首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Ishikawa  H Ikeda 《Gene》1983,21(3):211-216
Dictyostelium discoideum myxamoebae were cultured with Escherichia coli cells infected with lambda phage in the presence of chloramphenicol. After eliminating the uningested bacteria by repeated centrifugation in a Percoll gradient, we examined the myxamoeba cytoplasm (not the food vacuole) for the presence of phage DNA. A significant amount of DNA extracted from the myxamoebae was hybridizable with purified phage lambda DNA, and capable of forming phage particles when packaged in vitro with phage lambda proteins. The EcoRI restriction maps of the phages recovered from the plaques were identical to that of the infecting phage. These results strongly suggest that phage DNA molecules were taken up by the cellular slime mold cells and that at least some fraction existed in intact form.  相似文献   

2.
Escherichia coli DNA gyrase is comprised of two subunits, GyrA and GyrB. Previous studies have shown that GyrI, a regulatory factor of DNA gyrase activity, inhibits the supercoiling activity of DNA gyrase and that both overexpression and antisense expression of the gyrI gene suppress cell proliferation. Here we have analyzed the interaction of GyrI with DNA gyrase using two approaches. First, immunoprecipitation experiments revealed that GyrI interacts preferentially with the holoenzyme in an ATP-independent manner, although a weak interaction was also detected between GyrI and the individual GyrA and GyrB subunits. Second, surface plasmon resonance experiments indicated that GyrI binds to the gyrase holoenzyme with higher affinity than to either the GyrA or GyrB subunit alone. Unlike quinolone antibiotics, GyrI was not effective in stabilizing the cleavable complex consisting of gyrase and DNA. Further, we identified an 8-residue synthetic peptide, corresponding to amino acids (89)ITGGQYAV(96) of GyrI, which inhibits gyrase activity in an in vitro supercoiling assay. Surface plasmon resonance analysis of the ITGGQYAV-containing peptide-gyrase interaction indicated a high association constant for this interaction. These results suggest that amino acids 89--96 of GyrI are essential for its interaction with, and inhibition of, DNA gyrase.  相似文献   

3.
The cellular slime mold Dictyostelium discoideum expresses a gene encoding a 452-amino-acid polypeptide that is 47% identical to Escherichia coli RecA. A recA-deficient E. coli, JE6651, was transformed by pYSN1, which was designed to express the truncated form of the D. discoideum gene, and used in suppression assays. The viability of the transformant, JE6651(pYSN1), increased following UV irradiation or mitomycin C treatment. Phage lambda (red(-) gam(-)), which required RecA activity for DNA packaging, formed plaques on a lawn of JE6651(pYSN1). These results indicate that the gene product has a DNA recombination activity. Fluorescence of D. discoideum protein fused with GFP was detected in mitochondria. The gene disruption mutant was hypersensitive to UV-light (254nm), mitomycin C and H(2)O(2), indicating that D. discoideum recA is important for survival following exposure to DNA damaging agents.  相似文献   

4.
H Savilahti  D H Bamford 《Gene》1986,49(2):199-205
The closely related lipid-containing bacteriophages PRD1, PR4, PR5, PR722 and L17 isolated from different parts of the world have double-stranded DNA genomes which replicate in a linear form. The nucleotide (nt) sequences of the genome termini of these viruses reveal 110-111-bp-long inverted terminal repeats (ITRs). Both ends of the viral DNA are identical. The first 18 bp and the last 35 bp of the ITRs are totally conserved in all viruses. Between these conserved nt sequences there is a variable sequence, which enables us to divide the phages into two groups. Comparison of the virus ITRs led also to the identification of a 10-bp-long A + T stretch, where the only changes observed were transversions between A and T. The termini of the PRD1 virus family genomes exhibit sequence similarities to those of phi 29 and Cp-1 families.  相似文献   

5.
DNA hybridization experiments indicate that the genome of a tumorigenic poxvirus. Shope fibroma virus (SFV), possesses sequence homology with DNA isolated from uninfected rabbit cells. Southern blotting experiments, either with high-complexity rabbit DNA as probe and SFV restriction fragments as targets or with high-specific activity, 32P-labeled, cloned SFV sequences as probes and rabbit DNA as target, indicate that the homologous sequences map at two locations within the viral genome, one in each copy of the terminal inverted repeat sequences. Unexpectedly, Southern blots revealed that the homologous host sequences reside in a rabbit extrachromosomal DNA element. This autonomous low-molecular-weight DNA species could be specifically amplified by cycloheximide treatment and was shown by isopycnic centrifugation in cesium chloride-ethidium bromide to consist predominantly of covalently closed circular DNA molecules. DNA sequencing of pSIC-9, a cloned 1.9-kilobase fragment of the rabbit plasmid species, indicated extensive homology at the nucleotide level over a 1.5-kilobase stretch of the viral terminal inverted repeat. Analysis of open reading frames in both the plasmid and SFV DNA revealed that (i) the N-terminal 157-amino acid sequence of a potential 514-amino acid SFV polypeptide is identical to the N-terminal 157 amino acids of one pSIC-9 open reading frame, and (ii) a second long pSIC-9 open reading frame of 361 amino acids, although significantly diverged from the comparable nucleotide sequence in the virus, possessed considerable homology to a family of cellular protease inhibitors, including alpha 1-antichymotrypsin, alpha 1-antitrypsin, and antithrombin III. The potential role of such cellular plasmid-like DNA species as a mediator in the exchange of genetic information between the host cell and a cytoplasmically replicating poxvirus is discussed.  相似文献   

