首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacteria Serratia entomophila and S. proteamaculans cause amber disease in the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Disease symptoms include rapid cessation of feeding and amber coloration of larvae. A 105-kb plasmid (designated pADAP) has consistently been found only in pathogenic isolates of both species. Investigations into the involvement of pADAP in amber disease have been hindered by the lack of both a selectable marker on the plasmid and a reliable transposon delivery system. Kanamycin-resistant transposon insertions into three cloned HindIII fragments (9.5, 9.6, and 10.6 kb) were isolated and introduced into pADAP by shuttle mutagenesis. Inserts into the 9.5-and 9.6-kb HindIII fragments on pADAP did not alter disease-causing ability. When plasmids with inserts into the 9.6-kb region were conjugated into plasmid-minus, nonpathogenic isolates of S. entomophila and S. proteamaculans, all of them became pathogenic. Transposon insertions into two regions of the 10.6-kb HindIII fragment continued to cause cessation of feeding but failed to produce amber coloration. Further analysis of a mutant from each amber-minus region (pADK-10 and pADK-13) demonstrated that the antifeeding effect was produced only at dosages higher than that of the wild-type strain. Complementation with the wild-type HindIII fragment restored full-blown disease properties for pADK-13, but not for pADK-10.  相似文献   

2.
Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Larval disease symptoms include cessation of feeding, clearance of the gut, amber coloration, and eventual death. A 115-kb plasmid, pADAP, identified in S. entomophila is required for disease causation and, when introduced into Escherichia coli, enables that organism to cause amber disease. A 23-kb fragment of pADAP that conferred disease-causing ability on E. coli and a pADAP-cured strain of S. entomophila was isolated. Using insertion mutagenesis, the pathogenicity determinants were mapped to a 17-kb region of the clone. Sequence analysis of the 17-kb region showed that the predicted products of three of the open reading frames (sepA, sepB, and sepC) showed significant sequence similarity to components of the insecticidal toxin produced by the bacterium Photorhabdus luminescens. Transposon insertions in sepA, sepB, or sepC completely abolished both gut clearance and cessation of feeding on the 23-kb clone; when recombined back into pADAP, they abolished gut clearance but not cessation of feeding. These results suggest that SepA, SepB, and SepC together are sufficient for amber disease causation by S. entomophila and that another locus also able to exert a cessation-of-feeding effect is encoded elsewhere on pADAP.  相似文献   

3.
B Boizet  D Villeval  P Slos  M Novel  G Novel  A Mercenier 《Gene》1988,62(2):249-261
A 4.4-kb XhoI fragment of Streptococcus lactis L13 (Z268) lactose plasmid pUCL13, containing the beta-D-phosphogalactoside galactohydrolase (P-beta Gal; EC 3.2.1.85)-coding gene has been cloned in Escherichia coli. Further subcloning and deletion of this fragment allowed localization of the P-beta Gal-coding gene (pbg) on a minimal 1.8-kb segment. Expression of P-beta Gal activity was constitutive and was not regulated by glucose in E. coli. The presence of P-beta Gal activity was correlated with the production of a 56.5-kDa protein in E. coli minicells. The nucleotide sequence of the cloned gene was determined and potential promoter structural elements were identified.  相似文献   

4.
S Fanning  F O'Gara 《Gene》1988,71(1):57-64
The Rhizobium meliloti (Rm) lacZ gene provides a convenient model to investigate patterns of gene regulation in these agronomically important bacteria. A gene encoding beta-galactosidase (beta Gal) activity was cloned from R. meliloti by complementing a lactose-negative Escherichia coli mutant. A series of Sau3A subclones was generated in pBR322, and the coding region for the beta Gal-coding gene was localized to a 2.4-kb core fragment. In E. coli 'maxicells', these lacZ subclones produced a 79-kDa polypeptide, irrespective of the fragment size demonstrating that the translation initiation signal(s) are located on the 2.4-kb fragment. Transposon Tn5 mutagenesis and BAL 31 deletion analysis showed that the expression of the Rm lacZ gene in E. coli was dependent on the tetracycline-resistance promoter of pBR322. The cloned sequence was required for beta Gal synthesis in Rhizobium since mutants generated by reverse genetics lack this enzyme and were specifically defective in lactose catabolism.  相似文献   

