首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal properties of the beta-lactoglobulin-water system were investigated by differential scanning calorimetry in the temperature range from -50 to 130 degrees C. Determination of the heat and temperature of fusion of the absorbed water allowed resolution of the water into four different states. The amounts of water in these states were different for samples before and after heat denaturation. In the case of denatured beta-lactoglobulin, a smaller amount of water with thermal properties different from ordinary water was observed and its total water binding capacity was lower. The thermal stability of beta-lactoglobulin in the water content range from 0 to 0.75 g/g showed a strong dependence on the degree of hydration. A correlation was observed between the changes in the thermal stability of the protein and the changes in the state of the absorbed water. The results are compared with those obtained from similar measurements of other globular proteins and of fibrillar proteins.  相似文献   

2.
The dynamic behaviour of model membranes in the form of sonicated liposomes in excess water was studied by means of 90 degrees C light scattering and turbidity measurements. Computer calculations based on the Rayleigh-Gans theory of light scattering were used to estimate the average size of lipid vesicles dispersed in water, taking into account the various structures of the vesicles. Normal reversible changes in the scattered light intensity and turbidity with temperature could be accounted for mainly by the changes in the refractive index of the lipid and irreversible anomalous changes were explained on the basis of fusion of smaller aggregated vesicles.  相似文献   

3.
E.-D. Schulze  M. Küppers 《Planta》1979,146(3):319-326
Short-term (hours) changes in plant water status were induced in hazel (Corylus avellana L.) by changing the evaporative demand on a major portion of the shoot while maintaining a branch in a constant environment. Stomatal conductance of leaves on the branch was influenced little by these short-term changes in water status even with changes in leaf water potential as great as 8 bars. Long-term (days) changes in plant water status were imposed by soil drying cycles. Stomatal conductance progessively decreased with increases in long-term water stress. Stomata still responded to humidity with long-term water stress but the range of the conductance response decreased. Threshold responses of stomata to leaf water potential were not observed with either short-term or long-term changes in plant water status even when leaves wilted. It is suggested that concurrent measurements of plant water status may not be sufficient for explaining stomatal and other plant responses to drought.  相似文献   

4.
Work is described on the changes in cell ions during growth of cultures of a species of Halobacterium isolated from the Dead Sea. Cell K concentration fell from 5.5 to 3.8 moles per kg cell water during the logarithmic phase of growth and maintained the latter value during the stationary phase (initial medium concentration, 7 mM). Cell Na and Cl followed a complex series of roughly parallel changes. The logarithmic phase ion concentrations were: Na, 1.0–2.3 moles/kg cell water; Cl, 2.3–3.7 moles/kg cell water. The final stationary phase values were: Na, 0.5 moles/kg cell water; Cl, 2.3–2.9 moles/kg cell water (medium NaCl concentration, 3.9 Molal). It is suggested that most of the K+ is bound within the cytoplasm.  相似文献   

5.
Multiple-frequency bioimpedance analysis (MFBIA) has been used to determine the cellular water composition in the human body. It is noninvasive and has demonstrated good correlations with other invasive measures of tissue water. However, the ability of this method to study transient changes in tissue water in specific muscle groups has not been explored. In this study, MFBIA was used to assess changes in forearm intracellular water (ICW), extracellular water (ECW), and total water (TW) in seven healthy volunteers during and after a progressive wrist flexion exercise protocol. In an identical trial, (31)P magnetic resonance spectroscopy ((31)P-MRS) was used to assess changes in intracellular pH and phosphocreatine (PCr). At the completion of exercise, forearm ICW increased 12.6% (SD 0.07, P = 0.003), TW increased 10.1% (SD 0.06, P = 0.005), and no significant changes were recorded for ECW. A significant correlation was found between the changes in intracellular pH and changes in ICW during exercise (r = -0.84, P = 0.018). With the use of regression analysis, average changes in P(i), PCr, and pH were found to predict changes in ICW (R(2) = 0.98, P = 0.005). In conclusion, MFBIA was sensitive enough to measure transient changes in the exercising forearm muscle. The changes seen were consistent with the hypothesis that intracellular acidification and PCr hydrolysis are important mediators of cellular osmolality and therefore may be responsible for the increased volume of water in the intracellular space that is often recorded after short-term high-intensity exercise.  相似文献   

