共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The phenotype of Escherichia coli dnaA missense and nonsense mutations was integratively suppressed by plasmid R100-1. The suppressed strains, however, could not survive when the dnaA function was totally inactivated. This was demonstrated by the inability of replacing the dnaA allele in the suppressed strain by a dnaA::Tn10 insertion using phage P1-mediated transduction. When the intact dnaA
+ allele was additionally supplied by a specialized transducing phage, imm
21
dnaA
+, which integrated at the att
site on the E. coli chromosome, then the dnaA::Tn10 insertion, together with a oriC deletion, were able to be introduced into the suppressed strain. Thus, the mechanisms of dnaA function for oriC and for the replication origin of R100-1 may not be quite the same. 相似文献
2.
Requirement of the Escherichia coli dnaA gene function for ori-2-dependent mini-F plasmid replication. 总被引:4,自引:10,他引:4 下载免费PDF全文
The mini-F plasmids pSC138, pKP1013, and pKV513 were unable to transform Escherichia coli cells with a dnaA-defective mutation under nonpermissive conditions. The dnaA defect was suppressed for host chromosome replication either by the simultaneous presence of the rnh-199 (amber) mutation or by prophage P2 sig5 integrated at the attP2II locus on the chromosome, both providing new origins for replication independent of dnaA function. The dnaA mutations tested were dnaA17, dnaA5, and dnaA46. dnaA5 and dnaA46 are missense mutations. dnaA17 is an amber mutation whose activity is controlled by the temperature-sensitive amber suppressor supF6. Under permissive conditions in which active DnaA protein was available, the mini-F plasmids efficiently transformed the cells. However, the transformants lost the plasmid as the cells multiplied under conditions in which DnaA protein was inactivated or its synthesis was arrested. As controls, plasmids pSC101 and pBR322 were examined along with mini-F; pSC101 behaved in the same manner as mini-F, showing complete dependence on dnaA for stable maintenance, whereas pBR322 was indifferent to the dnaA defect. Thus, ori-2-dependent mini-F plasmid replication seems to require active dnaA gene function. This notion was strengthened by the results of deletion analysis which revealed that integrity of at least one of the two DnaA boxes present as a tandem repeat in ori-2 was required for the origin activity of mini-F replication. 相似文献
3.
Requirement of the Escherichia coli dnaA gene product for plasmid F maintenance. 总被引:9,自引:13,他引:9 下载免费PDF全文
There are DnaA protein-binding sites in at least one F origin of replication, and only potentially leaky dnaA(Ts) mutations had ever been used in previous studies indicating that F replication was independent of the dnaA gene product. Here we show that an Escherichia coli dnaA::Tn10 host which does not make a dnaA gene product cannot sustain autonomous or integrated F plasmid maintenance. 相似文献
4.
5.
Allele-specific suppression of dnaA(Ts) mutations by rpoB mutations in Escherichia coli 总被引:12,自引:0,他引:12
Tove Atlung 《Molecular & general genetics : MGG》1984,197(1):125-128
Summary Extragenic suppressor mutations for dnaA(Ts) mutations mapping in the rpoB gene (-subunit of RNA polymerase) were isolated by selection of spontaneous rifampicin resistant mutants and screening for temperature resistance. Six rpoB mutations were analysed for suppression of 12 different dnaA(Ts) mutations. The analysis showed that all dnaA(Ts) mutations could be suppressed by some rpoB mutation. All six rpoB mutations showed allele specificity when tested for suppression of 12 dnaA (Ts) mutant strains. The allele specificity was found to correlate with the map position of the dnaA (Ts) alleles. 相似文献
6.
Summary The thermosensitivity of dnaA(Ts) mutations can be suppressed by integration of plasmid F (integrative suppression). In the light of the recent finding that F requires DnaA protein for both establishment and maintenance, integrative suppression of 11 dnaA(Ts) mutations by a mini-F, pML31, integrated near oriC was examined. The plating efficiency of integratively suppressed strains was dnaA(Ts) allele-dependent and medium-dependent. The initiation capability of suppressed dnaA(Ts) strains lacking the oriC site and their F- counterparts was determined at various temperatures between 30°C and 42°C. The degree of integrative suppression measured by the initiation capability varied in a dnaA(Ts) allele-dependent manner. F-directed DNA replication was most affected by the dnaA(Ts) mutations mapping in the middle of the gene whereas oriC-dependent replication was most thermosensitive in strains carrying mutations mapping in the carboxy-terminal half of the gene. The results indicated that the integrative suppression by F plasmid is a DnaA-dependent process and suggested that the requirements for DnaA protein in the oriC-dependent replication and F replication processes are qualitatively different. 相似文献
7.
