首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermal unfolding of full-length human recombinant alpha-helical prion protein (alpha-PrP) in neutral pH is reversible, whereas, in the presence of the osmolyte N-trimethylamine oxide (TMAO), the protein acquires a beta-sheet structure at higher temperatures and the thermal unfolding of the protein is irreversible. Lysozyme, an amyloidogenic protein similar to prion protein, regains alpha-helical structure on cooling from its thermally unfolded form in buffer and in TMAO solutions. The thermal stability of alpha-PrP decreases, whereas that of lysozyme increases in TMAO solution. Light-scattering and turbidity values indicate that beta-sheet prion protein exists as soluble oligomers that increase thioflavin T fluorescence and bind to 1-anilino 8-naphthalene sulfonic acid (ANS). The oligomers are resistant to proteinase K digestion and during incubation for long periods they form linear amyloids>5 microm long. The comparable fluorescence polarization of the tryptophan groups and their accessibility to acrylamide in alpha-PrP and oligomers indicate that the unstructured N-terminal segments of the protein, which contain the tryptophan groups, do not associate among themselves during oligomerization. Partial unfolding of alpha-helical prion protein in TMAO solution leads to its structural conversion to misfolded beta-sheet form. The formation of the misfolded prion protein oligomers and their polymerization to amyloids in TMAO are unusual, since the osmolyte generally induces denatured protein to fold to a native-like state and protects proteins from thermal denaturation and aggregation.  相似文献   

2.
The prion protein PrP is a naturally occurring polypeptide that becomes transformed from a normal conformation to that of an aggregated form, characteristic of pathological states in fatal transmissible spongiform conditions such as Creutzfeld-Jacob Disease and Bovine Spongiform Encephalopathy. We report the crystal structure, at 2 A resolution, of residues 123-230 of the C-terminal globular domain of the ARQ allele of sheep prion protein (PrP). The asymmetric unit contains a single molecule whose secondary structure and overall organisation correspond to those structures of PrPs from various mammalian species determined by NMR. The globular domain shows a close association of helix-1, the C-terminal portion of helix-2 and the N-terminal portion of helix-3, bounded by the intramolecular disulphide bond, 179-214. The loop 164-177, between beta2 and helix-2 is relatively well structured compared to the human PrP NMR structure. Analysis of the sheep PrP structure identifies two possible loci for the initiation of beta-sheet mediated polymerisation. One of these comprises the beta-strand, residues 129-131 that forms an intra-molecular beta-sheet with residues 161-163. This strand is involved in lattice contacts about a crystal dyad to generate a four-stranded intermolecular beta-sheet between neighbouring molecules. The second locus involves the region 188-204, which modelling suggests is able to undergo a partial alpha-->beta switch within the monomer. These loci provide sites within the PrPc monomer that could readily give rise to early intermediate species on the pathway to the formation of aggregated PrPSc containing additional intermolecular beta-structure.  相似文献   

3.
Parchment OG  Essex JW 《Proteins》2000,38(3):327-340
Molecular dynamics computer simulations have been performed on Mouse (Mo) and Syrian Hamster (SHa) prion proteins. These proteins differ, primarily, in that the SHa form incorporates additional residues at the C-terminus and also includes a segment of the unstructured N-terminal region that is required for infectivity. The 1-ns simulations have been analyzed by using a combination of dynamical cross-correlation maps, residue-residue contact plots, digital filtering, and residue-based root-mean-square deviations. The results show that the extra residues present in the SHa form at the C- and N-termini produce changes in the stability of key regions of the protein. The loop region between strand S2 and helix B that contains part of the proposed discontinuous binding site for the chaperone, protein X, is found to be more stable in SHa than in the Mo protein; these results are consistent with the NMR data of James et al. (James et al. Proc Natl Acad Sci USA 1997;94:10086-10091). In addition, a degree of flexibility within the region between and including strand S1 and helix A is also shown in SHa, which is not present in the Mo form; the cross-correlation maps suggest that this is a consequence of the additional unstructured N-terminal region. Furthermore, the extra residues in the N-terminal region of SHa are found to form a beta-bridge with the beta-sheet, within which critical point mutations associated with prion diseases lie. The implications of these results for the conformational interconversion pathway of the prion protein are discussed.  相似文献   