6.
Cytoplasmic pH and human erythrocyte shape.   总被引:1,自引:0,他引:1  
Altered external pH transforms human erythrocytes from discocytes to stomatocytes (low pH) or echinocytes (high pH). The mechanism of this transformation is unknown. The preceding companion study (Gedde and Huestis) demonstrated that these shape changes are not mediated by changes in membrane potential, as has been reported. The aim of this study was to identify the physiological properties that mediate this shape change. Red cells were placed in a wide range of physiological states by manipulation of buffer pH, chloride concentration, and osmolality. Morphology and four potential predictor properties (cell pH, membrane potential, cell water, and cell chloride concentration) were assayed. Analysis of the data set by stratification and nonlinear multivariate modeling showed that change in neither cell water nor cell chloride altered the morphology of normal pH cells. In contrast, change in cell pH caused shape change in normal-range membrane potential and cell water cells. The results show that change in cytoplasmic pH is both necessary and sufficient for the shape changes of human erythrocytes equilibrated in altered pH environments.  相似文献   

7.
For quantitative evaluation of cataract-related changes in lens proteins and lens water, the relative contents of water and SH residues and changes in the microenvironments of aromatic amino acid residues were quantitatively examined in cataract of the rat lens which had been induced by sodium selenite. Using Raman spectroscopy, results were compared with those of age-matched control lenses. The relative contents of water and SH residues decreased with increasing age in normal lenses from 3 to 8 weeks of age. In the cataractous lens, the relative water content increased constantly as compared with that of age-matched controls. The relative SH residue content continued to decline in the cataractous lenses of animals at every age. The microenvironments of tyrosine residues in cataractous lenses also changed progressively.  相似文献   

8.
The penetration of water into cross-linked high amylose starch tablets was studied at different temperatures by nuclear magnetic resonance (NMR) imaging, which follows the changes occurring at the surface and inside the starch tablets during swelling. It was found that the swelling was anisotropic, whereas water diffusion was almost isotropic. The water proton image profiles at the initial stage of water penetration were used to calculate the initial diffusion coefficient. The swelling and water concentration gradients in this controlled release system show significant temperature dependence. Diffusion behavior changed from Fickian to Case II diffusion with increasing temperature. The observed phenomena are attributed to the gelatinization of starch and the pseudo-cross-linking effect of double helix formation.  相似文献   

9.
The water proton spin-lattice relaxation times in HEp-2 cell cultures were determined immediately after 1 h of polio-virus adsorption. The shortening of the water T1 was closely related to the multiplicity of infection, allowing direct inspections of the virus--cell interaction since the first steps of the infectious cycle. Virus-induced structural and conformational changes of cell constituents were suggested to be detectable by NMR investigation of cell water.  相似文献   

10.
The human nail, although it is usually stable against outer influences, becomes soft and flexible after soaking in water. Frequent washing increases brittleness of nails. Hydration of nails is thought to be the most important factor influencing the physical properties of nails and possibly acts through changes in keratin structure. Here NIR-FT-Raman has been used to examine molecular structural changes of intact moisten nails. Raman spectra were obtained both in vitro from nail samples and in vivo before and after soaking in water. The water uptake of normal nail samples during the first 15 min was reflected in the increasing intensity ratio of the nu(OH)/nu(CH(2)) bands. A saturating effect appeared soon after 10 min which is explained by a defined water holding capacity. R(nu) representation of the low frequency range of the Raman spectra showed that mainly bound water is found both in dry and in wet nails. This implies water-protein interaction. Protein backbone vibration at 932 cm(-1) indicating alpha-helical proteins increased in intensity in the wet nails. The nu(S-S) which is sensitive to changes in conformation of proteins showed a 4% higher intensity. Additional protein-water interactions could lead to a slight change of the dihedral angle of the C-S-S-C bonds and to geometric changes in coiling behavior of the alpha-helical protein. Suggesting a separation between matrix proteins and fiber proteins giving them a greater freedom of flexibility. The in vivo spectra detected from the distal part of the nail resembled spectra in vitro. Raman spectra of the proximal part of the nail showed that it was fully saturated with water. The proximal part of the nail did not show changes in water content and protein structure during nail moisturizing in the Raman spectra. Our results suggest that the softening of the nail following hydration may be due to changed matrix protein molecular structure induced by water.  相似文献   

