首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human mast cells (MCs) are divided in two types depending on the expression of tryptase and chymase in their granules. Literature data indicate that both tryptase and chymase are angiogenic, but there is currently no evidence of their direct angiogenic activity in vivo. In this study, we have investigated the capacity of tryptase and chymase to promote vasoproliferation in chick embryo chorioallantoic membrane (CAM), a well established in vivo assay to study angiogenesis and anti-angiogenesis. The results showed that both tryptase and chymase stimulate angiogenesis and that the response is similar to that obtained with vascular endothelial growth factor (VEGF), a well-known angiogenic cytokine, and confirm the angiogenic activity of these two proteases stored in MC granules.  相似文献   

2.
目的:探讨肥大细胞(mast cell,MC)及类胰蛋白酶(tryptase)与甲状腺肿瘤微血管密度(microvessel density,MVD)的相关性及其对甲状腺癌发生发展的影响。方法:采用甲苯胺蓝组织化学染色和PV免疫组织化学染色对116例甲状腺癌、56例甲状腺腺瘤和10例正常甲状腺组织中MC和tryptase及其CD31的表达进行了检测;对MC和tryptase与MVD的关系进行了统计学分析。结果:甲状腺肿瘤中MC的数量和tryptase阳性表达高于正常甲状腺,而且与肿瘤的类型有关(P<0.01);Spearman等级相关分析显示各组甲状腺组织MC数量和tryptase表达与MVD呈正相关(r=0.900,r=0.636,P<0.05)。结论:MC及其分泌的tryptase有促进血管新生的作用,因而可促进甲状腺肿瘤的浸润和转移。  相似文献   

3.
Mast-cell secretion and angiogenesis, a quantitative study in rats and mice   总被引:4,自引:0,他引:4  
The activation of the autogenous mast cells (MCs) in situ in intact mesenterial windows was elicited by the intraperitoneal injection of the MC secretagogue Compound 48/80 over a period of 1, 3 and 5 days in Sprague-Dawley rats and in C57 BL/6 and CBA/Ca mice. As a probe of MC secretion, the release of histamine was quantified fluorometrically at predetermined intervals during the treatment. Fourteen days after the start of the treatment, the angiogenic response was quantified histologically as the number of vessel profiles per unit length of mesenteric window. Both the MC-activating and the angiogenic effect of the 48/80-treatment was greater in the rats than in the mice. The occurrence of MC-mediated angiogenesis in the mouse is demonstrated here for the first time. In the rat, 48/80-induced MC mediated angiogenesis increased in a distinctly dose-dependent manner. Two daily doses of 48/80 was the most efficient angiogenic protocol tested; a single day's treatment increased the number of vessels almost fivefold. The remarkable potency of the angiogenic reaction following MC secretion supports our previous notion that MC-mediated angiogenesis may have therapeutic implications in poorly vascularized tissues.  相似文献   

4.
Tryptase(+) mast cells (MCs), abundant in the invasive front of tumours, contribute to tissue remodelling. Indeed, protease‐activated receptor‐2 (PAR‐2) activation by MC‐tryptase is considered an oncogenic event in colorectal cancer (CRC). Recently, we have suggested NHERF1 as a potential new marker in CRC. In this study, we aimed to determine the distribution of tryptase(+) MCs and PAR‐2 and to examine the relationship between PAR‐2 and NHERF1, investigating their reputed usefulness as tumour markers. We studied a cohort of 115 CRC specimens including primary cancer (C) and adjacent normal mucosa (NM) by immunohistochemical double staining, analyzing the protein expression of MC‐tryptase, PAR‐2 and cytoplasmic NHERF1. MC density was higher in NM than in C. Tumours with high TNM stage and poor grade showed the highest MC density. A higher PAR‐2 immunoreactivity characterized tumours most infiltrated by MCs compared with samples with low MC density. Furthermore, PAR‐2 overexpression was associated with advanced TNM stage, poor grade and lymphovascular invasion (LVI). A positive correlation existed between tryptase(+) MC density and PAR‐2 expression. Cytoplasmic NHERF1 was higher in C than in NM and overexpressing tumours resulted associated with nodal and distant metastases, poor grade and LVI. PAR‐2 correlated with cytoplasmic NHERF1 and the PAR‐2(+)/cytoplasmic NHERF1(+) expression immunophenotype identified tumours associated with unfavourable prognosis and aggressive clinical parameters. Our data indicate that the high density of tryptase(+) MCs at invasive margins of tumours was associated with advanced stages of CRC and was strongly correlated with PAR‐2 expression.  相似文献   