Ia A Berzhinskene L Iu ZiZa?te Z A Barona?te L L Grinius 《Biokhimii?a (Moscow, Russia)》1980,45(6):1103-1112
It was shown that the transfer of plasmid R 100-1 during conjugation of donor and recipient cells of E. coli is suppressed under treatment of the cells by oxidative phosphorylation uncouplers. Studies on recipient cells devoid of their H+-ATPase activity due to mutation showed that the transfer of the plasmid into the cells is repressed after a switch-off of the respiratory chain, the only generator of proton motive force in the mutated cells. In the absence of arsenate the plasmid transfer from the donor into the recipient cells possessing intact H+-ATPase occurs independently of inhibition of the cell respiratory activity by cyanide. However, the presence of arsenate in the conjugation medium induces the sensitivity of the plasmid transfer process to cyanide. In the absence of cyanide the cell conjugation is suppressed by 60 mM arsenate. A kinetic study of different steps of cell conjugation showed that the generation of proton motive force in recipient cells is necessary for the occurrence of plasmid transport. It was assumed that the generation of both proton motive force and phosphorylated high energy compounds is a necessary prerequisite for plasmid transport during conjugation of donor and recipient cells. 相似文献
8.
9.
Rifampicin-induced replication of the plasmid pBR322 in Escherichia coli strains carrying dnaA mutations 总被引:3,自引:0,他引:3
The replication pattern of the plasmid pBR322 was examined in the dnaA mutants of Escherichia coli. The rate of pBR322 DNA synthesis is markedly decreased after dnaA cells are shifted to the restrictive temperature of 42 degrees C. However, addition of rifampicin (RIF) to cultures of dnaA strains incubated at 42 degrees C after a lag of 90 min results in a burst of pBR322 synthesis. This RIF-induced pBR322 replication remains dependent on DNA polymerase I activity. Efficient plasmid pBR322 replication is observed at 42 degrees C in the double mutant dnaA46cos bearing an intragenic suppressor of dnaA46. Though replication of pBR322 in dnaA46cos growing at 42 degrees C is initially sensitive to RIF plasmid synthesis is restored after 90 min incubation in the presence of the drug. RIF-induced replication of the plasmid pBR327, lacking the rriB site implicated in RIF-resistant synthesis of the L strand of ColE1-like plasmids (Nomura and Ray 1981; Zipursky and Marians 1981), was observed also in dnaA46 at 42 degrees C. 相似文献
10.
Summary Replication of plasmid R1162 DNA does not require the product of the dnaA gene. An integrated copy of the plasmid can suppress the temperature-sensitive dnaA46 allele when (1) additional plasmid copies are present in the cytoplasm and (2) an inactive replication origin, generated by deletion, is also present in the chromosome. We propose that the inactive origin sets the rate of initiation of chromosome replication at a level compatible with cell viability, possibly by providing additional binding sites for an R1162-encoded protein that is rate-limiting for plasmid replication. 相似文献
11.
Formation of Escherichia coli Hfr strains by integrative suppression with the P group plasmid RP1. 下载免费PDF全文
Hfr strains of Escherichia coli were obtained by integrative suppression of a dnaA(Ts) mutation by the Inc P-1 plasmid RP1 without prior creation of an unnatural homology between the plasmid and the E. coli chromosome. Unmodified RP1 mobilized the polarized transfer of the chromosome in a counterclock-wise direction from a distinct origin between 81 min (pyrE) and 82 min (dnaA) with pyrE as a leading marker. Inheritance of RP1-Hfr chromosomal and antibiotic resistance genes was due to recombination with the recipient chromosome, as shown by the need for a functional recA system. The acquisition of temperature resistance and donor ability was accompanied by the disappearance of free plasmid when the selection pressure for integration was maintained (growth at 41 degrees C); the loss of temperature resistance and donor ability was accompanied by the reappearance of autonomous RP1 when the selection pressure was removed (growth at 30 degrees C). 相似文献
12.
Suppression of Escherichia coli dnaA46 mutations by integration of plasmid R100.1. derivatives: constraints imposed by the replication terminus. 总被引:3,自引:0,他引:3 下载免费PDF全文
We have studies the phenotypic suppression of a dnaA46 mutation by plasmid integration at preselected chromosomal sites after introducing homologous sequences (Mu prophages) onto both the chromosomes and the suppressive plasmid. The plasmids used were all derived from plasmid R100.1. We found that the conditions required to get viable suppressive integration varied as the plasmid integration site moved from the origin to the terminus of chromosome replication. Two constraints were observed. Both appeared to be linked to the new characteristics acquired by chromosome replication from the integrated plasmid. One constraint was that strains with integrative suppression near the terminus terC were viable only in minimal medium. The rich medium sensitivity of these strains was correlated with a loss of regulation of initiation. The other constraint was a requirement for a specific orientation in certain regions of the chromosome. The two branches defined by normally initiated replication, between oriC and terC, were also symmetrical with respect to these plasmid orientation constraints. In studying the possible reasons for a plasmid orientation constraint, we found that, of the two forks initiated in bidirectional replication from the integrated plasmid, one was capable of moving across the terC region with a higher movability than the other. 相似文献
13.