11.
Molecular dynamics at 300 K was used as a conformation searching tool to analyze a knowledge-based structure prediction of an anti-insulin antibody. Solvation effects were modeled by packing water molecules around the antigen binding loops. Some loops underwent backbone and side-chain conformational changes during the 95-ps equilibration, and most of these new, lower potential energy conformations were stable during the subsequent 200-ps simulation. Alterations to the model include changes in the intraloop, main-chain hydrogen bonding network of loop H3, and adjustments of Tyr and Lys side chains of H3 induced by hydrogen bonding to water molecules. The structures observed during molecular dynamics support the conclusion of the previous paper that hydrogen bonding will play the dominant role in antibody-insulin recognition. Determination of the structure of the antibody by x-ray crystallography is currently being pursued to provide an experimental test of these results. The simulation appears to improve the model, but longer simulations at higher temperatures should be performed.  相似文献   

12.
D. R. Lee 《Planta》1981,151(4):304-308
Simultaneous measurement of the pressure potential of the phloem of F. americana made on two locations on the trunk over long periods of time showed synchronous oscillations of no fixed period during the day. The simultaneous changes in pressure in two different trees indicated environmental changes were responsible for the synchrony. The coincident changes of pressure 5 m apart on the same trunk implied that either transpiration had an immediate and direct effect upon the pressure potentials developed in the phloem because of the intimate relationship of the phloem water potential and the water potential of the adjacent transpiration stream, or factors affecting phloem loading resulted in pressure changes throughout the phloem.  相似文献   

13.
Factor analysis was used to identify the processes responsible for the changes in water quality in a stratified wastewater reservoir. These reservoirs are well suited to study hypertrophic conditions. In the epilimnion, the main source of variablility was the external loading due to variations in wastewater inputs and water level (volume) of the reservoir. The second source was the seasonal climatic changes affecting photosynthesis. The third source was differences between night and day processes affecting REDOX potential. In the hypolimnion, the main source of variability was organic loading but due to both external loading (wastewater inputs) and internal loading (compounds released from the sediments). The second source was related to the input of chlorophyll into the hypolimnion, which were external (entry of chlorophyll rich inflow from a waste stabilization pond) and/or internal (input of chlorophyll from upper layers due to water column mixing).  相似文献   

14.
Gray  Lawrence 《Hydrobiologia》2004,518(1-3):33-46
Short-term changes in water quality from 7 summer stormflows and long-term changes in substrates and macroinvertebrate communities resulting from urban runoff from the city of Provo, Utah, were examined from 1999–2002 in the lower Provo River. Stormflows resulted in increased total suspended solids and concentrations of dissolved copper, lead and zinc, and decreased conductivity and dissolved oxygen. The degree of change was generally in proportion to the magnitude of the storm. However, changes were temporary with water quality parameters returning to pre-storm levels within 12 hours. River substrates showed a trend of increased compaction and decreased debris dam area downstream through the urban corridor. Macroinvertebrate communities showed trends of decreased abundance and total species diversity with increasing urbanization. Compared to non-urban reaches, communities in urban reaches had few `sensitive' species and were dominated by tolerant species, particularly snails and leeches. Comparisons with previous studies show that changes in macroinvertebrate community composition in the urban reaches reflected shifts in land use during the past 15–25 years and corresponded to expected threshold levels of impact for amount of impervious surface cover.  相似文献   