5.
Tryptase, the most abundant mast cell (MC) granule protein, plays an important role in atherosclerosis plaque development. To test the hypothesis that tryptase participates directly in atherosclerosis plaque haemorrhage, the gene sequence and siRNA for tryptase were cloned into a lentivirus carrier and atherosclerosis plaque haemorrhage models in ApoE-/- mice were constructed. After a cuffing-cervical artery operation, the mice were randomly divided into 6 groups. Hematoxylin and eosin(HE) staining showed that the cervical artery plaque area was much larger in the tryptase overexpression group compared to the other groups, and there was greater artery stenosis. The artery stenosis from the cuff-side in all groups was more than 90%, except the siRNA group. Tryptase promotes plaque haemorrhage distinctively because 50% of the mice in the tryptase overexpression group had plaque haemorrhage, while only 10% in the siRNA group did. The immunohistochemistry of the cervical artery plaque showed that plasminogen activator inhibitor-1 (PAI-1) expression was the lowest while tissue plasminogen activator (tPA), CD31, CD34 and VEGF was the highest in the tryptase overexpression groups. This observation was completely contrary to what was observed in the siRNA group. Tryptase promoted bEnd.3 cell growth, migration and capillary-like tube formation, which suggests that tryptase can promote microvessel angiogenesis. PAI-1 expression was inhibited, while tPA expression was increased by tryptase in bEnd.3 cells. Our in vivo and in vitro studies suggest that trypase can promote atherosclerotic plaque haemorrhage by promoting angiogenesis and regulating the balance of PAI-1 and tPA. Thus, regulating tryptase expression in MCs may provide a potential target for atherosclerosis treatment.  相似文献   

6.
Recently, mast cell tryptase has been identified as another potent proangiogenic factor in tumors, along with fibroblast and vascular endothelial growth factors. Its role has been studied in a number of cancers, including carcinoma of the uterine cervix, with discordant results. Our aim was to study the expression of tryptase and bFGF in mast cells (MCs) during development of neoangiogenesis in premalignant and malignant lesions of the cervix. Biopsy specimens from 21 patients without cancer and from 63 patients with dysplasias and squamous cell carcinomas were used. They were stained with Alcian blue-safranin O (ABSO) and immunostained with specific antibodies against factor VIII, CD105, tryptase, and bFGF. Tryptase-positive mast cells increased with tumor progression and were close to newly formed blood vessels. Vascularization showed a linear increase from dysplasia to invasive cancer. We suggest that MC tryptase may upregulate neoangiogenesis in carcinogenesis of the uterine cervix.  相似文献   

7.
Mast cells and hemangioma   总被引:15,自引:0,他引:15  
Hemangioma is a primary tumor of the microvasculature in which angiogenesis is initially excessive, followed by spontaneous regression of the newly formed vessels, with the cellular parenchyma gradually being replaced with fibrofatty tissue. Mast cells, which are highly heterogenous in terms of their morphology, function, and metabolic products, have been implicated in the pathophysiology of hemangioma. Csaba stain shows that mast cells are predominantly of the biogenic amine phenotype throughout the development of hemangioma. The predominance of this phenotype remains unaltered following successful steroid therapy, although their number increases fourfold. Mast cells, all of which stain positive for tryptase, and those that stain positive for chymase as well, have been identified in hemangioma biopsy specimens throughout the three developmental phases. The total number of mast cells is highest during the involuting phase, less in the involuted phase, and least in the proliferative phase. The proportion of mast cells that contain both tryptase and chymase decreases from the proliferative through involuting to the involuted phase. This decreasing proportion of mast cells that contain both tryptase and chymase with ongoing involution parallels that of progressive deposition of the extracellular matrix as indicated by increasing fibrosis and fatty deposition. The short-chain type VIII collagen, thought to play a key role in angiogenesis, has been detected throughout the developmental phases of hemangioma. It has been postulated that this collagen, which is produced early in new vessel development, provides a substratum to facilitate the migration of endothelial cells. It may also facilitate the deposition of other extracellular constituents and influence cell movement and the maintenance of cell phenotypes. The intracellular localization of type VIII collagen in mast cells only in the early proliferative phase suggests that there is an active synthesis by mast cells during this phase. The increasing extracellular localization during hemangioma development may be caused by an increased secretion of protein from intracellular stores. The increased number of mast cells during the involuting phase indicates that these cells may play a role in the regression of hemangioma. This is in contrast to the large body of evidence showing the proangiogenic role of mast cells. The proportion of proliferating mast cells decreases, whereas the proportion of mast cells positive for clusterin/apolipoprotein J increases with ongoing involution of hemangioma. Clusterin/apolipoprotein J expression has been considered as a prominent marker of apoptotic cell loss. The presence of clusterin/apolipoprotein J granules both in the adjacent endothelial cells and in capillary lumens suggests that mast cells may be secreting this apoptotic modulator to promote the regression of hemangioma. Certain effectors produced by mast cells may participate in the development of hemangioma. It has been proposed that one of the functions of mast cells is to release factors leading to the regression of hemangioma. The evidence suggests that although mast cells may have a function in the endothelial proliferation in hemangioma, they also play a crucial role in the regression of this tumor. However, the roles of mast cells in the life cycle of hemangioma are likely to be complex and may involve stimulators of angiogenesis in the proliferative phase but inhibitors in later phases.  相似文献   