Escherichia coli dnaT gene function is required for pBR322 plasmid replication but not for R1 plasmid replication. 总被引:2,自引:0,他引:2 下载免费PDF全文
Plasmid pBR322 was unable to replicate in a temperature-sensitive dnaT1 strain at a nonpermissive temperature, whereas a pBR322-derived plasmid carrying the wild-type dnaT+ gene was able to replicate under the same conditions. In contrast to pBR322, plasmid R1 could replicate in the dnaT1 strain at a nonpermissive temperature. In keeping with this finding, in vitro replication of plasmid R1 did not require DnaT protein. 相似文献
14.
15.
K. N. Kao 《Molecular & general genetics : MGG》1977,150(3):225-230
Summary Protoplasts of soybean and N. glauca were induced to fuse with polyethylene glycol (PEG 1540). Up to 39% of the protoplasts in the treated population were heterokaryocytes. When the heterokaryocytes were isolated and individually cultivated they divided indefinitely and each produced many millions of cells within 2–3 months.The chromosomal behaviour of soybean and N. glauca in the hybrids were not synchronous in the first few cell generations and the chromosomes of N. glauca had a tendency to stick together and break into pieces. However, some of the N. glauca chromosomes were still retained in the somatic hybrids after 6 months of culturing. The chromosomes of the N. glauca were reconstructed in such a way that in the later cell generations, the movement of the N. glauca chromosomes were in synchrony with the soybean chromosomes.NRCC NO. 15668 相似文献
16.
17.
18.
A DNA fragment containing the groE genes can suppress mutations in the Escherichia coli dnaA gene 总被引:9,自引:0,他引:9
Andrew J. Jenkins John B. March Ian R. Oliver Millicent Masters 《Molecular & general genetics : MGG》1986,202(3):446-454
Summary An 8.2 kb fragment of E. coli chromosomal DNA, when cloned in increased copy number, suppresses the dnaA46 mutation, and an abundant protein of about 68 kd (60 kd when measured by us), encoded by the fragment, is essential for the suppression (Takeda and Hirota 1982). Mapping experiments show that the fragment originates from the 94 min region of the chromosome. It encodes several proteins but only one abundant polypeptide of the correct size, the product of the groEL gene. Suppression by the fragment is allele specific; those mutations which map to the centre of the gene are suppressed. Other initiation mutants including dnaA203, dnaA204, dnaA508, dnaAam, dnaC, dnaP and dnaB252 are not suppressed. Most suppressed strains are cold-sensitive suggesting an interaction between the mutant proteins (or their genes) and the suppressing protein or proteins. 相似文献
19.
Autoregulation of the dnaA gene of Escherichia coli K12 总被引:31,自引:0,他引:31
Tove Atlung Erik S. Clausen Flemming G. Hansen 《Molecular & general genetics : MGG》1985,200(3):442-450
20.
Fine structure genetic map and complementation analysis of mutations in the dnaA gene of Escherichia coli 总被引:19,自引:0,他引:19
Egon B. Hansen Tove Atlung Flemming G. Hansen Ole Skovgaard Kaspar von Mevenburg 《Molecular & general genetics : MGG》1984,196(3):387-396
Summary A fine structure genetic map of several mutations in the dnaA gene of Escherichia coli was constructed by the use of recombinant and M13 phages. The dnaA508 mutation was found to be the mutation most proximal to the promoter, while the dnaA203 mutation was found to be the most distal one. The order of mutations established in this analysis was: dnaA508, dnaA167, (dnaA5, dnaA46, dnaA211), dnaA205, dnaA204, dnaA203. The mutations dnaA601, dnaA602, dnaA603, dnaA604 and dnaA606 were found to map very close to each other and close to dnaA205 in the middle third of the dnaA gene. In analysing the dominance relationship all 13 dnaA mutations were found to be recessive to the wild type. Characteristic phenotypes of the dnaA(Ts) mutants, like reversibility of the temperature inactivation of the dnaA protein, cold sensivity of haploid or of merodiploid strains and suppressibility by rpoB mutations, are found to correlate with clusters of mutations within the gene. 相似文献