首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary Plasma membranes were isolated from rat and mouse livers, one rat hepatoma (and its subline) and two mouse hepatomas, and their lipid class compositions were determined. Lipids accounted for 30 to 35% of the dry weight of the membranes of livers and mouse hepatomas, and for 45% in the case of rat hepatoma-subline. Of the total lipids of rat-liver plasma membranes, 60% consisted of phospholipids, the corresponding values for mouse-liver and rat-hepatoma plasma membranes amounting to 55% and for both mouse-hepatoma plasma membranes to about 50%. The free cholesterol and cholesteryl ester contents of all hepatoma plasma membranes were significantly increased as compared with normal. Evidence is presented that the increase of free cholesterol was not a preparative artefact. The major phospholipid classes in all plasma membranes were phosphatidyl choline, sphingomyelin, phosphatidyl ethanolamine and phosphatidyl serine. The relative proportions in each plasma membrane species could differ appreciably, the mouse- and rat-liver membranes showing the closest resemblance. Possible reasons for (a) the higher level of phosphatidyl serine as compared with published values, and (b) the wide divergencies which may be found among the phospholipid profiles of rat-liver plasma membranes reported by other authors, are presented. Cardiolipin was absent from liver plasma membranes, but some could be found in the hepatoma membranes due to mitochondrial contamination. No consistent phospholipid profile characterized hepatoma as distinct from liver plasma membranes, nor did the hepatoma data-including plasmalogens-resemble the few available data on other hepatomas.  相似文献   

2.
Ganglioside compositions of plasma membrane fractions highly purified from rat liver and hepatomas by phase partitioning were compared with those of fractions composed of internal membranes, free of plasma membrane. With liver, 70-80% of the the lipid bound sialic acid were accounted for by a plasma membrane location. In hepatomas this percentage was reduced to 50-65%. More pronounced was the distribution of the simple monosialoganglioside GM3. In the hepatomas, 60-80% of the GM3 was found associated with internal membranes as compared to liver where only 35% of the GM3 was present in internal membranes. The findings suggest a glycolipid sorting defect in hepatocarcinogenesis where gangliosides, and especially monosialogangliosides, are diverted to internal membranes rather than being correctly transported to the cell surface. Since GM3 is synthesized exclusively in the Golgi apparatus of both liver and hepatomas, the basis for the sorting defect may reside in a functionally altered Golgi apparatus.  相似文献   

3.
The subcellular distribution of arylamidase-active antigens in rat liver and in two chemically induced hepatomas (D23 and D33) was investigated. Soluble antigens or detergent-solubilized membrane antigens from isolated subcellular fractions were tested in fused rocket immunoelectrophoresis against antisera prepared against each of the fractions. The arylamidase active antigens were identified by means of a zymogram technique using l-leucine 2-naphthylamide as substrate.Two arylamidase-active antigens were shown to be shared between plasma membranes, microsomes, lysosomal membranes and lysosomal content of the hepatocytes. One of these occurred predominantly in the plasma membranes (the plasma membrane arylamidase) while the other was preferentially found in the lysosomal content (the lysosomal content arylamidase). Also a third arylamidase-active antigen was identified and was shown to be restricted to the microsomes and the lysosomal membranes (the microsomal/lysosomal arylamidase).The rat liver plasma membrane arylamidase-active antigen was also present in plasma membrane, microsomal an cell-sap fractions of both the hepatomas. However, in the hepatomas this antigen occurred predominantly in the microsomal fraction. The plasma membrane arylamidase was the only arylamidase-active antigen found in the hepatoma D33 while the plasma membrane and microsomal fractions of hepatoma D23 also contained another antigen with this activity. Neither the lysosomal content arylamidase nor the microsomal/lysosomal arylamidase could be detected in any of the hepatoma fractions.  相似文献   