8.
肥大细胞是人体主要免疫细胞之一,因其作为导致过敏反应发生的最直接效应细胞而著称.肥大细胞最主要的结构特征为其胞内含有大量嗜碱性颗粒,该颗粒内又富含种类众多的生物活性物质,包括组胺、血管内皮生长因子(vascular endothelial growth factor,VEGF)、成纤维细胞生长因子(fibroblast...  相似文献   

9.
《Bioscience Hypotheses》2008,1(4):213-217
Over a long period of time, the impact of inhibiting angiogenesis as an option to treat malignancies, has been uncertain. Since the introduction of bevacizumab in the therapy of colorectal cancer, the mechanism and understanding of angiogenesis have become an important module in cancer treatment. Here we describe a new way of inhibiting angiogenesis: Mast cells and their including enzymes like tryptase display a crucial role in various types of lymphoma and solid tumors. In the past, tryptase inhibitors were clinically investigated regarding for example the treatment of allergic asthma or ulcerative colitis. We hypothesize that the use of tryptase inhibitors may broaden the treatment options in terms of malignancies with a histologically proven mast cell associated angiogenesis.  相似文献   

10.
Angiogenesis plays an important role in various pathological conditions as well as some physiological processes. Although a number of soluble angiogenic factors have been reported, extracellular matrix also has crucial effect on angiogenesis through interaction with endothelial cells. Since recent reports showed osteopontin had some angiogenic activity, the effect of the SVVYGLR peptide, novel binding motif in osteopontin molecule, on angiogenesis was examined in this study. Synthetic peptide SVVYGLR did not have proliferative effect on endothelial cells but adhesion and migration activity to endothelial cells. Furthermore, SVVYGLR had as potent activity for tube formation in three-dimensional collagen gel as vascular endothelial growth factor which is known to be the strongest angiogenic factor. Electron microscopical analysis showed a number of microvilli on the endothelial luminar surface and tight junction formation in the luminar intercellular border between endothelial cells, indicating SVVYGLR induced cell porarity and differentiation of endothelial cells. This small peptide might be expected to stimulate angiogenesis to improve some ischemic conditions in the future because of some advantages due to smaller molecular weight.  相似文献   

11.
Differentiation of adipocytes is accompanied by secretion of molecules stimulating angiogenesis in vivo and endothelial cell growth and motility in vitro. We demonstrate that the angiogenic and motility-stimulating activities secreted by adipocytes are separable from the endothelial cell mitogenic activity by fractionation of adipocyte-conditioned medium. The major differentiation-dependent angiogenic molecule was purified and identified by GCMS as 1-butyryl-glycerol (monobutyrin). Monobutyrin levels increase at least 200-fold during adipocyte differentiation and represent a major fraction of the total angiogenic activity. Synthetic monobutyrin shows the same spectrum of biological activities as the adipocyte-derived factor: stimulation of angiogenesis in vivo and microvascular endothelial cell motility in vitro, with no effect on endothelial cell proliferation. Angiogenesis is stimulated at doses as low as 20 pg when tested in the chick chorioallantoic membrane assay. These results strongly suggest that monobutyrin is a key regulatory molecule in an angiogenic process linked to normal cellular and tissue development.  相似文献   

