首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transient receptor potential (TRP) channels play critical roles in cell signaling by coupling various environmental factors to changes in membrane potential that modulate calcium influx. TRP channels are typically activated in a polymodal manner, thus integrating multiple stimuli. Although much progress has been made, the underlying mechanisms of TRP channel activation are largely unknown. The TRPM8 cation channel has been extensively investigated as a major neuronal cold sensor but is also activated by voltage, calcium store depletion, and some lipids as well as by compounds that produce cooling sensations, such as menthol or icilin. Several models of TRPM8 activation have been proposed to explain the interaction between these diverse stimuli. However, a kinetic scheme is not yet available that can describe the detailed single-channel kinetics to gain further insight into the underlying gating mechanism. To work toward this goal, we investigated voltage-dependent single-channel gating in cell-attached patches at two different temperatures (20 and 30 °C) using HEK293 cells stably expressing TRPM8. Both membrane depolarization and cooling increased channel open probability (P(o)) mainly by decreasing the duration of closed intervals, with a smaller increase in the duration of open intervals. Maximum likelihood analysis of dwell times at both temperatures indicated gating in a minimum of five closed and two open states, and global fitting over a wide range of voltages identified a seven-state model that described the voltage dependence of P(o), the single-channel kinetics, and the response of whole-cell currents to voltage ramps and steps. The major action of depolarization and cooling was to accelerate forward transitions between the same two sets of adjacent closed states. The seven-state model provides a general mechanism to account for TRPM8 activation by membrane depolarization at two temperatures and can serve as a starting point for further investigations of multimodal TRP activation.  相似文献   

2.
There have been many attempts to develop a theoretical explanation of the phenomena of electromagnetic field interactions with biological systems. None of the reported efforts have been entirely successful in accounting for the observed experimental results, in particular with respect to the reports of interactions between extremely low frequency (ELF) magnetic fields and biological systems at ion cyclotron resonance frequencies. The approach used in this paper starts with the Lorentz force equation, but use is made of cylindrical co-ordinates and cylindrical boundary conditions in an attempt to more closely model the walls of an ion channel. The equations of motion of an ion that result from this approach suggest that the inside shape of the channel plus the ELF magnetic fields at specific frequencies and amplitudes could act as a gate to control the movement of the ion across the cell membrane.  相似文献   

3.
Stomatin modulates gating of acid-sensing ion channels   总被引:3,自引:0,他引:3  
Acid-sensing ion channels (ASICs) are H(+)-gated members of the degenerin/epithelial Na(+) channel (DEG/ENaC) family in vertebrate neurons. Several ASICs are expressed in sensory neurons, where they play a role in responses to nociceptive, taste, and mechanical stimuli; others are expressed in central neurons, where they participate in synaptic plasticity and some forms of learning. Stomatin is an integral membrane protein found in lipid/protein-rich microdomains, and it is believed to regulate the function of ion channels and transporters. In Caenorhabditis elegans, stomatin homologs interact with DEG/ENaC channels, which together are necessary for normal mechanosensation in the worm. Therefore, we asked whether stomatin interacts with and modulates the function of ASICs. We found that stomatin co-immunoprecipitated and co-localized with ASIC proteins in heterologous cells. Moreover, stomatin altered the function of ASIC channels. Stomatin potently reduced acid-evoked currents generated by ASIC3 without changing steady state protein levels or the amount of ASIC3 expressed at the cell surface. In contrast, stomatin accelerated the desensitization rate of ASIC2 and heteromeric ASICs, whereas current amplitude was unaffected. These data suggest that stomatin binds to and alters the gating of ASICs. Our findings indicate that modulation of DEG/ENaC channels by stomatin-like proteins is evolutionarily conserved and may have important implications for mammalian nociception and mechanosensation.  相似文献   

4.
A model of the gating of ion channels   总被引:4,自引:0,他引:4  
The gating of ion channels in biological membranes has usually been described in terms of Markov transitions between a few discrete open or closed states. Such models predict that the distributions of open and closed durations decay as a sum of exponential terms. Recent experimental data have indicated that certain channels are not easily described by these models. We show that distributions of open and closed times similar to those seen experimentally are predicted by a model that involves only one open and closed state but that assumes the activation energy of the gating process to be stochastic. This model involves only a few parameters and these have direct physical interpretations. Measurements of the correlation between the durations of successive open or closed events is shown to provide an experimental method for distinguishing between this and other models.  相似文献   

