首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary The technique of chromosome walking was used to isolate approximately 60 kb of DNA from the region containing the complementation group uncoordinated of Drosophila melanogaster, located in that part of the X chromosome which spans the euchromatin-heterochromatin junction. The cloned DNA can be divided into two distinct regions. The first contains sequences that are low copy number or unique and are largely conserved between strains. The second region is characterized by units repeated in tandem arrays and is polymorphic within, and between, strains. Each repetitive unit is separated by a member of an abundant sequence family, part of which is homologous to the ribosomal type 1 insertion sequence of D. melanogaster. The molecular organization of the cloned DNA was compared with that of sequences isolated from regions of intercalary heterochromatin and also with genes which have been characterized from more conventional euchromatic regions.  相似文献   

3.
The chemical nature and distribution of the peptidoglycan in Myxococcus xanthus at various stages of the cellular life cycle were investigated. Vegetative cells and microcysts contained approximately 0.6% by weight of peptidoglycan. The overall composition of the peptidoglycan was similar in both cell types and was approximately 1 glutamic acid, 1 diaminopimelic acid, 1.7 alanine, 0.75 N-acetylglucosamine, and 0.75 N-acetylmuramic acid. (We have assumed that all the hexosamines are N-acetylated.) The sizes of the subunits (estimated by gel filtration) solubilized by muramidases were considerably larger (tetramer and oligomer) in the microcysts than in the vegetative cells (mostly dimer). There was a transient decrease in cross-linking (measured as an increase in the amount of free amino group of diaminopimelic acid) during the stage of microcyst formation when the cells converted from ovoids to spheres. At the same time, there occurred a large and rapid increase in a galactosamine derivative which may have reflected the synthesis of capsular material. Immediately prior to this period of morphogenesis, the cells became resistant to penicillin but remained sensitive to d-cycloserine. The walls of vegetative cells were completely disaggregated by trypsin and sodium lauryl sulfate, suggesting a discontinuous peptidoglycan layer. This was no longer apparent after the ovoid-sphere stage of microcyst formation. The relationship to morphogenesis of the chemical changes in the cell wall is discussed.  相似文献   

4.
A unique structure in microcysts of Myxococcus xanthus   总被引:8,自引:0,他引:8  
  相似文献   

5.
The fruiting body development of Myxococcus xanthus consists of two separate but interacting pathways: one for aggregation of many cells to form raised mounds and the other for sporulation of individual cells into myxospores. Sporulation of individual cells normally occurs after mound formation, and is delayed at least 30 h after starvation under our laboratory conditions. This suggests that M. xanthus has a mechanism that monitors progress towards aggregation prior to triggering sporulation. A null mutation in a newly identified gene, espA (early sporulation), causes sporulation to occur much earlier compared with the wild type (16 h earlier). In contrast, a null mutation in an adjacent gene, espB, delays sporulation by about 16 h compared with the wild type. Interestingly, it appears that the espA mutant does not require raised mounds for sporulation. Many mutant cells sporulate outside the fruiting bodies. In addition, the mutant can sporulate, without aggregation into raised mounds, under some conditions in which cells normally do not form fruiting bodies. Based on these observations, it is hypothesized that EspA functions as an inhibitor of sporulation during early fruiting body development while cells are aggregating into raised mounds. The aggregation-independent sporulation of the espA mutant still requires starvation and high cell density. The espA and espB genes are expressed as an operon and their translations appear to be coupled. Expression occurs only under developmental conditions and does not occur during vegetative growth or during glycerol-induced sporulation. Sequence analysis of EspA indicates that it is a histidine protein kinase with a fork head-associated (FHA) domain at the N-terminus and a receiver domain at the C-terminus. This suggests that EspA is part of a two-component signal transduction system that regulates the timing of sporulation initiation.  相似文献   

