering the KD values obtained for the stop, s4UGG and sense codons (approximately 0.06 microM, 0.45 microM and 2.3 microM, respectively) and our previous finding that only the stop and s4UGG codons are able to promote formation of an eRF1-mRNA crosslink, implying a role for the NIKS loop at the tip of the N domain, we propose a two-step model for eRF1 binding to the A site: a codon-independent bimolecular step is followed by an isomerisation step observed solely with stop and s4UGG codons. Full recognition of the stop codons by the N domain of eRF1 triggers a rearrangement of bound eRF1 from an open to a closed conformation, allowing the universally conserved GGQ loop at the tip of the M domain to come into close proximity of the peptidyl transferase center of the ribosome. UGG is expected to behave as a cryptic stop codon, which, owing to imperfect eRF1-codon recognition, does not allow full reorientation of the M domain of eRF1. As far as the physical steps of eRF1 binding to the ribosome are considered, they appear to closely mimic the behaviour of the tRNA/EF-Tu/GTP complex, but clearly eRF1 is endowed with a greater conformational flexibility than tRNA.  相似文献   

14.
15.
Translation termination in eukaryotes is governed by the concerted action of eRF1 and eRF3 factors. eRF1 recognizes the stop codon in the A site of the ribosome and promotes nascent peptide chain release, and the GTPase eRF3 facilitates this peptide release via its interaction with eRF1. In addition to its role in termination, eRF3 is involved in normal and nonsense-mediated mRNA decay through its association with cytoplasmic poly(A)-binding protein (PABP) via PAM2-1 and PAM2-2 motifs in the N-terminal domain of eRF3. We have studied complex formation between full-length eRF3 and its ligands (GDP, GTP, eRF1 and PABP) using isothermal titration calorimetry, demonstrating formation of the eRF1:eRF3:PABP:GTP complex. Analysis of the temperature dependence of eRF3 interactions with G nucleotides reveals major structural rearrangements accompanying formation of the eRF1:eRF3:GTP complex. This is in contrast to eRF1:eRF3:GDP complex formation, where no such rearrangements were detected. Thus, our results agree with the established active role of GTP in promoting translation termination. Through point mutagenesis of PAM2-1 and PAM2-2 motifs in eRF3, we demonstrate that PAM2-2, but not PAM2-1 is indispensible for eRF3:PABP complex formation.  相似文献   

16.
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

17.
Song H  Mugnier P  Das AK  Webb HM  Evans DR  Tuite MF  Hemmings BA  Barford D 《Cell》2000,100(3):311-321
The release factor eRF1 terminates protein biosynthesis by recognizing stop codons at the A site of the ribosome and stimulating peptidyl-tRNA bond hydrolysis at the peptidyl transferase center. The crystal structure of human eRF1 to 2.8 A resolution, combined with mutagenesis analyses of the universal GGQ motif, reveals the molecular mechanism of release factor activity. The overall shape and dimensions of eRF1 resemble a tRNA molecule with domains 1, 2, and 3 of eRF1 corresponding to the anticodon loop, aminoacyl acceptor stem, and T stem of a tRNA molecule, respectively. The position of the essential GGQ motif at an exposed tip of domain 2 suggests that the Gln residue coordinates a water molecule to mediate the hydrolytic activity at the peptidyl transferase center. A conserved groove on domain 1, 80 A from the GGQ motif, is proposed to form the codon recognition site.  相似文献   