6.
Streptomyces lavendulae S985 carried two plasmids, pSL1 and pSL2. pSL2 contained all of the pSL1 sequences plus a tandem duplication of 900 base pairs from a region of pSL1. Sequence analysis of the duplication junction suggested that the duplication occurred by recombination between short direct repeats of as little as 5 base pairs.  相似文献   

7.
8.
Summary Derivatives of plasmid pBR327 with the tet gene interrupted by 165 pb or 401 by direct repeats were constructed. In cells harboring these plasmids, deletions which restored the wild-type tet gene gave rise to tetracycline-resistant colonies, thereby allowing a simple phenotypic test for deletion formation. The frequencies of deletions in these plasmids were measured in Escherichia coli strains proficient or deficient in general recombination. The structure of plasmid DNA isolated from tetracycline-resistant transformants was analyzed by agarose gel electrophoresis, restriction mapping and sequencing. The data presented here demonstrate that deletion formation is always associated with dimerization of plasmid DNA. Dimeric plasmids were of two types. Those which carried both a deletion and a compensating duplication were the major type in a Rec+ background and were rare in recA, recF, recJ and recO backgrounds. Dimers of the second type contained deletions, but no compensating duplications, and their formation was RecA-independent. The data presented demonstrate that deletion formation mediated by long direct repeats is mainly the result of unequal crossing-over between two plasmid molecules.  相似文献   

9.
10.
A procedure has been developed whereby the relative amounts of the topoisomers of E. coli plasmid can be determined for cells grown under a variety of conditions. Several applications of the procedure are presented. Addition of either novobiocin or oxolinic acid, two inhibitors of DNA gyrase, gives rise to positively supercoiled plasmid. A likely model for the introduction of positive supercoils, involving DNA gyrase itself, is discussed. Oxolinic acid is also shown to induce linearization of plasmid in vivo. Starvation of cells for ATP is shown to cause relaxation of plasmid. The shift of a gyrB temperature-sensitive strain to the restrictive temperature is also shown to cause plasmid relaxation. Finally, it is noted that polyamine starvation of E. coli has no detectable effect on the distribution of topoisomers.  相似文献   

11.
12.
Summary A system for detecting a spontaneous deletion in Escherichia coli was developed and the role of DNA gyrase in deletion formation was studied. A derivative of plac5, AM36, was isolated in which whole pBR322 DNA was inserted in the lacZ gene and 227 by of the lac gene duplicated at both sides of the pBR322 DNA. E. coli lac strains lysogenized by AM36 had a Lac phenotype and segregated Lac revertants. Sequence analyses showed that the revertant was formed by a deletion that eliminated the inserted pBR322 DNA and one copy of the duplicated segments. The frequency of lac revertant formation was independent of recA function, was increased by oxolinic acid, an inhibitor of DNA gyrase, but was not increased in a lysogen of a nalidixic acid-resistant derivative. The reversion frequencies of temperature sensitive mutants of gyrA gene are 10 to 100 times lower than that of the wild-type strain. These results indicate that the DNA gyrase of E. coli participated in the in vivo deletion formation resulting from the direct repeats.  相似文献   

13.
Abstract Orellanine, the toxic principle of Cortinarius orellanus efficiently inhibited the growth of the amoebae Dictyostelium discoideum . No significant effect on phagocytosis or pinocytosis was observed. The growth of the bacterium Escherichia coli was inhibited with a sensitivity similar to that of D. discoideum .  相似文献   

14.
Deletions Δ101, Δ102, and Δ103 which occurred within the extraordinarily long inverted repeats of the self-ligated large EcoRI fragment of the Streptococcal MLS (macrolides, lincosamides, streptogramin B)-resistance plasmid pSM19035 led to the formation of plasmids pDB101, pDB102, and pDB103. Their molecular lengths were determined by contour length measurements to be 17.8, 17.4, and 13.9 kb, respectively. Electron microscopic examination of self-annealed molecules revealed stem-loop structures with inverted repeats comprising 41 to 91% of the mass of plasmids. Two unique sequences (US1 and US2) separated the inverted repeats in the case of pDB101 and pDB103, while in pDB102 the repeats were joined at one end and separated at the other by a unique sequence (US2). The size of the unique sequence US2 was identical for all three plasmids, and the location of the resistance determinant was determined by electron microscopic examination of self-annealed molecules of the recombinant plasmid pDB201. Mapping of the deletion termini, accomplished by combining electron microscopic and HindIII restriction data, suggested that deletions may occur at preferential sites.  相似文献   