15.
Brook charr (Salvelinus fontinalis) is a sentinel fish species which requires clean, cold water habitats. As such, many jurisdictions in the United States where brook charr are present use this species as an indicator of ecosystem health. In Michigan, groundwater-dominated streams are currently being impacted by increased groundwater withdrawal and land use/land cover changes which alter stream temperatures and their flow, and thus have the potential to significantly influence brook charr production and behavior. We quantified the influence of groundwater withdrawal and land use alteration on thermal habitat availability for brook charr using a groundwater modeling tool that estimated changes in baseflow to a stream segment based on changes to the groundwater system due to groundwater withdrawal and changes in rates of recharge related to landscape changes within a watershed. Projected stream temperature changes were calculated using a stream temperature modeling tool and compared to the range of temperature preferenda for brook charr in order to evaluate the potential impact of policy decisions regarding water extraction and land use/cover changes. The models predicted relatively small changes in both stream baseflow and consequently, stream temperature, with increased groundwater withdrawal rates. Land use/land cover alterations which we analyzed were shown to either mitigate or enhance the loss of brook charr thermal habitat as a result of groundwater withdrawal, depending on its relationship to recharge dynamics. This study emphasizes the importance of collaboration between water, land, and fisheries managers to ensure brook charr population viability, productivity, and sustainability in the face of environmental change, increasing water use and development in the watershed.  相似文献   

16.
The aim of this study was to assess and compare the water quality of the Gwebi and Mukuvisi Rivers, on the basis of selected physicochemical variables and macroinvertebrate community structure. Five sites where selected on both rivers and these were sampled on three separate occasions between January and July of 1998. The water variables measured were the concentrations of iron, chromium, zinc, lead, copper, manganese, chlorides, fluorides, sulphates, total phosphates, nitrates, ammonia, total dissolved salts, dissolved oxygen, biological oxygen demand, as well as pH, conductivity, temperature, water surface velocity and discharge. The concentration of most of the chemical variables was relatively similar along the course of the Gwebi River, but there were drastic increases in the levels of iron, chromium, copper, zinc, chlorides, fluorides, sulphates, and ammonia along the Mukuvisi River. The two rivers were different with respect to the physicochemical variables, with the exception of the first site on the Mukuvisi, which was similar to sites on the Gwebi River. This was because of the differences in the levels of human activities on the two rivers. Industrial, sewage and domestic pollution has had an adverse effect on the water quality of the Mukuvisi River. There was a sharp decline in the number of macroinvertebrate taxa along the Mukuvisi River. The lower reaches of the river where dominated by oligochaetes and Chironimidae larvae. Sample score classification of water quality based on the South African Scoring System Version 4 (SASS4) showed that most of the Mukuvisi river had poor quality water quality, whilst much of the Gwebi River had fair quality water. The HABS1 habitat assessment index was used to assess habitat quality at each site. Although much of the Mukuvisi recorded fair to good habitat scores and had generally higher habitat scores than sites on the Gwebi, the SASS scores were generally lower compared to those along the Gwebi. The sample scores and average score per taxon (ASPT) of the SASS4 showed that the Mukuvisi River was of much lower quality than the Gwebi. Both the sample score and ASPT were negatively and significantly (p<0.05) correlated to most of the physicochemical variables. The water quality variables accounted for 61.1% and 59.0% of the differences in the sample score and ASPT respectively. There was a marginal decrease in the Margalef and Shannon indices along the Gwebi River, but the Simpson's index remained relatively constant. Along the Mukuvisi River, there was a clear and distinct decrease in the magnitude of all three diversity indices, indicating decreasing macroinvertebrate community structure. The change in water physicochemical variables accounted for 61.3%, 69.2% and 87.2% of the changes in the Margalef, Shannon and Simpson's index respectively. The study provides evidence that the changes in macroinvertebrate community structure along the Mukuvisi River is due to decline in the water quality. On the Gwebi, water quality is not the main factor determining macroinvertebrate community structure.  相似文献   

