首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Autonomous learning techniques are based on experience acquisition. In most realistic applications, experience is time-consuming: it implies sensor reading, actuator control and algorithmic update, constrained by the learning system dynamics. The information crudeness upon which classical learning algorithms operate make such problems too difficult and unrealistic. Nonetheless, additional information for facilitating the learning process ideally should be embedded in such a way that the structural, well-studied characteristics of these fundamental algorithms are maintained. We investigate in this article a more general formulation of the Q-learning method that allows for a spreading of information derived from single updates towards a neighbourhood of the instantly visited state and converges to optimality. We show how this new formulation can be used as a mechanism to safely embed prior knowledge about the structure of the state space, and demonstrate it in a modified implementation of a reinforcement learning algorithm in a real robot navigation task.  相似文献   

2.
Spiking Neural Networks (SNN) were shown to be suitable tools for the processing of spatio-temporal information. However, due to their inherent complexity, the formulation of efficient supervised learning algorithms for SNN is difficult and remains an important problem in the research area. This article presents SPAN - a spiking neuron that is able to learn associations of arbitrary spike trains in a supervised fashion allowing the processing of spatio-temporal information encoded in the precise timing of spikes. The idea of the proposed algorithm is to transform spike trains during the learning phase into analog signals so that common mathematical operations can be performed on them. Using this conversion, it is possible to apply the well-known Widrow-Hoff rule directly to the transformed spike trains in order to adjust the synaptic weights and to achieve a desired input/output spike behavior of the neuron. In the presented experimental analysis, the proposed learning algorithm is evaluated regarding its learning capabilities, its memory capacity, its robustness to noisy stimuli and its classification performance. Differences and similarities of SPAN regarding two related algorithms, ReSuMe and Chronotron, are discussed.  相似文献   

3.
Since traditional multiple alignment formulations are NP-hard, heuristics are commonly employed to find acceptable alignments with no guaranteed performance bound. This causes a substantial difficulty in understanding what the resulting alignment means and in assessing the quality of these alignments. We propose an alternative formulation of multiple alignment based on the idea of finding a multiple alignment of k sequences which preserves k - 1 pairwise alignments as specified by edges of a given tree. Although it is well known that such a preserving alignment always exists, it did not become a mainstream method for multiple alignment since it seems that a lot of information is lost from ignoring pairwise similarities outside the tree. In contrast, by using pairwise alignments that incorporate consistency information from other sequences, we show that it is possible to obtain very good accuracy with the preserving alignment formulation. We show that a reasonable objective function to use is to find the shortest preserving alignment, and, by a reduction to a graph-theoretic problem, that the problem of finding the shortest preserving multiple alignment can be solved in polynomial time. We demonstrate the success of this approach on three sets of benchmark multiple alignments by using consistency-based pairwise alignments from the first stage of two of the best performing progressive alignment algorithms TCoffee and ProbCons and replace the second heuristic progressive step of these algorithms by the exact preserving alignment step. We apply this strategy to TCoffee and show that our approach outperforms TCoffee on two of the three test sets. We apply the strategy to a variant of ProbCons with no iterative refinements and show that our approach achieves similar or better accuracy except on one test set. We also compare our performance to ProbCons with iterative refinements and show that our approach achieves similar or better accuracy on many subcategories even without further refinements. The most important advantage of the preserving alignment formulation is that we are certain that we can solve the problem in polynomial time without using a heuristic. A software program implementing this approach (PSAlign) is available at http://faculty.cs.tamu.edu/shsze/psalign.  相似文献   