12.
Hwang J  Son KN  Kim CW  Ko J  Na DS  Kwon BS  Gho YS  Kim J 《Cytokine》2005,30(5):254-263
A number of chemokines induce angiogenesis and endothelial cells express several chemokine receptors. To date, only a limited number of CC chemokines for CCR1 have been reported to induce angiogenic responses. We investigated the ability of CCL23 (also known as MPIF-1, MIP-3, or CKbeta8) to promote angiogenesis, which induces chemotaxis of immune cells through CCR1. CCL23 promoted the chemotactic migration and differentiation of endothelial cells, and neovascularization in the chick chorioallantoic membrane. An N-terminal truncated form of CCL23 was at least 100-fold more potent than its intact form and was comparable to that of FGF in the angiogenic activities. Treatment with either pertussis toxin or anti-CCR1 antibody completely inhibited the CCL23-induced endothelial cell migration, indicating that endothelial cell migration was mediated through CCR1. CCL23 didn't promote the migration of HT1080 human fibrosarcoma cells that did not express CCR1. Our results suggest a role of CCL23 in angiogenesis in vitro as well as in vivo.  相似文献   

13.
14.
Investigations carried out over the past 3 years have implicated a key role for sphingosine 1-phosphate (SPP) in angiogenesis and blood vessel maturation. SPP is capable of inducing almost every aspect of angiogenesis and vessel maturation in vitro, including endothelial cell chemotaxis, survival, proliferation, capillary morphogenesis and adherence antigen deployment, as well as stabilizing developing endothelial cell monolayers and recruitment of smooth muscle cells to maturing vessels. Acting in conjunction with protein angiogenic factors, SPP induces prolific vascular development in many established models of angiogenesis in vivo. Thus, SPP is a unique, potent and multifaceted angiogenic agent. While SPP induces angiogenic effects by ligating members of the endothelial differentiation gene (EDG) G-protein-coupled family of receptors, recent studies suggest that endogenously produced SPP may also account for the ability of tyrosine kinase receptors to induce cell migration. Thus, SPP provides a clear link between tyrosine kinase and G-protein-coupled receptor agonists involved in the angiogenic response. However, the mechanisms by which SPP exerts its effects on vascular cells remain unclear, conflicting and controversial. Precise definition of the signalling pathways by which SPP induces specific aspects of the angiogenic response promises to lead to new and effective therapeutic approaches to regulate angiogenesis at sites of tissue damage, neoplastic transformation and inflammation. This review will trace the discovery of SPP as a novel angiogenic factor as it outlines present information on the signalling pathways by which SPP induces its effects on cells of the developing vascular bed.  相似文献   

15.
The field of antiangiogenesis has shown a remarkably rapid evolution from the discovery at the bench to translation into the clinic. Currently a wide variety of compounds are in clinical trial as inhibitors of angiogenesis, and new compounds are being frequently added. The target cell of most angiogenesis inhibitors is the endothelial cell, with inhibitors that selectively affect a number of endothelial cell functions acquired during angiogenesis, including activation, proliferation, migration, invasion and survival. The endothelial cell may also be targeted by chemotherapeutic agents currently in use. The high doses and intermittent treatment schedules used to fight resistant tumor cells may be altered towards lower doses and chronic administration to obtain selective inhibition of angiogenic factor-stimulated endothelial cells as adjuvant therapy. Finally, gene therapy is a promising route for the delivery of novel protein inhibitors of angiogenesis, and is actively being investigated.  相似文献   