4.
Mammalian and most fungal infectious proteins (also known as prions) are self-propagating amyloid, a filamentous beta-sheet structure. A prion domain determines the infectious properties of a protein by forming the core of the amyloid. We compare the properties of known prion domains and their interactions with the remainder of the protein and with chaperones. Ure2p and Sup35p, two yeast prion proteins, can still form prions when the prion domains are shuffled, indicating a parallel in-register beta-sheet structure.  相似文献   

5.
Within the "protein-only" hypothesis, a detailed mechanism for the conversion of a alpha-helix to beta-sheet structure is unclear. We have investigated the effects of the tail 90-123 and the point mutations G131V and M129V on prion protein conformational plasticity at neutral pH. Molecular dynamics simulations show that the dynamics of the core 124-226 is essentially independent of the tail and that the point mutation G131V does not affect PrP thermodynamic stability. Both mutations, however, enhance the flexibility of residues that participate in the two-step process for prion propagation. They also extend the short beta-sheet in the normal protein into a larger sheet at neutral pH. This finding suggests a critical role of the tail for triggering the topological change.  相似文献   

6.
The critical step in the pathogenesis of transmissible spongiform encephalopathies (prion diseases) is the conversion of a cellular prion protein (PrP(c)) into a protease-resistant, beta-sheet rich form (PrP(Sc)). Although the disease transmission normally requires direct interaction between exogenous PrP(Sc) and endogenous PrP(C), the pathogenic process in hereditary prion diseases appears to develop spontaneously (i.e. not requiring infection with exogenous PrP(Sc)). To gain insight into the molecular basis of hereditary spongiform encephalopathies, we have characterized the biophysical properties of the recombinant human prion protein variant containing the mutation (Phe(198) --> Ser) associated with familial Gerstmann-Straussler-Scheinker disease. Compared with the wild-type protein, the F198S variant shows a dramatically increased propensity to self-associate into beta-sheet-rich oligomers. In a guanidine HCl-containing buffer, the transition of the F198S variant from a normal alpha-helical conformation into an oligomeric beta-sheet structure is about 50 times faster than that of the wild-type protein. Importantly, in contrast to the wild-type PrP, the mutant protein undergoes a spontaneous conversion to oligomeric beta-sheet structure even in the absence of guanidine HCl or any other denaturants. In addition to beta-sheet structure, the oligomeric form of the protein is characterized by partial resistance to proteinase K digestion, affinity for amyloid-specific dye, thioflavine T, and fibrillar morphology. The increased propensity of the F198S variant to undergo a conversion to a PrP(Sc)-like form correlates with a markedly decreased thermodynamic stability of the native alpha-helical conformer of the mutant protein. This correlation supports the notion that partially unfolded intermediates may be involved in conformational conversion of the prion protein.  相似文献   

7.
Shewmaker F  Ross ED  Tycko R  Wickner RB 《Biochemistry》2008,47(13):4000-4007
The [URE3] and [PSI (+)] prions of Saccharomyces cerevisiae are self-propagating amyloid forms of Ure2p and Sup35p, respectively. The Q/N-rich N-terminal domains of each protein are necessary and sufficient for the prion properties of these proteins, forming in each case their amyloid cores. Surprisingly, shuffling either prion domain, leaving amino acid content unchanged, does not abrogate the ability of the proteins to become prions. The discovery that the amino acid composition of a polypeptide, not the specific sequence order, determines prion capability seems contrary to the standard folding paradigm that amino acid sequence determines protein fold. The shuffleability of a prion domain further suggests that the beta-sheet structure is of the parallel in-register type, and indeed, the normal Ure2 and Sup35 prion domains have such a structure. We demonstrate that two shuffled Ure2 prion domains capable of being prions form parallel in-register beta-sheet structures, and our data indicate the same conclusion for a single shuffled Sup35 prion domain. This result confirms our inference that shuffleability indicates parallel in-register structure.  相似文献   

8.
The full-length mouse recombinant prion protein (23-231 amino acid residues) contains all of its structural elements viz. three alpha-helices and a short two-stranded antiparallel beta-sheet in its C-terminal fragment comprising 121-231 amino acid residues. The incubated mixture of this prion protein fragment and nucleic acid results in the formation of amyloid fibres evidenced from electron microscopy, birefringence and fluorescence of the fibre bound Congo Red and Thioflavin T dyes, respectively. The secondary structure of the amyloid formed in nucleic acid solution is similar to the in vivo isolated prion protein 27-30 amyloid but unlike in it, a hydrophobic milieu is absent in the 121-231 amyloid. Thermal denaturation study demonstrates a partial unfolding of the protein fragment in nucleic acid solution. We propose that nucleic acid catalyses unfolding of prion protein helix 1 followed by a nucleation-dependent polymerisation of the protein to amyloid.  相似文献   