5.
Serratia entomophila and Serratia proteamaculans (Enterobacteriaceae) cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. Larval disease symptoms include cessation of feeding, clearance of the gut, amber coloration, and eventual death. A 155-kb plasmid, pADAP, carries the genes sepA, sepB, and sepC, which are essential for production of amber disease symptoms. Transposon insertions in any of the sep genes in pADAP abolish gut clearance but not cessation of feeding, indicating the presence of an antifeeding gene(s) elsewhere on pADAP. Based on deletion analysis of pADAP and subsequent sequence data, a 47-kb clone was constructed, which when placed in either an Escherichia coli or a Serratia background exerted strong antifeeding activity and often led to rapid death of the infected grass grub larvae. Sequence data show that the antifeeding component is part of a large gene cluster that may form a defective prophage and that six potential members of this prophage are present in Photorhabdus luminescens subsp. laumondii TTO1, a species which also has sep gene homologues.  相似文献   

6.
Sequence of an osmotically inducible lipoprotein gene.   总被引:16,自引:8,他引:8       下载免费PDF全文
The osmB gene of Escherichia coli, whose expression is induced by elevated osmolarity, was cloned and physically mapped to a 0.65-kilobase-pair NsiI-HincII DNA fragment at 28 min on E. coli chromosome. The OsmB protein was identified in minicells expressing the cloned gene. The nucleotide sequence of a 652-base-pair chromosomal DNA fragment containing the osmB gene was determined. The open reading frame encodes a 72-residue polypeptide with an Mr of 6,949. This reading frame was confirmed by sequencing the fusion joint of an osmB::TnphoA gene fusion. The amino-terminal amino acid sequence of the open reading frame is consistent with reported signal sequences of exported proteins. The sequence around the putative signal sequence cleavage site, Leu-Ser-Ala-Cys-Ser-Asn, is highly homologous to the consensus sequence surrounding the processing site of bacterial lipoproteins. The presence of a lipid moiety on the protein was confirmed by demonstrating the incorporation of radioactive palmitic acid and inhibition of processing by globomycin. Preliminary localization of the authentic OsmB protein was determined in minicells harboring a plasmid that carries the NsiI-HincII fragment; it was primarily in the outer membrane. Surprisingly, an osmB mutant carrying the osmB::TnphoA insertion mutation was more resistant to the inhibition of metabolism by high osmolarity than the parent strain was.  相似文献   

7.
A chromosomal region of Escherichia coli contiguous to the fabE gene at 71 min on the chromosomal map contains multiple genes that are responsible for determination of the rod shape and sensitivity to the amidinopenicillin mecillinam. The so-called mre region was cloned and analyzed by complementation of two closely related but distinct E. coli mutants characterized, respectively, by the mutations mre-129 and mre-678, that showed a rounded to irregular cell shape and altered sensitivities to mecillinam; the mre-129 mutant was supersensitive to mecillinam at 30 degrees C, but the mre-678 mutant was resistant. The mre-678 mutation also caused simultaneous overproduction of penicillin-binding proteins 1Bs and 3. A chromosomal region of the wild-type DNA containing the total mre region and the fabE gene was first cloned on a lambda phage; a 7-kilobase (kb) fragment containing the whole mre region, but not the fabE gene, was then recloned on a mini F plasmid, pLG339; and finally, a 2.8-kb fragment complementing only mre-129 was also cloned on this low-copy-number plasmid. The whole 7-kb fragment was required for complementing the mre-678 mutant phenotypes. Fragments containing fabE but not the mre-129 region could be cloned on a high-copy-number plasmid. Southern blot hybridization indicated that the mre-678 mutant had a large deletion of 5.25 kb in its DNA, covering at least part of the mre-129 gene.  相似文献   

8.
Some strains of Serratia entomophila and S. proteamaculans cause amber disease of the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The disease determinants of S. entomophila, are encoded on a 153,404-bp plasmid, termed pADAP for amber disease associated plasmid. The S. proteamaculans strain 143 (Sp143) exhibits an unusual pathotype, where only 60-70% of C. zealandica larvae infected with the bacterium succumb to disease. DNA sequence analysis of the Sp143 pU143 virulence associated region identified high DNA similarity to the pADAP sep virulence associated region, with DNA sequence variation in the sepA gene and the variable region of the sepC component. No pADAP anti-feeding prophage orthologue was detected in the Sp143 genome. The region of pADAP replication was cloned and found to replicate in S. entomophila but not in Escherichia coli. DNA sequence analysis of the plasmid pSG348 repA gene from the French isolate of Serratia grimesii, identified 93% DNA identity to the pADAP repA gene. A comparison of the pU143 virulence associated region with the completed pADAP nucleotide sequence is given.  相似文献   