16.
Retinal endothelial cells (ECs) and pericytes (PCs) were cloned and cultured from normal and diabetic rabbits to clarify the mechanism of diabetic proliferative retinopathy from the viewpoint of the interaction between ECs and PCs, and phenotypic changes of diabetic cells. PC-conditioned medium (PC-CM) from normal rabbits stimulated in vitro angiogenesis of diabetic ECs more than that of normal ECs. in vitro angiogenesis was also more stimulated in diabetic ECs than in normal ECs by basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1, indicating that diabetic ECs are different from normal ECs in terms of angiogenic potential. One mechanism of this property of diabetic ECs was the acceleration of cell proliferation but not of cell migration, because diabetic ECs grew more rapidly but did not migrate more than normal ECs in response to PC-CM or bFGF. Moreover, PC-CM from diabetic PCs stimulated angiogenesis of normal ECs more than that from normal PCs, indicating that diabetic PCs secreted more angiogenic factor(s) than normal PCs. The angiogenic, mitogenic and migratory activities of PC-CM both from normal and diabetic PCs were similarly inhibited by an anti-bFGF antibody. Western blot analysis revealed this factor to be a bFGF-like molecule. These data indicate that the interaction between ECs and PCs and the phenotypic changes of diabetic ECs and PCs both contribute to the proliferative retinopathy in diabetes.  相似文献   

17.
Angiogenesis, the formation of new blood vessels, is involved in a variety of diseases including the tumor growth. In response to various angiogenic stimulations, a number of proteins on the surface of vascular endothelial cells are activated to coordinate cell proliferation, migration, and spreading processes to form new blood vessels. Plasma membrane localization of these angiogenic proteins, which include vascular endothelial growth factor receptors and integrins, are warranted by intracellular membrane trafficking. Here, by using a siRNA library, we screened for the sorting nexin family that regulates intracellular trafficking and identified sorting nexin 9 (SNX9) as a novel angiogenic factor in human umbilical vein endothelial cells (HUVECs). SNX9 was essential for cell spreading on the Matrigel, and tube formation that mimics in vivo angiogenesis in HUVECs. SNX9 depletion significantly delayed the recycling of integrin β1, an essential adhesion molecule for angiogenesis, and reduced the surface levels of integrin β1 in HUVECs. Clinically, we showed that SNX9 protein was highly expressed in tumor endothelial cells of human colorectal cancer tissues. High-level expression of SNX9 messenger RNA significantly correlated with poor prognosis of the patients with colorectal cancer. These results suggest that SNX9 is an angiogenic factor and provide a novel target for the development of new antiangiogenic drugs.  相似文献   

18.
Mast cells (MCs) expressing serine proteases; tryptase and chymase, are associated with fibrosis in various diseases. However, little is known about their involvement in oral submucous fibrosis (OSF). Our goal was to evaluate the role of MC tryptase and chymase in the pathogenesis of OSF and its malignant transformation. Immunohistochemical expression of MC tryptase and chymase was evaluated in 20 cases of OSF, 10 cases of oral squamous cell carcinoma (OSCC) and 10 cases of healthy controls. Subepithelial zone of Stage 1 and 2 while deep zone of Stage 3 and 4 OSF demonstrated increased tryptase positive MCs. OSCC revealed a proportionate increase in tryptase and chymase positive MCs irrespective of areas of distribution. An altered balance in the subepithelial and deep distribution of tryptase and chymase positive MCs play an important role in the pathogenesis of OSF and its malignant transformation.  相似文献   

19.
20.
Stem cell‐conditioned medium (CM), which contains angiogenic factors that are secreted by stem cells, represents a potential therapy for ischemic diseases. Along with stem cells, tumor cells also secrete various angiogenic factors. Here, tumor cells as a cell source of CM for therapeutic angiogenesis was evaluated and the therapeutic efficacy of tumor cell CM in mouse hindlimb ischemia models was demonstrated. CM obtained from a human fibrosarcoma HT1080 cell line culture was compared with CM obtained from a human bone marrow‐derived mesenchymal stem cell (MSC) culture. HT1080 CM contained higher concentrations of angiogenic factors compared with MSC CM, which was attributable to the higher cell density that resulted from a much faster growth rate of HT1080 cells compared with MSCs. For use in in vitro and in vivo angiogenesis studies, HT1080 CM was diluted such that HT1080 CM and MSC CM would have the same cell number basis. The two types of CMs induced the same extent of human umbilical vein endothelial cell (HUVEC) proliferation in vitro. The injection of HT1080 CM into mouse ischemic limbs significantly improved capillary density and blood perfusion compared with the injection of fresh medium. Although the therapeutic outcome of HT1080 CM was similar to that of MSC CM, the preparation of CM by tumor cell line culture would be much more efficient due to the faster growth and unlimited life‐time of the tumor cell line. These data suggest the potential application of tumor cell CM as a therapeutic modality for angiogenesis and ischemic diseases. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:456–464, 2016  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号