4.
The subcellular distribution of arylamidase-active antigens in rat liver and in two chemically induced hepatomas (D23 and D33) was investigated. Soluble antigens or detergent-solubilized membrane antigens from isolated subcellular fractions were tested in fused rocket immunoelectrophoresis against antisera prepared against each of the fractions. The arylamidase active antigens were identified by means of a zymogram technique using L-leucine 2-naphthylamide as substrate. Two arylamidase-active antigens were shown to be shared between plasma membranes, microsomes, lysosomal membranes and lysosomal content of the hepatocytes. One of these occurred predominantly in the plasma membranes (the plasma membrane arylamidase) while the other was preferentially found in the lysosomal content (the lysosomal content arylamidase). Also a third arylamidase-active antigen was identified and was shown to be restricted to the microsomes and the lysosomal membranes (the microsomal/lysosomal arylamidase). The rat liver plasma membrane arylamidase-active antigen was also present in plasma membrane, microsomal and cell-sap fractions of both the hepatomas. However, in the hepatomas this antigen occurred predominantly in the microsomal fraction. The plasma membrane arylamidase was the only arylamidase-active antigen found in the hepatoma D33 while the plasma membrane and microsomal fractions of hepatoma D23 also contained another antigen with this activity. Neither the lysosomal content arylamidase nor the microsomal/lysosomal arylamidase could be detected in any of the hepatoma fractions.  相似文献   

5.
Glycolipid composition of purified plasma membranes from rat ascites hepatomas, two island-forming cell-lines and two cell-lines of the free-type, and normal rat liver were compared. Ceramide monohexoside (CMH), ceramide dihexoside (CDH), and hematoside (GM3) were found in normal rat liver cell membranes. The island-type hepatomas contained ceramide trihexoside (CTh) and globoside besides CMH, CDH, and GM3. The free-type of hepatomas were characterized by the presence of asialo-type gangliosides but not GM3. The free-type of hepatomas were characterized by the presence of asialo-type gangliosides but not GM3. Blood group H active fucolipid was a major glycolipid in the free-type of ascites hepatoma cell (AH 7974 F). The increase of glycolipid content in cell membranes seemed to be accompanied with a decrease of cell adhesiveness.  相似文献   

6.
Plasma membranes from rat liver were found to contain at least two types of specific binding sites for cyclic [3H] adenosine 3', 5'-monophosphate (c[3H]AMP) with apparent dissociation constants of 0.51 +/- 0.14 and 2.9 +/- 0.6 nM (O degrees), respectively. The levels of these binding sites in liver plasma membranes were about 0.60 +/- 0.20 and 1.3 +/- 0.5 pmole/mg protein. The highest affinity binders for c[3H]AMP were found to be reduced in amount in plasma membranes of ascites hepatomas to 1/3 to 1/4 as compared with liver membranes in the cases of AH-130 and AH-7974 and to an almost undetectable level in the case of AH-130F(N). No difference in the endogenous phosphorylation of plasma membranes by (gamma-32P])ATP was, however, detected among liver and hepatoma plasma membranes. Addition of cAMP or cGMP at various concentrations did not affect the endogenous phosphorylation of plasma membranes of these cells.  相似文献   

7.
1. A procedure for the stepwise fractionation of the proteins of mouse liver plasma membranes is described. 2. Of the membrane protein 20-25% was soluble in 50mm-sodium carbonate-bicarbonate buffer (pH9.7). This fraction contained a large number of proteins but only 1 major glycoprotein. It was low in sialic acid, amino sugars and phospholipid. 3. Extraction of the alkali-insoluble residue with aq. 33% pyridine solubilized an additional 30-35% of the membrane protein. The pyridine-soluble membrane components were enriched in sialic acid and glucosamine and it was shown that this procedure resulted in the selective extraction of glycoproteins. 4. Gel filtration in sodium dodecyl sulphate resolved the pyridine-soluble proteins into five fractions of decreasing molecular weight and an inverse relationship between molecular weight and sialic acid content was indicated.  相似文献   

8.
Polysome and ribosome preparations from normal rat liver and from a series of transplantable rat hepatomas of different growth rates were compared. All the hepatomas had a significantly higher percentage of RNA in a polysome preparation than did the normal liver, and the polysome preparations from the tumors, with the exception of the Dunning hepatoma which has a high lipid content, gave a greater yield of RNA and protein per gram of wet tissue than the liver did. Heavier polysomes were considerably less prevalent in the tumors than in the liver, and the tumors contained a larger proportion of monomer and dimer ribosomes than the liver did. Evidence is presented that the increased monomer and dimer ribosome population of the hepatomas studied is not an artifact of preparation, but represents the true intracellular distribution. Ribosomes from normal liver and Morris 5123-D hepatoma were readily dissociated by 20 min'' treatment with 1.0 mM EDTA, but ribosomes from the Dunning, Novikoff ascites, and McCoy MDAB hepatomas were little affected by such treatment. With higher concentrations of EDTA, the ribosomes from the Novikoff ascites and McCoy MDAB hepatomas broke down and did not form specific subunits as did ribosomes from liver and the Morris 5123-D hepatoma but rather gave rise to a variety of small degradation products. This behavior is ascribed to a higher RNase content of the Novikoff and McCoy MDAB hepatomas. Dunning hepatoma ribosomes were resistant to 4 mM EDTA.  相似文献   

