首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cationic liposomes have been used successfully for DNA delivery to airway cells in vitro and are being tested in human clinical trials for their efficacy in cystic fibrosis transmembrane conductance regulator (CFTR) gene delivery in cystic fibrosis patients. While cationic liposomes are effective for transfection of airway cells in culture, they have not been effectively used for gene delivery to human airway cells in vivo. Several barriers in cystic fibrosis lungs, including increased amounts of mucus, phagocytic cell activity and cytokine-rich milieu caused by inflammation, may cause inhibition of gene transfection. As presented in this paper, we examined the effects of inflammatory cytokines on cationic lipid-mediated transfection of model airway cells. The results of these experiments indicate that tumor necrosis factor (TNF)-α dramatically inhibits Lipofectin-mediated transfection efficiency of H441 cells. Addition of anti-TNF-α neutralizing antibody results in recovery of efficiency. Results of temporal studies are consistent with the concept that TNF-α reduces transfection efficiency by a mechanism(s) other than or in addition to gene expression. These results are corroborated by fluorescence microscopic experiments which demonstrate that endocytosis of lipoplex is altered in the presence of TNF-α.  相似文献   

2.
Efficient gene transfer to airway epithelium using recombinant Sendai virus   总被引:9,自引:0,他引:9  
Clinical studies of gene therapy for cystic fibrosis (CF) suggest that the key problem is the efficiency of gene transfer to the airway epithelium. The availability of relevant vector receptors, the transient contact time between vector and epithelium, and the barrier function of airway mucus contribute significantly to this problem. We have recently developed recombinant Sendai virus (SeV) as a new gene transfer agent. Here we show that SeV produces efficient transfection throughout the respiratory tract of both mice and ferrets in vivo, as well as in freshly obtained human nasal epithelial cells in vitro. Gene transfer efficiency was several log orders greater than with cationic liposomes or adenovirus. Even very brief contact time was sufficient to produce this effect, and levels of expression were not significantly reduced by airway mucus. Our investigations suggest that SeV may provide a useful new vector for airway gene transfer.  相似文献   

3.
Cationic liposomes are widely used as gene transfer agents in in vitro and in vivo studies of cystic fibrosis. In this study we report comparative results of cationic mediated transfection in several cell lines. We have tested epithelial cell lines expressing the wild-type cystic fibrosis transmembrane protein CFTR (bronchial epithelium-16HBE14o-, submucosal gland-Calu3) and their cystic fibrosis counterparts (CFBE41o-, CFSMEo-), as well as baby hamster kidney fibroblast cell lines (BHK) heterologously expressing human CFTR. The cells were transfected with a green fluorescent protein plasmid complexed with commercial cationic liposome (Geneporter2, GP) and 25 kDa polyethylenimine (PEI). At the end of the incubation (2 hours), low molecular weight heparin was added in order to reduce the toxicity of the lipoplexes. Transfection efficiency and cell viability were measured by flow cytometry. Determination of fatty acid composition of cellular phospholipids was performed by capillary gas chromatography. The short incubation time was sufficient to obtain satisfactory transfection in all cell lines studied. Cells treated with PEI-complexes had lower transfection efficiency and viability compared to GP in all tested cell lines. DeltaF508 CFTR carrying airway epithelial cells were easier to transfect but had lower viability compared to their healthy counterparts. This was, however not the case for the BHK cells. The fatty acid analysis showed characteristic polyunsaturated fatty acid patterns, which correlated with the viability of the transfected cells. Low molecular mass heparin added at the end of the lipoplex incubation time could help to maintain the viability of the cells, without interfering with the transfection efficiency.  相似文献   

4.
Cationic liposomes are useful to transfer genes into eukaryotic cells in vitro and in vivo. However, liposomes with good transfection efficiency are often cytotoxic, and also require serum-free conditions for optimal activity. In this report, we describe a new formulation of cationic liposome containing DC-6-14, O,O'-ditetradecanoyl-N-(alpha-trimethylammonioacetyl)diethan olamine chloride, dioleoylphosphatidylethanolamine and cholesterol for gene delivery into cultured human cells. This liposome, dispersed in 5% serum-containing growth medium, efficiently delivered a plasmid DNA for GFP (green fluorescent protein) into more than 80% of the cultured human cell hybrids derived from HeLa cells and normal fibroblasts. Flow cytometric analysis revealed that the efficiency of the GFP gene expression was 40-50% in a tumor-suppressed cell hybrid, while it was greatly reduced in the tumorigenic counterpart. The enhanced GFP expression in tumor-suppressed cell hybrids was quantitatively well correlated with a prolonged presence of the plasmid DNA, which had been labeled with another fluorescent probe, ethidium monoazide, within the cells. These results suggest that a newly developed cationic liposome is useful for gene delivery in serum-containing medium into human cells and the stability of the plasmid DNA inside the cell is a crucial step in this liposome-mediated gene expression. The mechanisms by which cationic liposome mediates gene transfer into eukaryotic cells are also discussed.  相似文献   