4.
Humans and animals are able to learn complex behaviors based on a massive stream of sensory information from different modalities. Early animal studies have identified learning mechanisms that are based on reward and punishment such that animals tend to avoid actions that lead to punishment whereas rewarded actions are reinforced. However, most algorithms for reward-based learning are only applicable if the dimensionality of the state-space is sufficiently small or its structure is sufficiently simple. Therefore, the question arises how the problem of learning on high-dimensional data is solved in the brain. In this article, we propose a biologically plausible generic two-stage learning system that can directly be applied to raw high-dimensional input streams. The system is composed of a hierarchical slow feature analysis (SFA) network for preprocessing and a simple neural network on top that is trained based on rewards. We demonstrate by computer simulations that this generic architecture is able to learn quite demanding reinforcement learning tasks on high-dimensional visual input streams in a time that is comparable to the time needed when an explicit highly informative low-dimensional state-space representation is given instead of the high-dimensional visual input. The learning speed of the proposed architecture in a task similar to the Morris water maze task is comparable to that found in experimental studies with rats. This study thus supports the hypothesis that slowness learning is one important unsupervised learning principle utilized in the brain to form efficient state representations for behavioral learning.  相似文献   

5.
Neural learning algorithms generally involve a number of identical processing units, which are fully or partially connected, and involve an update function, such as a ramp, a sigmoid or a Gaussian function for instance. Some variations also exist, where units can be heterogeneous, or where an alternative update technique is employed, such as a pulse stream generator. Associated with connections are numerical values that must be adjusted using a learning rule, and and dictated by parameters that are learning rule specific, such as momentum, a learning rate, a temperature, amongst others. Usually, neural learning algorithms involve local updates, and a global interaction between units is often discouraged, except in instances where units are fully connected, or involve synchronous updates. In all of these instances, concurrency within a neural algorithm cannot be fully exploited without a suitable implementation strategy. A design scheme is described for translating a neural learning algorithm from inception to implementation on a parallel machine using PVM or MPI libraries, or onto programmable logic such as FPGAs. A designer must first describe the algorithm using a specialised Neural Language, from which a Petri net (PN) model is constructed automatically for verification, and building a performance model. The PN model can be used to study issues such as synchronisation points, resource sharing and concurrency within a learning rule. Specialised constructs are provided to enable a designer to express various aspects of a learning rule, such as the number and connectivity of neural nodes, the interconnection strategies, and information flows required by the learning algorithm. A scheduling and mapping strategy is then used to translate this PN model onto a multiprocessor template. We demonstrate our technique using a Kohonen and backpropagation learning rules, implemented on a loosely coupled workstation cluster, and a dedicated parallel machine, with PVM libraries.  相似文献   

6.
In 1935 Edwin Boring proposed that each attribute of sensation reflects the activity of a different neural circuit. If this idea is valid, it could facilitate both psychophysical and neurophysiological research on sensory systems. We think it likely that Boring's formulation is correct for three reasons: 1) Different sensory attributes reflect conscious information about different parameters of a stimulus. To be measured by any device, each of these parameters must be individually computed. Different neural circuits would appear to be necessary for the nervous system to carry out these different computations. 2) Perceived information about different sensory attributes can be made to diverge by appropriate manipulations of the stimuli. If there is a rigorous relationship between conscious sensory experience and neural activity, such a divergence implies that different sensory attributes are served by different neural circuits. 3) Accurate information about a sensory attribute requires that a human observer's attention be focused on that attribute. Changes in direction of attention are thought to involve a process of switching from one neural circuit to another, and provide another way to cause perceived information about different sensory attributes to diverge.  相似文献   

7.
Negative examples – genes that are known not to carry out a given protein function – are rarely recorded in genome and proteome annotation databases, such as the Gene Ontology database. Negative examples are required, however, for several of the most powerful machine learning methods for integrative protein function prediction. Most protein function prediction efforts have relied on a variety of heuristics for the choice of negative examples. Determining the accuracy of methods for negative example prediction is itself a non-trivial task, given that the Open World Assumption as applied to gene annotations rules out many traditional validation metrics. We present a rigorous comparison of these heuristics, utilizing a temporal holdout, and a novel evaluation strategy for negative examples. We add to this comparison several algorithms adapted from Positive-Unlabeled learning scenarios in text-classification, which are the current state of the art methods for generating negative examples in low-density annotation contexts. Lastly, we present two novel algorithms of our own construction, one based on empirical conditional probability, and the other using topic modeling applied to genes and annotations. We demonstrate that our algorithms achieve significantly fewer incorrect negative example predictions than the current state of the art, using multiple benchmarks covering multiple organisms. Our methods may be applied to generate negative examples for any type of method that deals with protein function, and to this end we provide a database of negative examples in several well-studied organisms, for general use (The NoGO database, available at: bonneaulab.bio.nyu.edu/nogo.html).  相似文献   