9.
Half-lives and rate constants of degradation of protein-bound fucose have been determined in plasma membranes and total cell homogenates of rat liver and Morris hepatoma 7777. The existence of at least two dynamically different classes of fucose-containing glycoproteins could be demonstrated in both liver and hepatoma plasma membranes. The apparent half-lives were 8.4 and 24.5 h (host liver) and 11.5 and 33.9 h (Morris hepatoma). Since this biphasic loss of fucose residues was not observed for sialic acid [Harms & Reutter (1974) Cancer Res. 34, 3165--3172], the differences are possibly related to specific functions of fucosylated glycoproteins of the plasma membrane.  相似文献   

10.
1.
1. Isolated rat-liver plasma membranes, freed from protein soluble in 0.15 M NaCl, hydrolyzed leucyl-β-naphthylamide, leucinamide, leucylglycine, leucylglycylglycine and glycylglycylglycine, but not glycylglycine and glutathione.  相似文献   

11.
Summary The fluorescent fatty acids,trans-parimaric andcis-parinaric acid, were used as analogs of saturated and unsaturated fatty acids in order to evaluate binding of fatty acids to liver plasma membranes isolated from normal fed rats. Insulin (10–8 to 10–6 m) decreasedtrans-parinaric acid binding 7 to 26% whilecis-parinaric acid binding was unaffected. Glucagon (10–6 m) increasedtrans-parinaric acid binding 44%. The fluorescence polarization oftrans-parinarate,cis-parinarate and 1,6-diphenyl-1,3,5-hexatriene was used to investigate effects of triiodothyronine, insulin and glucagon on the structure of liver plasma membranes from normal fed rats or from rats treated with triiodothyronine or propylthiouracil. The fluorescence polarization oftrans-parinarate,cis-parinarate, and 1,6-diphenyl-1,3,5-hexatriene was 0.300±0.004, 0.251±0.003, and 0.302±0.003, respectively, in liver plasma membranes from control rats and 0.316±0.003, 0.276±0.003 and 0.316±0.003, respectively, in liver plasma membranes from hyperthyroid rats (p<0.025,n=5). Propylthiouracil treatment did not significantly alter the fluorescence polarization of these probe molecules in the liver plasma membranes. Thus, liver plasma membranes from hyperthyroid animals appear to be more rigid than those of control animals. The effects of triiodothyronine, insulin and glucagon addedin vitro to isolated liver plasma membrane preparations were also evaluated as follows: insulin (10–10 m) and triiodothyronine (10–10 m) increased fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene in liver plasma membranes while glucagon (10–10 m) had no effects. These hormonal effects on probe fluorescence polarization in liver plasma membranes were abolished by pretreatment of the rats for 7 days with triiodothyronine. Administration of triiodothyronine (10–10 m)in vitro increased the fluorescence polarization of trans-parinaric acid in liver plasma membranes from propylthiouracil-treated rats. Thus, hyperthyroidism appeared to abolish thein vitro increase in polarization of probe molecules in the liver plasma membranes. Temperature dependencies in Arrhenius plots of absorption-corrected fluorescence and fluorescence polarization oftrans-parinaric acid,cis-parinaric acid and 1,6-diphenyl-1,3,5-hexatriene were noted near 25°C in liver plasma membranes from triiodothyronine-treated rats and near 18°C in liver plasma membranes from propylthiouracil-treated rats. In summary, hormones such as triiodothyronine, insulin and glucagon may at least in part exert their biological effects on metabolism by altering the structure of the liver plasma membranes.  相似文献   