5.
Many microorganisms growing on water-insoluble substrates have been known to produce surface-active compounds called biosurfactants. Although biosurfactants have received increasing attention due to their special properties, there has been no information available until now of a role for them with regard to gene transfection. Thus, we studied here the effects of biosurfactants on gene transfection by cationic liposomes with a cationic cholesterol derivative. Our results showed clearly that a biosurfactant of mannosylerythritol lipid A (MEL-A) increased dramatically the efficiency of gene transfection mediated by cationic liposomes with a cationic cholesterol derivative. Among them, the liposomes with a cationic cholesterol derivative, cholesteryl-3 beta-carboxyamindoethylene-N-hydroxyethylamine (I), were much more effective for gene transfection than the liposomes with DC-Chol (cholesteryl-3 beta-oxycarboxyamidoethylenedimethylamine) or liposomes without MEL-A in various cultured cells. This demonstrates that this new finding has great potential in the experiment of gene transfection and gene therapy mediated by nonviral vectors such as cationic liposomes.  相似文献   

6.
The downregulation of gene expression by RNA interference holds great potential for genetic analysis and gene therapy. However, a more efficient delivery system for small interfering RNA (siRNA) into the target cells is required for wide fields such as cell biology, physiology, and clinical application. Non-viral vectors are stronger candidates than viral vectors because they are safer and easier to prepare. We have previously used a new method for gene transfection by combining cationic liposomes with the biosurfactant mannosylerythritol lipid-A (MEL-A). The novel MEL-A-containing cationic liposomes rapidly delivered DNA (plasmids and oligonucleotides) into the cytosol and nucleus through membrane fusion between liposomes and the plasma membrane, and consequently, enhanced the gene transfection efficiency. In this study, we determined the efficiency of MEL-A-containing cationic liposomes for siRNA delivery. We observed that exogenous and endogenous protein expression was suppressed by approximately 60% at 24 h after brief (30 min) incubation of target cells with MEL-A-containing cationic liposome/siRNA complexes. Confocal microscopic analysis showed that suppression of protein expression was caused by rapid siRNA delivery into the cytosol. We found that the MEL-A-containing cationic liposomes directly delivered siRNA into the cytoplasm by the membrane fusion in addition to endocytotic pathway whereas Lipofectamine™ RNAiMax delivered siRNA only by the endocytotic pathway. It seems that the ability to rapidly and directly deliver siRNA into the cytosol using MEL-A-containing cationic liposomes is able to reduce immune responses, cytotoxicity, and other side effects caused by viral vectors in clinical applications.  相似文献   

7.
Polyethylenimine (PEI) and other polycations are good vehicles for transferring genes into the cells. In earlier reports, poly-L-lysine and protamine have been shown to improve gene delivery with cationic liposomes. In this study, PEI, combined with different cationic liposomes, was studied to determine the optimal conditions for gene delivery. The reporter genes, luciferase and green fluorescent protein, were used to transfect human HeLa, HepG2 and hepatoma 2.2.15 cells with various combinations of PEIs (0.8 and 25 kDa), poly-L-lysine (15-30 kDa), protamine and cationic liposomes. The highest expression level was achieved by using the combination of PEI 25 kDa (0.65 microg/microg of DNA, nitrogen-to-DNA phosphate (N/P) ratio=4.5) with 10 nmol of DOTAP-cholesterol (DOTAP-Chol, 1:1 w/w). This DNA complex formulation dramatically increased the luciferase expression 10- to 100-fold, which was much higher than those of other polycations alone, cationic liposomes alone or the combination. In addition, PEI/DOTAP-Chol combination had little cytotoxicity than DOTAP-Chol or other cationic liposomes alone. The effect of oligonucleotide (ODN) delivery facilitated by PEI and cationic liposomes was also studied in the hepatoma cell lines. We demonstrated an antisense ODN of p53 delivered by PEI/DOTAP-Chol combination effectively inhibited the biosynthesis of p53 protein in HepG2 (68% inhibiton) and 2.2.15 cells (43% inhibition). Thus, the large PEI could synergistically increase the transfection efficiency when combined with the cationic liposomes.  相似文献   