6.
7.
Expression of the previously reported Tn5lac Omega4469 insertion in Myxococcus xanthus cells is regulated by the starvation response. Interested in learning more about the starvation response, we cloned and sequenced the region containing the insertion. Our analysis shows that the gene fusion is located in an open reading frame that we have designated nsd (nutrient sensing/utilizing defective) and that its expression is driven by a sigma70-like promoter. Sequence analysis of the nsd gene product provides no information on the potential structure or function of the encoded protein. In a further effort to learn about the role of nsd in the starvation response, we closely examined the phenotype of cells carrying the nsd::Tn5lac Omega4469 mutation. Our analysis showed that these cells initiate development on medium that contains nutrients sufficient to sustain vegetative growth of wild-type cells. Furthermore, in liquid media these same nutrient concentrations elicit a severe impairment of growth of nsd cells. The data suggest that the nsd cells launch a starvation response when there are enough nutrients to prevent one. In support of this hypothesis, we found that, when grown in these nutrient concentrations, nsd cells accumulate guanosine tetraphosphate, the cellular starvation signal. Therefore, we propose that nsd is used by cells to respond to available nutrient levels.  相似文献   

8.
Summary Vegetative cells of Myxococcus xanthus, strain FB, were found to contain numerous small mesosomes distributed throughout the cell. They persisted in the cell as long as the cells were maintained on casitone-agar. When these cells were transferred into casitone-broth and grown under aeration large mesosomes were newly formed at the division plane during the first and second cell division after transfer. After four to six more generations when transferred a second time into fresh casitone broth mesosomes were no longer detectable in the cells but reappeared when the cells were retransferred onto casitone-agar.A low oxygen concentration in the medium caused the formation of an unidentified factor found to be responsible for the formation of mesosomes in cells of colonies or in a liquid medium.The shape of the mesosomes seems not to be predetermined but depends upon the inhomogeneity of cytoplasm and nucleoids into which they intrude. In some large mesosomes the infolded membrane consisted of five layers, one dense layer alternating with a translucent one with dense layers limiting the membrane. The width of these membranes was 120 A instead of 160 A as could be expected for two merged triple-layered cytoplasmic membranes each measuring about 80 A. A large poly-phosphate granule was found to be enclosed by a mesosome.  相似文献   

9.
This paper deals with silver sorption to Myxococcus xanthus biomass. The dry biomass of this microorganism is shown to be a good sorbent for the recovery of silver present at low solution concentrations. Between initial silver concentrations of 2 and 0.05 mM, the percentage of accumulation ranges from 8.12% to 75% of the total silver present in the solution. Transmission electron microscopy study of M. xanthus wet biomass after silver accumulation shows the sorption within the extracellular polysaccharide, on the cell wall, and in the cytoplasm. The presence of silver deposits in the cytoplasm indicates that at least two mechanisms are involved in silver sorption by this bacterium biomass. First, silver was bound to the cell surface and extracellular polysaccharide, and second, a silver intracellular deposition process took place. The higher amount of silver deposits in the extracellular polysaccharide, present abundantly in M. xanthus cells, explains the capacity of this bacterium to bind silver efficiently. The results obtained indicate that the removal of silver by M. xanthus from the diluted solutions could be used in recycling this valuable metal. One interesting observation of this investigation is the crystalline form, possibly as chlorargyrite, in which the silver deposits are found in the M. xanthus cells.  相似文献   

10.
11.
The csgA gene produces an intercellular signal during fruiting body formation of the myxobacterium Myxococcus xanthus. Sporulating pseudorevertants were isolated to allow us to understand the mechanism by which CsgA is perceived by cells and used to regulate developmental gene expression. Two strains, LS559 and LS560, which have closely linked transposon insertions, soc-559 (formerly csp-559) and soc-560 (formerly csp-560), respectively, regained all the developmental behaviors lost by the csgA mutation including the ability to ripple, form fruiting bodies, and sporulate. The sequence analysis of the socA locus revealed that there are three putative protein-coding regions, designated socA1, socA2, and socA3. The deduced amino acid sequence of socA1 exhibits characteristics of the short-chain alcohol dehydrogenase family. The deduced amino acid sequence of socA2 shares 48% identity with the frdD gene product of the frd operon in Proteus vulgaris which anchors fumarate reductase to the membrane. The deduced amino acid sequence of socA3 does not show homology to any known proteins. Genotypic complementation, Northern (RNA) blotting, DNA sequence analysis, and the pattern of gene expression all suggest that these three genes are polycistronic. Since the socA mutations effectively bypass CsgA, the question of why csgA is maintained in M. xanthus was examined by studying the long-term stability of socA spores. Unlike the wild type, socA mutant spores germinated on starvation agar. Transmission electron micrographs of spore thin sections revealed that germination is not due to an obvious structural deficiency of the socA spores. These results suggest that the ability of socA myxospores to survive long periods under unfavorable environmental conditions is severely comprised. Therefore, soxA appears to be essential for the development of M. xanthus.  相似文献   