12.
(1) The apparent [3H]epinephrine binding parameters of plasma membranes from rat liver and ascites hepatomas such as AH-7974, AH-371A and AH-130, as measured by equilibrium dialysis and/or Millipore filtration, were almost similar to each other. The epinephrine binding sites in the plasma membranes were heterogenous (alpha, beta-receptors and non specific sites), but the pattern of these binding sites in the liver membranes appeared almost similar to that in the hepatoma membranes. 2. The beta-receptor seemed to be specifically involved in the epinephrine-mediated activation of adenylate cyclase of the liver membranes. In spite of the presence of almost similar beta-receptors and adenylate cyclase, the adenylate cyclase of hepatoma membranes was found to be less sensitive to the epinephrine-mediated activation. 3. GTP alone was found to activate adenylate cyclase of liver and hepatoma membranes to some extents when the concentration of ATP was lower (0.3 mM). When GTP was added with epinephrine, a marked, synergistic activation of adenylate cyclase was observed in liver plasma membranes, but not in hepatoma ones. 4. The synergistic activation of adenylate cyclase by epinephrine plus GTP showed a characteristic kinetic feature, reaching a maximal peak within 1 min or so after mixing. 5. Binding of [3H]epinephrine to liver membranes proceeded monophasically in the absence of GTP, while it proceeded biphasically in the presence of GTP, showing the retardation of binding at some earlier stages. GTP added at the time of binding equilibrium induced the temporary release of bound epinephrine from the beta-receptors. The GTP-induced temporary release of bound epinephrine, occurring within 4-5 min after the addition of GTP, was less marked in the hepatoma membranes as compared with the liver membranes. 6. Possible impairment of the GTP-dependent coupling mechanism in the receptor-adenylate cyclase system of hepatoma plasma membranes was suggested.  相似文献   

13.
1. Plasma membranes from ascites hepatoma cells (AH-7974, AH-130) contained much smaller amounts of calmodulin (about half) and cyclic AMP phosphodiesterase (about one-third) compared to plasma membranes of rat livers. 2. Some of calmodulin molecules in liver plasma membranes were released by repeated washing. The 'washed' liver plasma membranes showed the presence of specific binding sites for externally added calmodulin molecules (bovine brain) (N = 140 pmol/mg protein, Kd = 7.9 . 10(-8) M). The calmodulin content of AH-7974 plasma membranes was not reduced by repeated washing. The binding of calmodulin to the 'washed' AH-7974 plasma membranes was only of nonspecific nature with negative cooperativity. 3. Plasma membranes (liver and AH-7974) appeared to contain both calmodulin-dependent and calmodulin-independent phosphodiesterase, but the stimulation by externally added Ca2+ plus calmodulin was rather small. Externally added calmodulin-dependent phosphodiesterase (bovine brain) was bound more to 'washed' liver plasma membranes than to 'washed' AH-7974 plasma membranes. Newly bound phosphodiesterase appeared to be more sensitive to the stimulation by Ca2+ plus calmodulin in 'washed' hepatoma plasma membranes than in 'washed' liver plasma membranes. 4. Preincubation of 'washed' plasma membranes (liver and hepatoma) with calmodulin did not affect the binding of phosphodiesterase, but the sensitivity of phosphodiesterase to the stimulation by Ca2+ plus calmodulin in hepatoma plasma membranes was lost.  相似文献   

14.
NADH oxidase activity of plasma membranes from rat hepatoma and HeLa cells responded to thiol reagents in a manner different from that of plasma membranes of liver. Specifically, the NADH oxidase activity of plasma membranes of HeLa cells was inhibited by submicromolar concentrations of the thiol reagentsp-chloromercuribenzoate (PCMB),N-ethylmaleimide (NEM), or 5,5-dithiobis-(2-nitrophenylbenzoic acid) (DTNB), whereas that of the rat liver plasma membranes was unaffected or stimulated over a wide range of concentrations extending into the millimolar range. With some hepatoma preparations, the NADH oxidase activity of hepatoma plasma membranes was stimulated rather than inhibited by PCMB, whereas with all preparations of hepatoma plasma membranes, NEM and DTNB stimulated the activity. In contrast, NADH oxidase activity of rat liver plasma membrane was largely unaffected over the same range of PCMB concentrations that either stimulated or inhibited with rat hepatoma or HeLa cell plasma membranes. Dithiothreitol and glutathione stimulated NADH oxidase activity of plasma membranes of rat liver and hepatoma but inhibited that of HeLa plasma membranes. The findings demonstrate a difference between the NADH oxidase activity of normal rat liver plasma membranes of rat hepatoma and HeLa cell plasma membranes in addition to the differential response to growth factors and hormones reported previously (Brunoet al., 1992). Results are consistent with a structural modification of a NADH oxidase activity involving thiol groups present in plasma membranes of rat hepatoma and HeLa cells but absent or inaccessible with plasma membranes of rat liver.  相似文献   

15.
1. The fraction of proteins extracted from nuclei with 0.35 M NaCl and soluble in 2% trichloroacetic acid was examined in five Morris hepatomas and rat liver. 2. This fraction was a much greater percentage of the total 0.35 M NaCl soluble proteins in the tumors than in normal or regenerating liver. 3. In part, this difference was due to proteins with molecular weights greater than high mobility group proteins. 4. The conditions for precipitation of high mobility group proteins 1 and 2 with trichloroacetic acid were found to differ in hepatoma and liver fractions.  相似文献   