8.
The application of conventional cationic liposomes/DNA complexes in gene transfer was hampered due to their large size, instability, and limited transfection site in vivo. In this report, we described a dialysis-based method and produced small, stable, and negatively charged DNA-containing liposomes composed of low content of cationic lipid and high content of fusogenic lipid. The liposomes were relatively spherical with a condensed core inside, and exhibited small size with narrow particle size distribution. The encapsulation efficiency of the liposomes was 42.53 +/- 2.29%. They were stable and showed enough protective ability to plasmid DNA from degradation after incubation with different amounts of DNase. Twenty-fold higher transfection efficiency for the liposomes was achieved when compared with that of naked plasmid DNA and no toxicities to hepatocellular carcinoma cells were observed. Our results indicate that the negatively charged DNA-containing liposomes can facilitate gene transfer in cultured cells, and may alleviate the drawbacks of the conventional cationic liposomes/DNA complexes for gene delivery in vivo.  相似文献   

9.
Over the last years significant progress has been made in non-viral gene delivery mediated by cationic liposomes. However, the results obtained are still far from being satisfactory regarding transfection efficiency, particularly when compared to that achieved using viral vectors. We have previously demonstrated that association of transferrin with cationic liposomes significantly improves transfection in a large variety of cells, both in vitro and in vivo. In this work, several strategies have been explored in order to further improve transfection mediated by transferrin-associated lipoplexes. To this regard, the effect on transfection of pre-condensation of DNA with polyethylenimine of low MWs (2.7, 2.0 and 0.8 KDa) at various N/P ratios, lipid composition, cationic lipid/DNA (+/-) charge ratio and the presence of a surfactant in the lipoplexes was investigated. Two different modes for preparing the liposomes were tested and the extent of cell association of their complexes with DNA as well as their capacity to protect the carried DNA were evaluated. Our results show that complexes generated from cationic liposomes prepared by the ethanol injection method in which the carried DNA was pre-condensed with low MW polyethylenimine are highly efficient in mediating transfection. The differential modulating effect observed upon association of transferrin to various liposome formulations on transfection mediated by the polyethylenimine-complexes suggests that these complexes enter into the cells through different pathways (involving clathrin versus caveolin), most likely by taking advantage of their intrinsic biophysical properties to escape from the endosome to the cytosol.  相似文献   

10.
Although the viability of cystic fibrosis (CF) gene transfer to airway epithelium has been demonstrated in vitro and in animal models, so far none of the clinical investigations using adenovirus, adeno-associated virus, lentivirus, cationic lipids or polymers has shown a persistent correction of the ion transport defects that occur in CF. Despite disappointing results, these studies have shown that non-viral vectors could represent a viable alternative for gene therapy in CF airway epithelium. The transfer efficiency of non-viral vectors is currently low, however, and thus these systems are not clinically relevant as yet. Before clinical application, several limitations encountered by non-viral delivery systems must be addressed. Recent progress has been made towards overcoming these limitations and towards making non-viral gene therapy a more realistic option for CF.  相似文献   

11.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

12.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

13.
Transient transfection of epithelial cells with lipid reagents has been limited because of toxicity and lack of efficacy. In this study, we show that more recently developed lipids transfect nonpolarized human airway epithelial cells with high efficacy and efficiency and little or no toxicity. Because of this success, we hypothesized that these lipids may also allow transient transfection of polarized epithelial monolayers. A panel of reagents was tested for transfer of the reporter gene luciferase (LUC) into polarized monolayers of non-cystic fibrosis (non-CF) and CF human bronchial epithelial cells, MDCK epithelial cell monolayers, and, ultimately, primary non-CF and CF airway epithelial cells. Lipid reagents, which were most successful in initial LUC assays, were also tested for transfer of vectors bearing the reporter gene green fluorescent protein (GFP) and for successful transfection and expression of an epithelial-specific protein, the cystic fibrosis transmembrane conductance regulator (CFTR). Electrophysiological, biochemical, and immunological assays were performed to show successful complementation of an epithelial monolayer with transiently expressed CFTR. We also present findings that help facilitate monolayer formation by these airway epithelial cell lines. Together, these data show that polarized monolayers are transfected transiently with more recently developed lipids, specifically LipofectAMINE PLUS and LipofectAMINE 2000. Transient transfection of epithelial monolayers provides a powerful system in which to express the cDNA of any epithelium-specific protein transiently in a native polarized epithelium to study protein function.  相似文献   