9.
Biochemical and structural studies of the prion protein polymorphism.   总被引:3,自引:0,他引:3  
A hallmark event in transmissible spongiform encephalopathies is the conversion of the physiological prion protein into the disease-associated isoform. A natural polymorphism at codon 129 of the human prion gene, resulting in either methionine or valine, has profound influence on susceptibility and phenotypic expression of the disease in humans. In this study, we investigated the local propensity of synthetic peptides, corresponding to the region of the polymorphism and containing either methionine or valine, to adopt a beta-sheet-rich structure similar to the pathological protein. Circular dichroism studies showed that the methionine-containing peptide has a greater propensity to adopt a beta-sheet conformation in a variety of experimental conditions. The higher beta-sheet tendency of this peptide was also associated with an increased ability to aggregate into amyloid-like fibrils. These results suggest that methionine at position 129 of the prion protein increases its susceptibility to switch to the abnormal conformation, in comparison with the presence of valine at the same position.  相似文献   

10.
According to the "protein-only" hypothesis, the critical step in the pathogenesis of prion diseases is the conformational transition between the normal (PrP(C)) and pathological (PrP(Sc)) isoforms of prion protein. To gain insight into the mechanism of this transition, we have characterized the biophysical properties of the recombinant protein corresponding to residues 90-231 of the human prion protein (huPrP90-231). Incubation of the protein under acidic conditions (pH 3.6-5) in the presence of 1 M guanidine-HCl resulted in a time-dependent transition from an alpha-helical conformation to a beta-sheet structure and oligomerization of huPrP90-231 into large molecular weight aggregates. No stable monomeric beta-sheet-rich folding intermediate of the protein could be detected in the present experiments. Kinetic analysis of the data indicates that the formation of beta-sheet structure and protein oligomerization likely occur concomitantly. The beta-sheet-rich oligomers were characterized by a markedly increased resistance to proteinase K digestion and a fibrillar morphology (i.e., they had the essential physicochemical properties of PrP(Sc)). Contrary to previous suggestions, the conversion of the recombinant prion protein into a PrP(Sc)-like form could be accomplished under nonreducing conditions, without the need to disrupt the disulfide bond. Experiments in urea indicate that, in addition to acidic pH, another critical factor controlling the transition of huPrP90-231 to an oligomeric beta-sheet structure is the presence of salt.  相似文献   

11.
印文  何进  喻子牛  王阶平 《生物工程学报》2011,27(10):1401-1407
Sup35是酿酒酵母的翻译终止因子,其朊蛋白结构域在体内外都能形成淀粉样蛋白纤维。由于其高度有序的交叉β-片层构象与其他物种中的淀粉样蛋白纤维相似,因此,Sup35的分子自组装机理的研究可以作为蛋白质错误折叠性疾病及朊病毒生物学等相关研究的理想模型。而Sup35朊蛋白结构域自组装成纳米线的能力在生物技术和纳米材料等方面已得到广泛的应用。  相似文献   

12.
Three-dimensional structure of rat acid phosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

13.
Prion diseases are neurodegenerative disorders associated with a conformational change in the normal cellular isoform of the prion protein, PrP(C), to an abnormal scrapie isoform, PrP(SC). Unlike the alpha-helical PrP(C), the protease-resistant core of PrP(SC) is predominantly beta-sheet and possesses a tendency to polymerize into amyloid fibrils. We performed experiments with two synthetic human prion peptides, PrP(106-126) and PrP(127-147), to determine how peptide structure affects neurotoxicity and protein-membrane interactions. Peptide solutions possessing beta-sheet and amyloid structures were neurotoxic to PC12 cells in vitro and bound with measurable affinities to cholesterol-rich phospholipid membranes at ambient conditions, but peptide solutions lacking stable beta-sheet structures and amyloid content were nontoxic and possessed less than one tenth of the binding affinities of the amyloid-containing peptides. Regardless of structure, the peptide binding affinities to cholesterol-depleted membranes were greatly reduced. These results suggest that the beta-sheet and amyloid structures of the prion peptides give rise to their toxicity and membrane binding affinities and that membrane binding affinity, especially in cholesterol-rich environments, may be related to toxicity. Our results may have significance in understanding the role of the fibrillogenic cerebral deposits associated with some of the prion diseases in neurodegeneration and may have implications for other amyloidoses.  相似文献   