5.
In the voltage-gated ion channels of every animal, whether they are selective for K+, Na+ or Ca2+, the voltage sensors are the S4 transmembrane segments carrying four to eight positive charges always separated by two uncharged residues. It is proposed that they move across the membrane in a screw-helical fashion in a series of three or more steps that each transfer a single electronic charge. The unit steps are stabilized by ion pairing between the mobile positive charges and fixed negative charges, of which there are invariably two located near the inner ends of segments S2 and S3 and a third near the outer end of either S2 or S3. Opening of the channel involves three such steps in each domain.  相似文献   

6.
HCN pacemaker channels (I(f), I(q), or I(h)) play a fundamental role in the physiology of many excitable cell types, including cardiac myocytes and central neurons. While cloned HCN channels have been studied extensively in macroscopic patch clamp experiments, their extremely small conductance has precluded single channel analysis to date. Nevertheless, there remain fundamental questions about HCN gating that can be resolved only at the single channel level. Here we present the first detailed single channel study of cloned mammalian HCN2. Excised patch clamp recordings revealed discrete hyperpolarization-activated, cAMP-sensitive channel openings with amplitudes of 150-230 fA in the activation voltage range. The average conductance of these openings was approximately 1.5 pS at -120 mV in symmetrical 160 mM K(+). Some traces with multiple channels showed unusual gating behavior, characterized by a variable long delay after a voltage step followed by runs of openings. Noise analysis on macroscopic currents revealed fluctuations whose magnitudes were systematically larger than predicted from the actual single channel current size, consistent with cooperativity between single HCN channels.  相似文献   

7.
The ubiquitous inositol 1,4,5-trisphosphate receptor (InsP(3)R) intracellular Ca(2+) release channel is engaged by thousands of plasma membrane receptors to generate Ca(2+) signals in all cells. Understanding how complex Ca(2+) signals are generated has been hindered by a lack of information on the kinetic responses of the channel to its primary ligands, InsP(3) and Ca(2+), which activate and inhibit channel gating. Here, we describe the kinetic responses of single InsP(3)R channels in native endoplasmic reticulum membrane to rapid ligand concentration changes with millisecond resolution, using a new patch-clamp configuration. The kinetics of channel activation and deactivation showed novel Ca(2+) regulation and unexpected ligand cooperativity. The kinetics of Ca(2+)-mediated channel inhibition showed the single-channel bases for fundamental Ca(2+) release events and Ca(2+) release refractory periods. These results provide new insights into the channel regulatory mechanisms that contribute to complex spatial and temporal features of intracellular Ca(2+) signals.  相似文献   

8.
9.
Antifungal lipodepsipeptide syringomycin E (SRE) forms two major conductive states in lipid bilayers: "small" and "large". Large SRE channels are cluster of several small ones, demonstrating synchronous opening and closure. To get insight into the mechanism of such synchronization we investigated how transmembrane potential, membrane surface charge, and ionic strength affect the number of small SRE channels synchronously functioning in the cluster. Here, we report that the large SRE channels can be presented as 3-8 simultaneously gating small channels. The increase in the absolute value of the transmembrane potential (from 50 to 200 mV) decreases the number of synchronously gated channels in the clusters. Voltage-dependence of channel synchronization was influenced by the ionic strength of the bathing solution, but not by membrane surface charge. We propose a mechanism for the voltage-dependent cluster behavior that involves a voltage-induced reorientation of lipid dipoles associated with the channel pores.  相似文献   

10.
The opening of voltage-gated sodium, potassium, and calcium ion channels has a steep relationship with voltage. In response to changes in the transmembrane voltage, structural movements of an ion channel that precede channel opening generate a capacitative gating current. The net gating charge displacement due to membrane depolarization is an index of the voltage sensitivity of the ion channel activation process. Understanding the molecular basis of voltage-dependent gating of ion channels requires the measurement and computation of the gating charge, Q. We derive a simple and accurate semianalytic approach to computing the voltage dependence of transient gating charge movement (Q–V relationship) of discrete Markov state models of ion channels using matrix methods. This approach allows rapid computation of Q–V curves for finite and infinite length step depolarizations and is consistent with experimentally measured transient gating charge. This computational approach was applied to Shaker potassium channel gating, including the impact of inactivating particles on potassium channel gating currents.  相似文献   