14.
The aim of this study was to investigate the transfection efficiency of cationic liposomes formulated with phosphatidylcholine (PC) and novel synthesized diethanolamine-based cationic lipids at a molar ratio of 5:1 in comparison with Lipofectamine™ 2000. Factors affecting transfection efficiency and cell viability, including the chemical structure of the cationic lipids, such as different amine head group (diamine and polyamine; and non-spermine and spermine) and acyl chain lengths (C14, C16, and C18) and the weight ratio of liposomes to DNA were evaluated on a human cervical carcinoma cell line (HeLa cells) using the pDNA encoding green fluorescent protein (pEGFP-C2). Characterizations of these lipoplexes in terms of size and charge measurement and agarose gel electrophoresis were performed. The results from this study revealed that almost no transfection was observed in the liposome formulations composed of cationic lipids with a non-spermine head group. In addition, the transfection efficiency of these cationic liposomes was in the following order: spermine-C14 > spermine-C16 > spermine-C18. The highest transfection efficiency was observed in the formulation of spermine-C14 liposomes at a weight ratio of 25; furthermore, this formulation was safe for use in vitro. In conclusion, cationic liposomes containing spermine head groups demonstrated promising potential as gene carriers.Key words: cationic lipids, cationic liposomes, gene transfection  相似文献   

15.
In studies of the genetic disease cystic fibrosis, recombinant adenovirus type 2 (Ad2) and Ad5 are being investigated as vectors to transfer cystic fibrosis transmembrane conductance regulator cDNA to airway epithelia. However, earlier work has shown that human airway epithelia are resistant to infection by Ad2 and Ad5. Therefore, we examined the efficiency of other adenovirus serotypes at infecting airway epithelia. We found that several serotypes of adenoviruses, in particular, wild-type Ad17, infected a greater number of cells than wild-type Ad2. The increased efficiency of wild-type Ad17 could be explained by increased fiber-dependent binding to the epithelia. Therefore, we constructed a chimeric virus, Ad2(17f)/betaGal-2, which is identical to Ad2/betaGal-2 with the exception of having the fiber protein of Ad17 replace Ad2 fiber. This vector retained the increased binding and efficiency of gene transfer to well-differentiated human airway epithelia. These data suggest that inclusion of Ad17 fiber into adenovirus vectors may improve the outlook for gene delivery to human airway epithelia.  相似文献   

16.
We have introduced a convenient synthesis method for carbamate-linked cationic lipids. Two cationic lipids N-[1-(2,3-didodecylcarbamoyloxy)propyl]-N,N,N-trimethylammonium iodide (DDCTMA) and N-[1-(2,3-didodecyl carbamoyloxy)propyl]-N-ethyl-N,N-dimethylammonium iodide (DDCEDMA), with identical length of hydrocarbon chains, alternative quaternary ammonium heads, carbamate linkages between hydrocarbon chains and quaternary ammonium heads, were synthesized for liposome-mediated gene delivery. Liposomes composed of DDCEDMA and DOPE in 1:1 ratio exhibited a lower zeta potential as compared to those made of pure DDCEDMA alone, which influences their DNA-binding ability. pGFP-N2 plasmid was transferred by cationic liposomes formed from the above cationic lipids into Hela and Hep-2 cells, and the transfection efficiency of some of cationic liposomes was superior or parallel to that of two commercial transfection agents, Lipofectamine2000 and DOTAP. Combined with the results of the agarose gel electrophoresis and transfection experiment, the DNA-binding ability of cationic lipids was too strong to release DNA from complex in the transfection, which could lead to relative low transfection efficiency and high cytotoxicity.  相似文献   