12.
13.
In response to starvation, Myxococcus xanthus undergoes a multicellular developmental process that produces a dome-shaped fruiting body structure filled with differentiated cells called myxospores. Two insertion mutants that block the final stages of fruiting body morphogenesis and reduce sporulation efficiency were isolated and characterized. DNA sequence analysis revealed that the chromosomal insertions are located in open reading frames ORF2 and asgE, which are separated by 68 bp. The sporulation defect of cells carrying the asgE insertion can be rescued phenotypically when co-developed with wild-type cells, whereas the sporulation efficiency of cells carrying the ORF2 insertion was not improved when mixed with wild-type cells. Thus, the asgE insertion mutant appears to belong to a class of developmental mutants that are unable to produce cell-cell signals required for M. xanthus development, but they retain the ability to respond to them when they are provided by wild-type cells. Several lines of evidence indicate that asgE cells fail to produce normal levels of A-factor, a cell density signal. A-factor consists of a mixture of heat-stable amino acids and peptides, and at least two heat-labile extracellular proteases. The asgE mutant yielded about 10-fold less heat-labile A-factor and about twofold less heat-stable A-factor than wild-type cells, suggesting that the primary defect of asgE cells is in the production or release of heat-labile A-factor.  相似文献   

14.
DNA cycle of Myxococcus xanthus   总被引:8,自引:0,他引:8  
  相似文献   

15.
Fatty Acids of Myxococcus xanthus   总被引:5,自引:4,他引:5       下载免费PDF全文
Fatty acids were extracted from saponified vegetative cells and myxospores of Myxococcus xanthus and examined as the methyl esters by gas-liquid chromatography. The acids consisted mainly of C14 to C17 species. Branched acids predominated, and iso-pentadecanoic acid constituted half or more of the mixture. The other leading component (11–28%) was found to be 11-n-hexadecenoic acid. Among the unsaturated acids were two diunsaturated ones, an n-hexadecadienoic acid and an iso-heptadecadienoic acid. No significant differences between the fatty acid compositions of the vegetative cells and myxospores could be detected. The fatty acid composition of M. xanthus was found to be markedly similar to that of Stigmatella aurantiaca. It is suggested that a fatty acid pattern consisting of a large proportion of iso-branched C15 and C17 acids and a substantial amount of an n-16:1 acid is characteristic of myxobacteria.  相似文献   

16.
Wang J  Hu W  Lux R  He X  Li Y  Shi W 《Journal of bacteriology》2011,193(9):2122-2132
Myxococcus xanthus belongs to the delta class of the proteobacteria and is notable for its complex life-style with social behaviors and relatively large genome. Although previous observations have suggested the existence of horizontal gene transfer in M. xanthus, its ability to take up exogenous DNA via natural transformation has not been experimentally demonstrated. In this study, we achieved natural transformation in M. xanthus using the autonomously replicating myxobacterial plasmid pZJY41 as donor DNA. M. xanthus exopolysaccharide (EPS) was shown to be an extracellular barrier for transformation. Cells deficient in EPS production, e.g., mutant strains carrying ΔdifA or ΔepsA, became naturally transformable. Among the inner barriers to transformation were restriction-modification systems in M. xanthus, which could be partially overcome by methylating DNA in vitro using cell extracts of M. xanthus prior to transformation. In addition, the incubation time of DNA with cells and the presence of divalent magnesium ion affected transformation frequency of M. xanthus. Furthermore, we also observed a potential involvement of the type IV pilus system in the DNA uptake machinery of M. xanthus. The natural transformation was totally eliminated in the ΔpilQ/epsA and Δtgl/epsA mutants, and null mutation of pilB or pilC in an ΔepsA background diminished the transformation rate. Our study, to the best of our knowledge, provides the first example of a naturally transformable species among deltaproteobacteria.  相似文献   