9.
In the accompanying communication we showed that a 2 kb EcoRI-BamHI restriction fragment from the pfkA-rha interval of the Escherichia coli K-12 chromosome fully complemented a chromosomal cpxA mutation when the fragment was cloned in pBR325. The same fragment cloned in pBR322 lacked any complementing activity. We show here that minicells containing the pBR325 derivative (pRA310) synthesized a 33 kDa polypeptide, designated phi 33, that was not synthesized in minicells containing the pBR322 derivative (pRA311) or either of the parent plasmids. Synthesis of the phi 33 polypeptide did not occur in minicells containing Tn5 insertion alleles of pRA310 that inactivated its cpxA complementing activity. These insertions mapped within the vector cat (chloramphenicol acetyltransferase gene) sequence immediately adjacent to the EcoRI site of pRA310 and within the 700-800 bp of the cloned EcoRI-BamHI fragment immediately adjacent to the EcoRI site. Tn5 insertions located within the fragment but closer to the BamHI terminus affected neither the cpxA complementing activity of pRA310 nor synthesis of the phi 33 polypeptide in minicells. Plasmid pRA311 could be converted to a plasmid with cpxA complementing activity by cloning into its EcoRI site a restriction fragment containing a hybrid trp-lacUV5 promoter, the lacZ ribosome binding site, and the first eight lacZ codons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
U Csaikl  F Csaikl 《Gene》1986,46(2-3):207-214
  相似文献   

11.
The rpoS gene of Serratia entomophila BC4B was cloned and used to create rpoS-mutant strain BC4BRS. Larvae of the New Zealand grass grub Costelytra zealandica infected with BC4BRS became amber colored but continued to feed, albeit to a lesser extent than infected larvae. Subsequently, we found that expression of the antifeeding gene anfA1 in trans was substantially reduced in BC4BRS relative to that in the parental strain BC4B. Our data show that a functional rpoS gene is vital for full expression of anfA1 and for development of the antifeeding component of amber disease.  相似文献   

12.
13.
In iron-rich conditions, Pseudomonas aureofaciens PA147-2 produces an antibiotic-like compound that inhibits the growth of a plant fungal pathogen, Aphanomyces euteiches. To contribute to the potential use of PA147-2 as a biocontrol organism, we report the identification of a genetic locus important for antibiotic biosynthesis. Mutants defective for fungal inhibition (Af-) were generated by Tn5 mutagenesis. Southern hybridization of total DNAs from three Af- mutants indicated that loss of fungal inhibition was due to a single Tn5 insertion in each mutant. Restriction mapping of the mutation points showed that in two mutants the Tn5 insertions were in the same 16.0-kb EcoRI fragment and were separated by 2.1 kb. A genomic library of PA147-2 was constructed and screened by using a region of DNA flanking the Tn5 insertion in one mutant (PA109) as a probe to recover complementing cosmids. Three cosmids containing a 16.0-kb EcoRI fragment complementary to the two mutants were recovered. Allele replacement by homologous recombination with putative complementing cosmids restored one mutant to antifungal activity against A. euteiches. Southern analysis of the complemented mutants confirmed that allele replacement had occurred between cosmid DNA and Tn5. The wild-type 16.0-kb EcoRI fragment was cloned from the cosmid and complemented the two mutants to antifungal activity. An antifungal compound was isolated from PA147-2 grown on solid medium. Antifungal activity correlated to a peak on high-pressure liquid chromatography analysis. Under the same growth and extraction conditions, the antifungal activity seen in PA147-2 was absent in two Af- mutants. Furthermore, absence of an antifungal compound in each mutant correlated to the absence of the wild-type “antifungal” peak on high-pressure liquid chromatography analysis.  相似文献   

14.
Abstract Ability to cause amber disease in the New Zealand grass grub, Costleytra zealandica (Coleoptera: Scarabaeidae), by Serratia entomophila and S. proteamaculans (Enterobacteriaceae), is dependent on the presence of a large plasmid in bacterial strains. Transfer of the plasmid alone to several other Enterobacteriaceae resulted in the ability to cause the disease in grass grub larvae. No species other than S . entomophila or S . proteamaculans has previously been recorded causing amber disease.  相似文献   