11.
12.
We suggest that bubbles are the bistable hydrophobic gates responsible for the on-off transitions of single channel currents. In this view, many types of channels gate by the same physical mechanism—dewetting by capillary evaporation—but different types of channels use different sensors to modulate hydrophobic properties of the channel wall and thereby trigger and control bubbles and gating. Spontaneous emptying of channels has been seen in many simulations. Because of the physics involved, such phase transitions are inherently sensitive, unstable threshold phenomena that are difficult to simulate reproducibly and thus convincingly. We present a thermodynamic analysis of a bubble gate using morphometric density functional theory of classical (not quantum) mechanics. Thermodynamic analysis of phase transitions is generally more reproducible and less sensitive to details than simulations. Anesthetic actions of inert gases—and their interactions with hydrostatic pressure (e.g., nitrogen narcosis)—can be easily understood by actions on bubbles. A general theory of gas anesthesia may involve bubbles in channels. Only experiments can show whether, or when, or which channels actually use bubbles as hydrophobic gates: direct observation of bubbles in channels is needed. Existing experiments show thin gas layers on hydrophobic surfaces in water and suggest that bubbles nearly exist in bulk water.  相似文献   

13.
电压依赖性离子通道门控的分子机制   总被引:5,自引:0,他引:5  
Lu GW 《生理科学进展》1997,28(4):306-310
50年代Hodgkin和Huxley双通道模型及其激活与失活学说,正逐步被80年代以来的分子生物学和电生理学研究所证实。Na^+、K^+离子通道的激活主要决定于高度保守的带正电荷氨基酸残基密集的S4段,由膜内向膜外方向的拧改锥样旋转。Na^+通道的失活主要与其Ⅲ-Ⅳ功能区之间的胞内连结襻的“铰链盖”样运动有关;K^+通的失活分N-、C-、P-三型,分别发生在N-、C-末端和P区,其N型失活与N-末  相似文献   

14.
Trapping single ions inside single ion channels.   总被引:6,自引:2,他引:6       下载免费PDF全文
Single Ca++-activated K+ channels from rat muscle plasma membranes are inhibited by Ba++. A single Ba++ entering the channel's conduction pore induces a long-lived blocked state. This study employs Ba++ as a probe of the channel's conduction pathway to show that the channel can be forced to close with a single Ba++ ion inside the pore. A Ba++ ion inside the closed channel is trapped and cannot escape until the channel opens. The results demonstrate that in the channel's closed state, the cytoplasmic side of the conduction pore is obstructed to the passage of ions.  相似文献   

15.
Ferritin protein nanocages, self-assembled from four-α-helix bundle subunits, use Fe2+ and oxygen to synthesize encapsulated, ferric oxide minerals. Ferritin minerals are iron concentrates stored for cell growth. Ferritins are also antioxidants, scavenging Fenton chemistry reactants. Channels for iron entry and exit consist of helical hairpin segments surrounding the 3-fold symmetry axes of the ferritin nanocages. We now report structural differences caused by amino acid substitutions in the Fe2+ ion entry and exit channels and at the cytoplasmic pores, from high resolution (1.3–1.8 Å) protein crystal structures of the eukaryotic model ferritin, frog M. Mutations that eliminate conserved ionic or hydrophobic interactions between Arg-72 and Asp-122 and between Leu-110 and Leu-134 increase flexibility in the ion channels, cytoplasmic pores, and/or the N-terminal extensions of the helix bundles. Decreased ion binding in the channels and changes in ordered water are also observed. Protein structural changes coincide with increased Fe2+ exit from dissolved, ferric minerals inside ferritin protein cages; Fe2+ exit from ferritin cages depends on a complex, surface-limited process to reduce and dissolve the ferric mineral. High concentrations of bovine serum albumin or lysozyme (protein crowders) to mimic the cytoplasm restored Fe2+ exit in the variants to wild type. The data suggest that fluctuations in pore structure control gating. The newly identified role of the ferritin subunit N-terminal extensions in gating Fe2+ exit from the cytoplasmic pores strengthens the structural and functional analogies between ferritin ion channels in the water-soluble protein assembly and membrane protein ion channels gated by cytoplasmic N-terminal peptides.  相似文献   