14.
Bennion BJ  DeMarco ML  Daggett V 《Biochemistry》2004,43(41):12955-12963
Transmissible spongiform encephalopathies are a class of fatal neurodegenerative diseases linked to the prion protein. The prion protein normally exists in a soluble, globular state (PrP(C)) that appears to participate in copper metabolism in the central nervous system and/or signal transduction. Infection or disease occurs when an alternatively folded form of the prion protein (PrP(Sc)) converts soluble and predominantly alpha-helical PrP(C) into aggregates rich in beta-structure. The structurally disordered N-terminus adopts beta-structure upon conversion to PrP(Sc) at low pH. Chemical chaperones, such as trimethylamine N-oxide (TMAO), can prevent formation of PrP(Sc) in scrapie-infected mouse neuroblastoma cells [Tatzelt, J., et al. (1996) EMBO J. 15, 6363-6373]. To explore the mechanism of TMAO protection of PrP(C) at the atomic level, molecular dynamics simulations were performed under conditions normally leading to conversion (low pH) with and without 1 M TMAO. In PrP(C) simulations at low pH, the helix content drops and the N-terminus is brought into the small native beta-sheet, yielding a PrP(Sc)-like state. Addition of 1 M TMAO leads to a decreased radius of gyration, a greater number of protein-protein hydrogen bonds, and a greater number of tertiary contacts due to the N-terminus forming an Omega-loop and packing against the structured core of the protein, not due to an increase in the level of extended structure as with the PrP(C) to PrP(Sc) simulation. In simulations beginning with the "PrP(Sc)-like" structure (derived from PrP(C) simulated at low pH in pure water) in 1 M TMAO, similar structural reorganization at the N-terminus occurred, disrupting the extended sheet. The mechanism of protection by TMAO appears to be exclusionary in nature, consistent with previous theoretical and experimental studies. The TMAO-induced N-terminal conformational change prevents residues that are important in the conversion of PrP(C) to PrP(Sc) from assuming extended sheet structure at low pH.  相似文献   

15.
Morillas M  Vanik DL  Surewicz WK 《Biochemistry》2001,40(23):6982-6987
It is believed that the critical event in the pathogenesis of transmissible spongiform encephalopathies is the conversion of the prion protein from an alpha-helical form, PrP(C), to a beta-sheet-rich conformer, PrP(Sc). Recently, we have shown that incubation of the recombinant prion protein under mildly acidic conditions (pH 5 or below) in the presence of low concentrations of guanidine hydrochloride results in a transition to PrP(Sc)-like beta-sheet-rich oligomers that show fibrillar morphology and an increased resistance to proteinase K digestion [Swietnicki, W., Morillas, M, Chen, S., Gambetti, P., and Surewicz, W. K. (2000) Biochemistry 39, 424-431]. To gain insight into the mechanism of this transition, in the present study we have characterized the biophysical properties of the recombinant human prion protein (huPrP) at acidic pH in the presence of urea and salt. Urea alone induces unfolding of the protein but does not result in protein self-association or a conversion to beta-sheet structure. However, a time-dependent transition to beta-sheet structure occurs upon addition of both urea and NaCl to huPrP, even at a sodium chloride concentration as low as 50 mM. This transition occurs concomitantly with oligomerization of the protein. At a given protein and sodium chloride concentration, the rate of monomeric alpha-helix to oligomeric beta-sheet transition is strongly dependent on the concentration of urea. Low and medium concentrations of the denaturant accelerate the reaction, whereas strongly unfolding conditions are not conducive to the conversion of huPrP into an oligomeric beta-sheet-rich structure. The present data strongly suggest that partially unfolded intermediates may be involved in the transition of the monomeric recombinant prion protein into the oligomeric scrapie-like form.  相似文献   