17.
Cohesion of Myxococcus xanthus cells involves interaction of a cell surface cohesin with a component of the extracellular matrix. In this work, two previously isolated cohesion-defective (fbd) mutants were characterized. The fbdA and fbdB genes do not encode the cohesins but are necessary for their production. Both mutants produce type IV pili, suggesting that PilA is not a major cohesin.  相似文献   

18.
Myxococcus xanthus is a gram-negative soil bacterium best known for its remarkable life history of social swarming, social predation, and multicellular fruiting body formation. Very little is known about genetic diversity within this species or how social strategies might vary among neighboring strains at small spatial scales. To investigate the small-scale population structure of M. xanthus, 78 clones were isolated from a patch of soil (16 by 16 cm) in Tübingen, Germany. Among these isolates, 21 genotypes could be distinguished from a concatemer of three gene fragments: csgA (developmental C signal), fibA (extracellular matrix-associated zinc metalloprotease), and pilA (the pilin subunit of type IV pili). Accumulation curves showed that most of the diversity present at this scale was sampled. The pilA gene contains both conserved and highly variable regions, and two frequency-distribution tests provide evidence for balancing selection on this gene. The functional domains in the csgA gene were found to be conserved. Three instances of lateral gene transfer could be inferred from a comparison of individual gene phylogenies, but no evidence was found for linkage equilibrium, supporting the view that M. xanthus evolution is largely clonal. This study shows that M. xanthus is surrounded by a variety of distinct conspecifics in its natural soil habitat at a spatial scale at which encounters among genotypes are likely.  相似文献   

19.
Abstract A zymogram technique was used to resolve the proteases from the culture supernatants of three strains derived from Myxococcus xanthus FB. Of the 8 bands obtained, 3 were possibly proteolytic artefacts, and another may be derived from membrane vesicles or fragments. 3 of the bands were tentatively identified as serine proteases by affinity labelling. A non-motile, non-fruiting strain, M. xanthus DZ1, differed from 2 wild-type strains, NCIB9412 and DK101, in the relative intensity of certain bands, and all 3 strains differed qualitatively from M. xanthus XK, which is not FB-derived.  相似文献   

20.
Hu W  Hossain M  Lux R  Wang J  Yang Z  Li Y  Shi W 《PloS one》2011,6(1):e16102
Social motility (S motility), the coordinated movement of large cell groups on agar surfaces, of Myxococcus xanthus requires type IV pili (TFP) and exopolysaccharides (EPS). Previous models proposed that this behavior, which only occurred within cell groups, requires cycles of TFP extension and retraction triggered by the close interaction of TFP with EPS. However, the curious observation that M. xanthus can perform TFP-dependent motility at a single-cell level when placed onto polystyrene surfaces in a highly viscous medium containing 1% methylcellulose indicated that S motility is not limited to group movements. In an apparent further challenge of the previous findings for S motility, mutants defective in EPS production were found to perform TFP-dependent motility on polystyrene surface in methylcellulose-containing medium. By exploring the interactions between pilin and surface materials, we found that the binding of TFP onto polystyrene surfaces eliminated the requirement for EPS in EPS(-) cells and thus enabled TFP-dependent motility on a single cell level. However, the presence of a general anchoring surface in a viscous environment could not substitute for the role of cell surface EPS in group movement. Furthermore, EPS was found to serve as a self-produced anchoring substrate that can be shed onto surfaces to enable cells to conduct TFP-dependent motility regardless of surface properties. These results suggested that in certain environments, such as in methylcellulose solution, the cells could bypass the need for EPS to anchor their TPF and conduct single-cell S motility to promote exploratory movement of colonies over new specific surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号