16.
Previously, we described a model which treats ion channel gating as a discrete diffusion problem. In the case of agonist-activated channels at high agonist concentration, the model predicts that the closed lifetime probability density function from single channel recording approximates a power law with an exponent of -3/2 (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988a. Proc. Natl. Acad. Sci. USA. 85: 1503-1507). This prediction is consistent with distributions derived from a number of ligand-gated channels at high agonist concentration (Millhauser, G. L., E. E. Salpeter, and R. E. Oswald. 1988b. Biophys. J. 54: 1165-1168.) but does not describe the behavior of ion channels at low activator concentrations. We examine here an extension of this model to include an agonist binding step. This extended model is consistent with the closed time distributions generated from the BC3H-1 nicotinic acetylcholine receptor for agonist concentrations varying over three orders of magnitude.  相似文献   

17.
Internal motions in proteins and gating kinetics of ionic channels.   总被引:9,自引:8,他引:1       下载免费PDF全文
Single-channel current recordings have revealed a complex kinetic behavior of ionic channels. Many channels exhibit closed-time distributions in which long waiting times occur with a much higher frequency than predicted by a simple exponential decay function. In this paper a model for opening-closing transitions that accounts for internal motions in the protein matrix is discussed. The model is based on the notion that the transition between a conductive and a nonconductive state of the channel represents a local process in the protein, such as the movement of a small segment of a peptide chain or the rotation of a single amino-acid residue. When the blocking group moves into the ion pathway, a structural defect is created consisting in a region of loose packing and/or poor hydrogen bonding. By rearrangements of neighboring groups, the defect may migrate within the protein matrix, carrying out a kind of random walk. Once the defect has moved away from the site where it was formed, a transition back to the open state of the channel is possible only when the defect has returned by chance to the original position. The kinetic properties of this model are analyzed by stochastic simulation of defect diffusion in a small domain of the protein. With a suitable choice of domain size and diffusion rate, the model is found to predict closed-time distributions that agree with experimental observations.  相似文献   

18.
Using the patch-voltage-clamp method kinetic parameters of single ionic channels were studied. It was found that the channels have long-lasting conductance substates along with the short-living ones. The conductance of a long-lasting substate fluctuates near an average sublevel in the boundaries of a restrict number (k) of elementary conductance steps. There is a direct relationship: the greater k, the longer is average duration (tau k) of the substate. For a given k the falling phase of tau k value distribution is approximately one-exponential. The substates of k-th order result in the multi-exponentiality of the ion current kinetics.  相似文献   

19.
Summary Cytoplasmic drops, covered by a membrane derived from the tonoplast, were obtained from the internodal cells ofChara australis. Patch-clamp measurements were made on this membrane using the droplet-attached configuration with the membrane patch voltage clamped at values from –250 to 50 mV. Single-channel records, filtered at 5 kHz, were analyzed to elucidate the kinetics of the ion gating reaction of the K+-selective channel. The current-voltage characteristics for single channels exhibit saturation and are shown to be consistent with Läuger's theory of diffusion-limited ion flow through pores (P. Läuger,Biochim. Biophys. Acta 455:493–509, 1976). The time-averaged behavior of the K+ conductance has a maximum at –100 to –150 mV which is produced by the combination of two distinct mechanisms: (1) The channel spending more time in long-lived closed states at positive voltages and (2) a large decrease in the mean open lifetime at more negative voltages. The channel activity shows bursting behavior with opening and closing rates that are voltage-dependent. The mean open time is the kinetic parameter most sensitive to membrane potential, showing a maximum between –100 to –150 mV. The distribution of open times is dominated by one exponential component (time constant 0.3 to 10 msec). In some cases an additional rapidly decaying exponential component was detectable (time constant=0.1 msec). The closed distributions contained were observed to obtain up to four exponential components with time constants over the range 0.1 to 200 msec. However, the voltage dependence of the closed-time distributions suggests an eight-state model for this channel.  相似文献   

20.
For ligand-gated ion channels, the binding of a ligand to an intracellular or extracellular domain generates changes in transmembrane pore-forming helices, which alters ion flow. The molecular mechanism for this allostery, however, remains unknown. Here we explore the structure and conformational rearrangements of the C-terminal gating ring of the cyclic nucleotide-gated channel CNGA1 during activation by cyclic nucleotides with patch-clamp fluorometry. By monitoring fluorescent resonance energy transfer (FRET) between membrane-resident quenchers and fluorophores attached to the channel, we detected no movement orthogonal to the membrane during channel activation. By monitoring FRET between fluorophores within the C-terminal region, we determined that the C-terminal end of the C-linker and the end of the C-helix move apart when channels open. We conclude that during channel activation, a portion of the gating ring moves parallel to the plasma membrane, hinging toward the central axis of the channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号