16.
A good approach to test our current knowledge on formation of protein beta-sheets is de novo protein design. To obtain a three-stranded beta-sheet mini-protein, we have built a series of chimeric peptides by taking as a template a previously designed beta-sheet peptide, Betanova-LLM, and incorporating N- and/or C-terminal extensions taken from WW domains, the smallest natural beta-sheet domain that is stable in absence of disulfide bridges. Some Betanova-LLM strand residues were also substituted by those of a prototype WW domain. The designed peptides were cloned and expressed in Escherichia coli. The ability of the purified peptides to adopt beta-sheet structures was examined by circular dichroism (CD). Then, the peptide showing the highest beta-sheet population according to the CD spectra, named 3SBWW-2, was further investigated by 1H and 13C NMR. Based on NOE and chemical shift data, peptide 3SBWW-2 adopts a well defined three-stranded antiparallel beta-sheet structure with a disordered C-terminal tail. To discern between the contributions to beta-sheet stability of strand residues and the C-terminal extension, the structural behavior of a control peptide with the same strand residues as 3SBWW-2 but lacking the C-terminal extension, named Betanova-LYYL, was also investigated. beta-Sheet stability in these two peptides, in the parent Betanova-LLM and in WW-P, a prototype WW domain, decreased in the order WW-P > 3SBWW-2 > Betanova-LYYL > Betanova-LLM. Conclusions about the contributions to beta-sheet stability were drawn by comparing structural properties of these four peptides.  相似文献   

17.
Two conformational isomers of recombinant hamster prion protein (residues 90-232) have been probed by reaction with two tyrosine nitration reagents, peroxynitrite and tetranitromethane. Two conserved tyrosine residues (tyrosines 149 and 150) are not labeled by either reagent in the normal cellular form of the prion protein. These residues become reactive after the protein has been converted to the beta-oligomeric isoform, which is used as a model of the fibrillar form that causes disease. After conversion, a decrease in reactivity is noted for two other conserved residues, tyrosine 225 and tyrosine 226, whereas little to no effect was observed for other tyrosines. Thus, tyrosine nitration has identified two specific regions of the normal prion protein isoform that undergo a change in chemical environment upon conversion to a structure that is enriched in beta-sheet.  相似文献   

18.
An amyloid(1-40) solution rich in coil, turn, and alpha-helix, but poor in beta-sheet, develops monolayers with a high beta-sheet content when spread at the air-water interface. These monolayers are resistant to repeated compression-dilatation cycles and interaction with trifluoroethanol. The secondary structure motifs were detected by circular dichroism (CD) in solution and with infrared reflection-absorption spectroscopy (IRRAS) at the interface. Hydrophobic influences are discussed for the structure conversion in an effort to understand the completely unknown reason for the natural change of the normal prion protein cellular (PrP(C)) into the abnormal prion protein scrapie (PrP(Sc)).  相似文献   

19.
The thermodynamic behavior of a previously designed three-stranded beta-sheet was studied via several microseconds of standard and replica exchange molecular dynamics simulations. The system is shown to populate at least four thermodynamic minima, including two partially folded states in which only a single hairpin is formed. Simulated melting curves show different profiles for the C and N-terminal hairpins, consistent with differences in secondary structure content in published NMR and CD/FTIR measurements, which probed different regions of the chain. Individual beta-hairpins that comprise the three-stranded beta-sheet are observed to form cooperatively. Partial folding cooperativity between the component hairpins is observed, and good agreement between calculated and experimental values quantifying this cooperativity is obtained when similar analysis techniques are used. However, the structural detail in the ensemble of conformations sampled in the simulations permits a more direct analysis of this cooperativity than has been performed on the basis of experimental data. The results indicate the actual folding cooperativity perpendicular to strand direction is significantly larger than the lower bound obtained previously.  相似文献   

20.
Fourier -transform infrared microscopic spectra of scrapie-infected nervous tissue measured at high spatial resolution (approximately 6 microm) were compared with those obtained from the purified, partly proteinase K digested scrapie isoform of the prion protein isolated from nervous tissue of hamsters infected with the same scrapie strain (263K) to elucidate similarities/dissimilarities between prion structure investigated in situ and ex vivo. A further comparison is drawn to the recombinant Syrian hamster prion protein SHaPrP(90-232) after in vitro conformational transition from the predominantly alpha-helical isoform to beta-sheet-rich structures. It is shown that prion protein structure can be investigated within tissue and that detectability of regions with elevated beta-sheet content as observed in microspectra of prion-infected tissue strongly depends on spatial resolution of the experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号