15.
Cloning and regulation of Erwinia herbicola pigment genes.   总被引:12,自引:4,他引:8       下载免费PDF全文
The genes coding for yellow pigment production in Erwinia herbicola Eho10 (ATCC 39368) were cloned and localized to a 12.4-kilobase (kb) chromosomal fragment. A 2.3-kb AvaI deletion in the cloned fragment resulted in the production of a pink-yellow pigment, a possible precursor of the yellow pigment. Production of yellow pigment in both E. herbicola Eho10 and pigmented Escherichia coli clones was inhibited by glucose. When the pigment genes were transformed into a cya (adenylate cyclase) E. coli mutant, no expression was observed unless exogenous cyclic AMP was provided, which suggests that cyclic AMP is involved in the regulation of pigment gene expression. In E. coli minicells, the 12.4-kb fragment specified the synthesis of at least seven polypeptides. The 2.3-kb AvaI deletion resulted in the loss of a 37K polypeptide and the appearance of a polypeptide of 40 kilodaltons (40K polypeptide). The synthesis of the 37K polypeptide, which appears to be required for yellow pigment production, was not repressed by the presence of glucose in the culture medium, as was the synthesis of other polypeptides specified by the 12.4-kb fragment, suggesting that there are at least two types of gene regulation involved in yellow pigment synthesis. DNA hybridization studies indicated that different yellow pigment genes exist among different E. herbicola strains. None of six pigmented plant pathogenic bacteria examined, Agrobacterium tumefaciens C58, Cornyebacterium flaccumfaciens 1D2, Erwinia rubrifaciens 6D364, Pseudomonas syringae ATCC 19310, Xanthomonas campestris 25D11, and "Xanthomonas oryzae" 17D54, exhibited homology with the cloned pigment genes.  相似文献   

16.
17.
Hurst MR  O'Callaghan M  Glare TR 《Plasmid》2003,50(3):213-229
Some strains of the Enterobacteriaceae Serratia entomophila and Serratia proteamaculans cause amber disease in the grass grub, Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The genes responsible for this disease reside on a large, 155-kb plasmid designated amber disease-associated plasmid (pADAP). Herein, we report the DNA sequencing of approximately 50 kb upstream and 10 kb downstream of the virulence-encoding region. Based on similarity with proteins in the current databases, and potential ribosome-binding sites, 63 potential ORFs were determined. Eleven of these ORFs belong to a type IV pilus cluster (pilL-V) and a further eight have similarities to the translated products of the plasmid transfer traH-N genes of the plasmid R64. In addition, a degenerate 785-nt direct repeat flanks a 44.7-kb region with the potential to encode three Bacillus subtilis Yee-type proteins, a fimbrial gene cluster, the sep virulence-associated genes and several remnant IS elements.  相似文献   

18.
Some strains of the Enterobacteriaceae Serratia entomophila and S. proteamaculans cause amber disease in the grass grub Costelytra zealandica (Coleoptera: Scarabaeidae), an important pasture pest in New Zealand. The virulence determinants of the disease reside on a large plasmid designated pADAP (amber disease-associated plasmid). A BamHI, EcoRI, and HindIII restriction cleavage map of pADAP was constructed by means of cloning restriction fragments. Each fragment was mapped, and neighboring fragments of mapped clones were systematically isolated from libraries using DNA probes constructed from previously cloned fragments. Through the use of sniff sequencing from the distal ends of a number of pADAP subclones the location of putative IS elements and genes involved in replication and conjugation were identified and assigned on the map. The location of the amber disease virulence-associated region was also mapped. The final map of pADAP spans 155 kb, 40 kb larger than the previous estimate.  相似文献   

19.
A series of constitutive green fluorescent protein (pGFPuv) derivatives of the bacterium Serratia entomophila (Enterobacteriaceae) were constructed, allowing the fate of cells causing amber disease ingested by the New Zealand grass grub (Costelytra zealandica, Coleoptera: Scarabaeidae) to be monitored. Examination of tissue and contents of the alimentary tract over time from ingestion, under fluorescence microscopy, revealed that the major site of S. entomophila colonisation in the grass grub is intestinal particulate matter. Visual examinations showed that wild type pathogenic strain persisted in high numbers in the grass grub intestinal tract, notably in the area of the hindgut, but the S. entomophila pADAP-free strain 5.6RC and the pADK mutant derivatives (pADK-4, -10, -13) that gave a non-feeding without gut clearance phenotype, were unable to colonise the gut. The indiscriminate colonisation of the intestinal tract particulate matter by pathogenic bacteria, rather than the colonisation of a specific site of activity, suggests that the bacterial toxins are induced and released from the bacteria while they live freely in the grass grub intestinal tract.  相似文献   

20.
Molecular cloning and expression of Corynebacterium glutamicum genes complementing Escherichia coli mutations thrA2 and ilvA was performed. It was demonstrated that the thrA2 gene of C. glutamicum is located close to thrB on EcoRI DNA fragment 4.1 kb long. The fragment was cloned in pUC18 vector. The thrA2 gene is expressed in the recombinant plasmid pOBT3 under control of the vector pUC18 Plac promoter. In E. coli minicells, the genes thrA2 and thrB determined synthesis of proteins of Mr 43kD and 25 kD, respectively. A gene complementing ilvA mutation of E. coli was identified in a library of EcoRI C. glutamicum DNA fragments. This library was constructed using plasmid vector. It was shown that the ilvA gene of C. glutamicum is located inside the 3.6 kb EcoRI fragment and is expressed using its own promoter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号