17.
YIELD, a parametric crop production model, employs climatic data to calculate actual and potential yield for various crops and includes formulations for specific crop and growth stage effects. The objective was to demonstrate the sensitivity of YIELD for grain corn (maize) to changes in various environmental and decision-making inputs. Five temperature, five solar radiation, six relative humidity regimes, five water application schemes, and four irrigation frequencies were included in this study. The effects of different soil types and wind regimes on crop water requirements were investigated. The model output includes crop yield, water use efficiency, and management efficiency. Among the results, yield decreased on the average by 3.9% per one degree (C) increase in air temperature. A 1% change in solar radiation resulted in an average of 1% change in yield. Similar changes in relative humidity caused a yield change of about 0.8%.  相似文献   

18.
The changes found in the neurosecretory axons of the neural lobe of the hypophysis were studied in rats treated with furosemide for three days: over the whole period of treatment, the animals, according to each group, were deprived or not of water. In the animals with free access to water the axons contained neurosecretory granules with scarce content and low electron density; only some of them had vacuoles and autophagic bodies. In the animals deprived of water axon morphology was variable and axons showing vacuoles and autophagic bodies were abundant, as well as those presenting lamellar and dense bodies and also those in which filaments prevailed. The most outstanding modifications in this last group of animals were related to the dehydration and were not found in those animals which were given access to water again and which were in consequence rehydrated.  相似文献   

19.
In this study we measured changes in population levels of free-living N2-fixing bacteria in the root zones of potted Bouteloua eriopoda and Sporobolus flexuosus plants as well as the photosynthetic indices of the plants in response to added nitrogen, added water, and added water plus nitrogen treatments. In addition, N2 fixer population changes in response to added carbon source and nitrogen were measured in plant-free soil columns. There were significant increases in the numbers of N2 fixers associated with both plant species in the water and the water plus nitrogen treatments. Both treatments increased the photosynthetic index, suggesting that plant exudates were driving N2 fixer population changes. Population increases were greatest in the water plus nitrogen treatments, indicating that added nitrogen was synergistic with added water and suggesting that nitrogen addition spared bacteria the metabolic cost of N2 fixation, allowing greater reproduction. Plant-free column studies demonstrated a synergistic carbon-nitrogen effect when carbon levels were limiting (low malate addition) but not when carbon was abundant (high malate), further supporting this hypothesis. The results of this study indicate the presence of N2 fixer populations which interact with plants and which may play a role in the nitrogen balance of desert grasslands.  相似文献   

20.
The incidence and severity of the effects of pulmonary compliance changes were investigated in patients undergoing abdominal plication surgery. A total of 20 healthy adults scheduled for abdominal plication surgery who had no significant history of pulmonary disease and 20 adults scheduled for nonabdominal, nonthoracic surgery (control group) underwent general endotracheal anesthesia; neuromuscular blockade was confirmed with electrical twitch monitoring. Before abdominal plication, the mean airway compliance was measured under total neuromuscular blockade at 33.4 +/- 2.1 ml/cm water, which was not significant when compared with control patient values. After abdominal plication was performed, the mean airway compliance was remeasured under total neuromuscular blockade; it was significantly decreased at 24.0 +/- 1.8 ml/cm water when compared with values for control patients (32.6 +/- 1.6 ml/cm) and with preplication values. Patients with airway compliance changes of less than 4 ml/cm water (when compared with preplication pulmonary mechanics) had far less incidence of atelectasis, requirements for supplemental oxygen at 24 hours or longer, or hypoxia when compared with patients with compliance changes of greater than 4 ml/cm water. Patients with compliance changes greater than 9 ml/cm water had the highest incidence of pulmonary morbidity. These data suggest that significant changes in pulmonary compliance occur after abdominal plication and that these airway compliance changes are associated with a clinically increased incidence of pulmonary morbidity in the postoperative period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号