17.
Two major barriers that limit cationic lipids in gene delivery are low transfection efficiency and toxicity. In the present studies, we used dithiodiglycolic acid as a new tether for the polar and hydrophobic domains of a cationic lipid, cholesteryl hemidithiodiglycolyl tris(aminoethyl)amine (CHDTAEA). We compared the transfection activity and toxicity of CHDTAEA with its nondisulfide analogue and cholesteryl N-(dimethylaminoethyl) carbamate (DC-Chol). The liposomes of CHDTAEA had more than 2 orders of magnitude greater transfection activity than DC-Chol in CHO cells and 7 times greater transfection activity in SKnSH cells. CHDTAEA also demonstrated much less toxicity than the other two lipids. Dithiodiglycolic acid may act as an excellent linker in the application of cationic lipid syntheses.  相似文献   

18.
Airway gene transfer using cationic emulsion as a mucosal gene carrier   总被引:2,自引:0,他引:2  
BACKGROUND: Delivery of genes to airway mucosa would be a very valuable method for gene therapy and vaccination. However, there have been few reports on suitable gene delivery systems for administration. In this study, we use a cationic emulsion system, which is physically stable and facilitates the transfer of genes in the presence of up to 90% serum, as a mucosal gene carrier. METHODS AND RESULTS: Cationic lipid emulsion was formulated with squalene and 1,2-dioleoyl-sn-glycero-3-trimethylammoniumpropane (DOTAP) as major components. Emulsions formed stable complexes with DNA and protected and transferred DNA to target cells against DNase I digestion in the presence of mucosal destabilizers such as heparin sulfate (a polysaccharide of the glycosaminoglycan family in mucosa) and Newfectan (a natural lung extract of bovine) in an in vitro system. In contrast, commercial liposomes and counter liposomes, made with an identical lipid composition of emulsions, failed. After in vivo intranasal instillation, the cationic emulsion showed at least 200 times better transfection activity than the liposomal carriers in both nasal tissue and lung. CONCLUSIONS: These findings show that cationic emulsions can mediate gene transfection into airway epithelium, making it a good choice for transferring therapeutic genes and for genetic vaccination against an pathogenic infection via an airway route.  相似文献   

19.
Safe and effective nonviral gene delivery and transfection in primary human vascular endothelial cells (EC) and smooth muscle cells (SMC) has tremendous potential for cardiovascular diseases such as in the treatment of coronary restenosis. Using a combination of a cationic biodegradable polymer, poly(beta-amino ester) (PBAE), and a cationic phospholipid, 1,2-dioleoyl-3-trimethylammonium propane (DOTAP), we have engineered a lipopolyplex nanovector system that can transfect EC and SMC cells with reasonably high efficiency. For instance, upon addition of 1.0 microg DNA complexed in lipopolyplexes the transfection efficiency in SMC was 20% and in EC was 33%. The results of this study shows that PBAE-DOTAP-plasmid DNA lipopolyplexes are a promising nonviral vector system for gene delivery and transfection in EC and SMC.  相似文献   

20.

Background

Gene therapy mediated by synthetic vectors may provide opportunities for new treatments for cystic fibrosis (CF) via aerosolisation. Vectors for CF must transfect the airway epithelium efficiently and not cause inflammation so they are suitable for repeated dosing. The inhaled aerosol should be deposited in the airways since the cystic fibrosis transmembrane conductance regulator gene (CFTR) is expressed predominantly in the epithelium of the submucosal glands and in the surface airway epithelium. The aim of this project was to develop an optimised aerosol delivery approach applicable to treatment of CF lung disease by gene therapy.

Methodology

The vector suspension investigated in this study comprises receptor-targeting peptides, cationic liposomes and plasmid DNA that self-assemble by electrostatic interactions to form a receptor-targeted nanocomplex (RTN) of approximately 150 nm with a cationic surface charge of +50 mV. The aerodynamic properties of aerosolised nanocomplexes produced with three different nebulisers were compared by determining aerosol deposition in the different stages of a Next Generation Pharmaceutical Impactor (NGI). We also investigated the yield of intact plasmid DNA by agarose gel electrophoresis and densitometry, and transfection efficacies in vitro and in vivo.

Results

RTNs nebulised with the AeroEclipse II BAN were the most effective, compared to other nebulisers tested, for gene delivery both in vitro and in vivo. The biophysical properties of the nanocomplexes were unchanged after nebulisation while the deposition of RTNs suggested a range of aerosol aerodynamic sizes between 5.5 µm–1.4 µm cut off (NGI stages 3–6) compatible with deposition in the central and lower airways.

Conclusions

RTNs showed their ability at delivering genes via nebulisation, thus suggesting their potential applications for therapeutic interventions of cystic fibrosis and other respiratory disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号