8.
Simulation experiments involve various sub-tasks, e.g., parameter optimization, simulation execution, or output data analysis. Many algorithms can be applied to such tasks, but their performance depends on the given problem. Steady state estimation in systems biology is a typical example for this: several estimators have been proposed, each with its own (dis-)advantages. Experimenters, therefore, must choose from the available options, even though they may not be aware of the consequences. To support those users, we propose a general scheme to aggregate such algorithms to so-called synthetic problem solvers, which exploit algorithm differences to improve overall performance. Our approach subsumes various aggregation mechanisms, supports automatic configuration from training data (e.g., via ensemble learning or portfolio selection), and extends the plugin system of the open source modeling and simulation framework James II. We show the benefits of our approach by applying it to steady state estimation for cell-biological models.  相似文献   

9.
Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This requires a means of quantifying the relative importance of prior experience and current information, so they can be balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be involved in aberrations of generalization, such as over-confidence.  相似文献   

10.
We provide a unified overview of methods that currently are widely used to assess the accuracy of prediction algorithms, from raw percentages, quadratic error measures and other distances, and correlation coefficients, and to information theoretic measures such as relative entropy and mutual information. We briefly discuss the advantages and disadvantages of each approach. For classification tasks, we derive new learning algorithms for the design of prediction systems by directly optimising the correlation coefficient. We observe and prove several results relating sensitivity and specificity of optimal systems. While the principles are general, we illustrate the applicability on specific problems such as protein secondary structure and signal peptide prediction.  相似文献   

11.
MOTIVATION: We focus on the prediction of disulfide bridges in proteins starting from their amino acid sequence and from the knowledge of the disulfide bonding state of each cysteine. The location of disulfide bridges is a structural feature that conveys important information about the protein main chain conformation and can therefore help towards the solution of the folding problem. Existing approaches based on weighted graph matching algorithms do not take advantage of evolutionary information. Recursive neural networks (RNN), on the other hand, can handle in a natural way complex data structures such as graphs whose vertices are labeled by real vectors, allowing us to incorporate multiple alignment profiles in the graphical representation of disulfide connectivity patterns. RESULTS: The core of the method is the use of machine learning tools to rank alternative disulfide connectivity patterns. We develop an ad-hoc RNN architecture for scoring labeled undirected graphs that represent connectivity patterns. In order to compare our algorithm with previous methods, we report experimental results on the SWISS-PROT 39 dataset. We find that using multiple alignment profiles allows us to obtain significant prediction accuracy improvements, clearly demonstrating the important role played by evolutionary information. AVAILABILITY: The Web interface of the predictor is available at http://neural.dsi.unifi.it/cysteines  相似文献   

12.
Experiencing certain events triggers the acquisition of new memories. Although necessary, however, actual experience is not sufficient for memory formation. One-trial learning is also gated by knowledge of appropriate background information to make sense of the experienced occurrence. Strong neurobiological evidence suggests that long-term memory storage involves formation of new synapses. On the short time scale, this form of structural plasticity requires that the axon of the pre-synaptic neuron be physically proximal to the dendrite of the post-synaptic neuron. We surmise that such “axonal-dendritic overlap” (ADO) constitutes the neural correlate of background information-gated (BIG) learning. The hypothesis is based on a fundamental neuroanatomical constraint: an axon must pass close to the dendrites that are near other neurons it contacts. The topographic organization of the mammalian cortex ensures that nearby neurons encode related information. Using neural network simulations, we demonstrate that ADO is a suitable mechanism for BIG learning. We model knowledge as associations between terms, concepts or indivisible units of thought via directed graphs. The simplest instantiation encodes each concept by single neurons. Results are then generalized to cell assemblies. The proposed mechanism results in learning real associations better than spurious co-occurrences, providing definitive cognitive advantages.  相似文献   