16.
The highly malignant rat hepatoma 27 was found to have increased amounts of lipid-bound sialic acid as compared with normal liver whereas in regenerating liver the lipid-bound sialic acid level was reduced. In contrast to the liver the hepatoma contained higher amounts of disialogangliosides and no trisialogangliosides, which are abundant in the liver. The main disialoganglioside of the hepatoma had no analogue among the liver gangliosides and was identified as Gal-GalNAc(AcNeu-AcNeu)-Glc-Cer (GD1b), which in other tissues is known to be a precursor of trisialogangliosides. These findings may be explained by a reduced activity of glycosyltransferases in the hepatoma and apparently do not simply reflect differences in growth rate since the ganglioside pattern of regenerating rat liver was not altered significantly in comparison with the liver. Liver and hepatoma microsomes were found to be enriched in gangliosides as compared with whole cells, liver mitochondria were slightly poorer, while the ganglioside level of hepatoma mitochondria was much higher than that of the hepatoma cells. It thus appears that the existing image of the plasma membranes as the only sites of high ganglioside concentration may not hold true for weakly differentiated hepatomas of high malignancy.  相似文献   

17.
Summary Renal cortical plasma membranes were separated by free flow electrophoresis into luminal (brush border microvilli) and contraluminal (basal-lateral membrane) fractions. These membranes were found to contain an intrinsic, self-phosphorylating system which consists of a cyclic AMP-dependent protein kinase, a phosphoprotein phosphatase and the substrate(s) of these enzymes. The kinase, but not the phosphatase, was stimulated by cyclic AMP; maximal (1.7-fold) stimulation was effected at a cyclic AMP concentration of 0.1 m. The degree of phosphorylation of the brush borders was six times greater than that of the basal-lateral membranes in the absence of cyclic AMP and 2.3-fold greater in the presence of cyclic AMP. This preferential phosphorylation of the luminal membrane by membrane-associated protein kinase(s) may play a role in the parathyroid hormone-mediated alterations of solute reabsorption in the proximal tubule.  相似文献   

18.
19.
Plasma-membrane as well as smooth-, rough- and degranulated-endoplasmic-reticulum-membrane fractions were isolated from the microsomal pellet of rat liver. The purity of these fractions, as determined by marker-enzyme activities, electron microscopy, cholesterol content and RNA content, was found to be adequate for a comparative structural study. Major differences in lipid and protein composition were found to exist between the plasma membrane and the endoplasmic reticulum, but not between the smooth and the rough fractions of the endoplasmic reticulum. Differences in the location of membrane protein thiol groups and the mobility of the membrane phospholipids were observed between the plasma membranes and the endoplasmic reticulum, and these could be explained by differences in protein and lipid composition. However, by employing fluorescence and spin-labelling techniques structural changes were also observed between the smooth and the rough endoplasmic-reticulum fractions. These results suggest that the structural heterogeneity existing between the two latter membrane fractions occurs near or on their membrane surfaces and is not due to the greater number of ribosomes bound to the rough endoplasmic-reticulum fraction.  相似文献   

20.
The plasma membranes of the glycogen-free and the glycogen-containing subline of Ehrlich-Lettrè ascites cells were purified and compared with respect to their enzyme activity, chemical, lipid and protein composition, and membrane fluidity. Both membrane fractions differed in a number of parameters which are discussed as differences in the expression of malignant transformation of the two sublines. 1. The 5′-nucleotidase activity was 3–5-times higher and the sialic acid content 3-times lower in the glycogen-containing than in the glycogen-free subline. 2. Differences were also observed with respect to the phospholipid composition, that is in the relative proportions of mainly phosphatidylcholine, -inositol and -serine. 3. The fatty acid spectrum of the two sublines differed in the C-18 series and in the percentage of polyunsaturated acids, which was about 6% lower in the glycogen-containing line. 4. Measurements of fluorescence polarization (P) using 1,6-diphenyl-1,3,5-hextriene as probe generally gave higher P values, indicating a decreased membrane fluidity for the plasma membranes of the glycogen-containing subline both below and above the transition temperature at 33°C. 5. Polyacrylamide gel electrophoresis revealed different protein patterns mainly in the molecular weight range of around 90 000 and in the range between 31 000 and 14 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号