15.
The thermosensitive growth phenotype exerted by runaway-mutant plasmids was suppressed by sublethal doses of the DNA gyrase inhibitors novobiocin or nalidixic acid, although the latter drug was less efficient. A novobiocin-resistant gyrB mutant Escherichia coli strain prevented expression of the runaway phenotype at 37 to 42 degrees C in the absence of any drug.  相似文献   

16.
Summary Using precise excision as a model system, we have quantified the effect of direct repeats, inverted repeats and the size of the spacer between the repeats in the process of deletion formation in Bacillus subtilis. Both in the presence and absence of inverted repeats, the frequency of precise excision was strongly dependent on the direct repeat length. By increasing the direct repeat length from 9 bp to 18 and 27 bp, the precise excision frequency was raised by 3 and 4 orders of magnitude, respectively. In addition, irrespective of the direct repeat length, the presence of flanking inverted repeats enhanced the excision frequency by 3 orders of magnitude. Varying the inverted repeat length and the spacer size over a wide range did not significantly affect the excision frequencies. These results fit well into a model for deletion formation by slipped mispairing during replication of single-stranded plasmid DNA.  相似文献   

17.
Escherichia coli bacteriophage PRD1 and its relatives contain linear double-stranded DNA genomes, the replication of which proceeds via a protein-primed mechanism. Characteristically, these molecules contain 5'-covalently bound terminal proteins and inverted terminal nucleotide sequences (inverted terminal repeats [ITRs]). The ITRs of each PRD1 phage species have evolved in parallel, suggesting communication between the molecule ends during the life cycle of these viruses. This process was studied by constructing chimeric PRD1 phage DNA molecules with dissimilar end sequences. These molecules were created by combining two closely related phage genomes (i) in vivo by homologous recombination and (ii) in vitro by ligation of appropriate DNA restriction fragments. The fate of the ITRs after propagation of single genomes was monitored by DNA sequence analysis. Recombinants created in vivo showed that phages with nonidentical genome termini are viable and relatively stable, and hybrid phages made in vitro verified this observation. However, genomes in which the dissimilar DNA termini had regained identical sequences were also detected. These observations are explained by a DNA replication model involving two not mutually exclusive pathways. The generality of this model in protein-primed DNA replication is discussed.  相似文献   

18.
The polyamine content of the Escherichia coli polyamine-auxotrophic strain BGA 8 seemed to influence the effects of nalidixic acid, an antibiotic acting on subunit A of DNA gyrase. The growth rate was more affected under conditions of putrescine depletion and the inhibition could be partially relieved if the polycation was added back to the culture. DNA synthesis was likewise more sensitive to nalidixic acid in cultures grown without polyamine. The expression of some proteins characteristic of the heat-shock response, evoked by the antibiotic, showed a different persistence according to the presence or absence of polyamines. Novobiocin, acting on subunit B of gyrase, also promoted a differential effect depending on the polyamine content, but in this case putrescine-supplemented cells were more sensitive. The described findings suggest a role of polyamines in all the reactions carried out by gyrase, perhaps due to the influence of the polycations on the state of DNA aggregation.  相似文献   

19.
We previously reported that DNA of the oncogenic strain BC-1 of Marek's disease virus serotype 1 (MDV1) contains three units of tandem direct repeats with 132 base pair (bp) repeats within the inverted repeats of the long regions of the MDV1 genome, whereas the attenuated, nononcogenic viral DNA contains multiple units of tandem direct repeats (Maotani et al., 1986). In the present study, the difference in the copy numbers of 132 bp repeats of oncogenic and nononcogenic MDV1 DNAs in other strains of MDV1 was investigated by Southern blot hybridization. The main copy numbers in different oncogenic MDV1 strains differed: those of BC-1, JM and highly oncogenic Md5 were 3, 5 to 12 and 2, respectively. The viral DNA population with two units of repeats was small, but detectable, in cells infected with either the oncogenic BC-1 or JM strain. The MDV1 DNA in various MD cell lines contained either two units or both two and three units of repeats. The significance of the copy number of repeats in oncogenicity of MDV1 is discussed.  相似文献   

20.
Mapping the active site tyrosine of Escherichia coli DNA gyrase   总被引:40,自引:0,他引:40  
We have identified tyrosine 122 of the A subunit of Escherichia coli DNA gyrase as the tyrosine that becomes covalently bound to DNA when the enzyme breaks the phosphodiester bonds of DNA. The covalent gyrase X DNA complex was isolated following cleavage of the DNA by gyrase in the presence of the gyrase inhibitor oxolinic acid. The active site tyrosine was first mapped to two overlapping peptides. Its precise position in the sequence of the A subunit of gyrase was then determined by sequencing of a peptide bound to DNA. We also present a method for mapping sites of DNA attachment in a protein of known amino acid sequence. The covalent complex of DNA and protein is treated with proteases that cut specifically. The electrophoretic mobilities of the resulting peptide-bound DNA molecules are correlated with the sizes of the bound peptides, allowing determination of the site of attachment of the DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号