13.
Functional Magnetic Resonance (fMRI) data can be used to depict functional connectivity of the brain. Standard techniques have been developed to construct brain networks from this data; typically nodes are considered as voxels or sets of voxels with weighted edges between them representing measures of correlation. Identifying cognitive states based on fMRI data is connected with recording voxel activity over a certain time interval. Using this information, network and machine learning techniques can be applied to discriminate the cognitive states of the subjects by exploring different features of data. In this work we wish to describe and understand the organization of brain connectivity networks under cognitive tasks. In particular, we use a regularity partitioning algorithm that finds clusters of vertices such that they all behave with each other almost like random bipartite graphs. Based on the random approximation of the graph, we calculate a lower bound on the number of triangles as well as the expectation of the distribution of the edges in each subject and state. We investigate the results by comparing them to the state of the art algorithms for exploring connectivity and we argue that during epochs that the subject is exposed to stimulus, the inspected part of the brain is organized in an efficient way that enables enhanced functionality.  相似文献   

14.
We introduce a set of clustering algorithms whose performance function is such that the algorithms overcome one of the weaknesses of K-means, its sensitivity to initial conditions which leads it to converge to a local optimum rather than the global optimum. We derive online learning algorithms and illustrate their convergence to optimal solutions which K-means fails to find. We then extend the algorithm by underpinning it with a latent space which enables a topology preserving mapping to be found. We show visualisation results on some standard data sets.  相似文献   

15.
Background: The reconstruction of clonal haplotypes and their evolutionary history in evolving populations is a common problem in both microbial evolutionary biology and cancer biology. The clonal theory of evolution provides a theoretical framework for modeling the evolution of clones.Results: In this paper, we review the theoretical framework and assumptions over which the clonal reconstruction problem is formulated. We formally define the problem and then discuss the complexity and solution space of the problem. Various methods have been proposed to find the phylogeny that best explains the observed data. We categorize these methods based on the type of input data that they use (space-resolved or time-resolved), and also based on their computational formulation as either combinatorial or probabilistic. It is crucial to understand the different types of input data because each provides essential but distinct information for drastically reducing the solution space of the clonal reconstruction problem. Complementary information provided by single cell sequencing or from whole genome sequencing of randomly isolated clones can also improve the accuracy of clonal reconstruction. We briefly review the existing algorithms and their relationships. Finally we summarize the tools that are developed for either directly solving the clonal reconstruction problem or a related computational problem.Conclusions: In this review, we discuss the various formulations of the problem of inferring the clonal evolutionary history from allele frequeny data, review existing algorithms and catergorize them according to their problem formulation and solution approaches. We note that most of the available clonal inference algorithms were developed for elucidating tumor evolution whereas clonal reconstruction for unicellular genomes are less addressed. We conclude the review by discussing more open problems such as the lack of benchmark datasets and comparison of performance between available tools.  相似文献   

16.
Least-squares methods for blind source separation based on nonlinear PCA   总被引:2,自引:0,他引:2  
In standard blind source separation, one tries to extract unknown source signals from their instantaneous linear mixtures by using a minimum of a priori information. We have recently shown that certain nonlinear extensions of principal component type neural algorithms can be successfully applied to this problem. In this paper, we show that a nonlinear PCA criterion can be minimized using least-squares approaches, leading to computationally efficient and fast converging algorithms. Several versions of this approach are developed and studied, some of which can be regarded as neural learning algorithms. A connection to the nonlinear PCA subspace rule is also shown. Experimental results are given, showing that the least-squares methods usually converge clearly faster than stochastic gradient algorithms in blind separation problems.  相似文献   