18.
Mazur  A. M.  Kholod  N. S.  Seit-Nebi  A.  Kisselev  L. L. 《Molecular Biology》2002,36(1):104-109
Termination of protein synthesis (hydrolysis of the last peptidyl-tRNA on the ribosome) takes place when the ribosomal A site is occupied simultaneously by one of the three stop codons and by a class-1 translation termination factor. The existing procedures to measure the functional activity of this factor both in vitro and in vivo have serious drawbacks, the main of which are artificial conditions for in vitro assays, far from those in the cell, and indirect evaluation of activity in in vivo systems. A simple reliable and sensitive system to measure the functional activity of class-1 translation termination factors could considerably expedite the study of the terminal steps of protein synthesis, at present remaining poorly known, especially in eukaryotes. We suggest a novel system to test the functional activity in vitro using native functionally active mRNA, rather than tri-, tetra-, or oligonucleotides as before. This mRNA is specially designed to contain one of the three terminating (stop) codons within the coding nucleotide sequence. Plasmids have been generated that carry the genes of suppressor tRNAs each of which is specific toward one of the three stop codons. They were shown to support normal synthesis of a reporter protein, luciferase, by reading through the stop codon within the coding mRNA sequence. We have demonstrated that human class-1 translation termination factor eRF1 is able to compete with suppressor tRNA for a stop codon and to completely prevent its suppressive effect at a sufficient concentration. Forms of eRF1 with point mutations in functionally essential regions have lower competitive ability, demonstrating the sensitivity of the method to the eRF1 structure. The enzymatic reaction catalyzed by the full-size reporter protein is accompanied by emission of light quanta. Therefore, competition between suppressor tRNA and eRF1 can be measured using a luminometer, and this allows precise kinetic measurements in a continuous automatic mode.  相似文献   

19.
The eukaryotic ribosomal protein S15 is a key component of the decoding site in contrast to its prokaryotic counterpart, S19p, which is located away from the mRNA binding track on the ribosome. Here, we determined the oligopeptide of S15 neighboring the A site mRNA codon on the human 80S ribosome with the use of mRNA analogues bearing perfluorophenyl azide-modified nucleotides in the sense or stop codon targeted to the 80S ribosomal A site. The protein was cross-linked to mRNA analogues in specific ribosomal complexes that were obtained in the presence of eRF1 in the experiments with mRNAs bearing stop codon. Digestion of modified S15 with various specific proteolytic agents followed by identification of the resulting modified oligopeptides showed that cross-link was in C-terminal fragment in positions 131–145, most probably, in decapeptide 131-PGIGATHSSR-140. The position of cross-linking site on the S15 protein did not depend on the nature of the A site-bound codon (sense or stop codon) and on the presence of polypeptide chain release factor eRF1 in the ribosomal complexes with mRNA analogues bearing a stop codon. The results indicate an involvement of the mentioned decapeptide in the formation of the ribosomal decoding site during elongation and termination of translation. Alignment of amino acid sequences of eukaryotic S15 and its prokaryotic counterpart, S19p from eubacteria and archaea, revealed that decapeptide PGIGATHSSR in positions 131–140 is strongly conserved in eukaryotes and has minor variations in archaea but has no homology with any sequence in C-terminal part of eubacterial S19p, which suggests involvement of the decapeptide in the translation process in a eukaryote-specific manner.  相似文献   

20.
Differential scanning calorimetry (DSC) was used to study thermal denaturation of the human class 1 translation termination factor eRF1 and its mutants. Free energy changes caused by amino acid substitutions in the N domain were computed for eRF1. The melting of eRF1, consisting of three domains, proved to be cooperative. The thermostability of eRF1 was not affected by certain substitutions and was slightly increased by certain others. The corresponding residues were assumed to play no role in maintaining the eRF1 structure, which agreed with the published X-ray data. In these mutants (E55D, Y125F, N61S, E55R, E55A, N61S + S64D, C127A, and S64D), a selective loss of the capability to induce hydrolysis of peptidyl-tRNA in the ribosomal P site in the presence of a stop codon was not associated with destabilization of their spatial structure. Rather, the loss was due to local changes in the stereochemistry of the side groups of the corresponding residues in functionally important sites of the N domain. Two amino acid residues of the N domain, N129 and F131, proved to play an important role in the structural stability of eRF1 and to affect the selective recognition of mRNA stop codons in the ribosome. The recognition of the UAG and UAA stop codons in vitro was more tightly associated with the stability of the spatial structure of eRF1 as compared with that of the UGA stop codon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号