17.
A long-standing problem is how memories can be stored for very long times despite the volatility of the underlying neural substrate, most notably the high turnover of dendritic spines and synapses. To address this problem, here we are using a generic and simple probabilistic model for the creation and removal of synapses. We show that information can be stored for several months when utilizing the intrinsic dynamics of multi-synapse connections. In such systems, single synapses can still show high turnover, which enables fast learning of new information, but this will not perturb prior stored information (slow forgetting), which is represented by the compound state of the connections. The model matches the time course of recent experimental spine data during learning and memory in mice supporting the assumption of multi-synapse connections as the basis for long-term storage.  相似文献   

18.
Building on the linear matrix inequality (LMI) formulation developed recently by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113–1122, 2011), we present a theoretical framework and algorithms to derive a class of ordinary differential equation (ODE) models of gene regulatory networks using literature curated data and microarray data. The solution proposed by Zavlanos et al. (Automatica: Special Issue Syst Biol 47(6):1113–1122, 2011) requires that the microarray data be obtained as the outcome of a series of controlled experiments in which the network is perturbed by over-expressing one gene at a time. We note that this constraint may be relaxed for some applications and, in addition, demonstrate how the conservatism in these algorithms may be reduced by using the Perron–Frobenius diagonal dominance conditions as the stability constraints. Due to the LMI formulation, it follows that the bounded real lemma may easily be used to make use of additional information. We present case studies that illustrate how these algorithms can be used on datasets to derive ODE models of the underlying regulatory networks.  相似文献   

19.
Upon discovering new sources of food, honeybees and other insects perform learning flights to memorize visual landmarks that can guide their return. Learning flights are longest following initial visits to the food and subsequently decline in duration, which suggests that the investment in learning results from an active decision modulated by a bee's accumulating experience. We document various factors that influence this decision: (1). learning flights reappear when experienced bees encounter a delay in finding food at a familiar place and the durations of such "reorientation flights" increase with the length of the delay; (2). the decay in learning flight duration over visits following such reorientation flights is more rapid than following initial discovery of the food; (3). learning flight duration increases with the visual complexity of the scene surrounding the food, and when spatial relationships among landmarks are unstable; and (4). durations of learning flights at a new feeding place are influenced by the sucrose concentration in the food. Taken together, these experiments suggest that bees can adjust their learning efforts in response to changing needs for visual information and that both sources of spatial uncertainty and the quality of the food influence the value of such information.  相似文献   

20.
Machine learning is a popular method for mining and analyzing large collections of medical data. We focus on a particular problem from medical research, supervised multiple sclerosis (MS) lesion segmentation in structural magnetic resonance imaging (MRI). We examine the extent to which the choice of machine learning or classification algorithm and feature extraction function impacts the performance of lesion segmentation methods. As quantitative measures derived from structural MRI are important clinical tools for research into the pathophysiology and natural history of MS, the development of automated lesion segmentation methods is an active research field. Yet, little is known about what drives performance of these methods. We evaluate the performance of automated MS lesion segmentation methods, which consist of a supervised classification algorithm composed with a feature extraction function. These feature extraction functions act on the observed T1-weighted (T1-w), T2-weighted (T2-w) and fluid-attenuated inversion recovery (FLAIR) MRI voxel intensities. Each MRI study has a manual lesion segmentation that we use to train and validate the supervised classification algorithms. Our main finding is that the differences in predictive performance are due more to differences in the feature vectors, rather than the machine learning or classification algorithms. Features that incorporate information from neighboring voxels in the brain were found to increase performance substantially. For lesion segmentation, we conclude that it is better to use simple, interpretable, and fast algorithms, such as logistic regression, linear discriminant analysis, and quadratic discriminant analysis, and to develop the features to improve performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号