首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fertilization of the sea urchin egg is accompanied by the assembly of an extracellular glycoprotein coat, the fertilization membrane. Assembly of the fertilization membrane involves exocytosis of egg cortical granules, divalent cation-mediated association of exudate proteins with the egg glycocalyx (the vitelline layer), and cross- linking of the assembled structure by ovoperoxidase, a fertilization membrane component derived from the cortical granules. We have identified and isolated a new protein, which we call proteoliaisin, that appears to be responsible for inserting ovoperoxidase into the fertilization membrane. Proteoliaisin is a 250,000-Mr protein that binds ovoperoxidase in a Ca2+-dependent manner, with half-maximal binding at 50 microM Ca2+. Other divalent cations are less effective (Ba2+, Mn2+, and Sr2+) or ineffective (Mg2+ and Cd2+) in mediating the binding interaction. Binding is optimal over the physiological pH range of fertilization membrane assembly (pH 5.5-7.5). Both proteoliaisin and ovoperoxidase are found in isolated, uncross-linked fertilization membranes. We have identified several macromolecular aggregates that are released from uncross-linked fertilization membranes after dilution into divalent cation-free buffer. One of these is an ovoperoxidase- proteoliaisin complex that is further disrupted only upon the addition of EGTA. These results suggest that a Ca2+-stabilized complex of ovoperoxidase and proteoliaisin forms one structural subunit of the fertilization membrane.  相似文献   

2.
Fertilization of the sea urchin egg leads to the assembly of an extracellular matrix, the fertilization envelope. Ovoperoxidase, the enzyme implicated in hardening the fertilization envelope, is inserted into the assembling structure via a Ca2+-dependent interaction with the protein proteoliasin (P. Weidman and B. M. Shapiro, 1987, J. Cell Biol. 105, 561-567). In the present report, polyclonal antisera were raised to ovoperoxidase and proteoliasin (purified from eggs of Strongylocentrotus purpuratus) and characterized by Western blot analysis and an enzyme-linked immunoabsorbent assay (ELISA). By indirect immunofluorescence microscopy all cortical granules of unfertilized eggs, as well as the fertilization envelope, contained both proteoliasin and ovoperoxidase. At the ultrastructural level both proteins are localized to the electron-dense spiral lamellae of the cortical granules. Western blot analysis revealed that ovoperoxidase and proteoliasin persist in early embryos until hatching, but are absent from later developmental stages. Homogenates of eggs of several other echinoderm species (Strongylocentrotus droebachiensis, Strongylocentrotus franciscanus, Pisaster ochraceus, Dendraster excentricus, and Lytechinus pictus) also contain proteins antigenically similar to ovoperoxidase and proteoliaisin, indicating that many echinoderms utilize a similar strategy for assembly of the fertilization envelope. The results underline the need for postsecretory controls in the extracellular matrix modifications that accompany the cortical reaction.  相似文献   

3.
Trypsin-like protease in sea urchin eggs is thought to reside in cortical granules since it is secreted at fertilization and has been isolated with cortical granule fractions from unfertilized eggs. A 35-kDa serine protease has been purified from Strongylocentrotus purpuratus eggs by soybean trypsin inhibitor-affinity chromatography. For this report the protease was localized by immunocytochemistry before and after fertilization, and its potential biological activity was examined by application of the isolated enzyme to the unfertilized egg surface. The protease was localized on sections by immunofluorescence and immunoelectron microscopy, and was found to reside in the spiral lamellae of S. purpuratus cortical granules and in the electron-dense stellate core of Arbacia punctulata granules. At fertilization the enzyme is secreted into the perivitelline space and accumulates only very briefly between the hyaline layer and the nascent fertilization envelope. Shortly thereafter the enzyme is lost from the perivitelline space and immunological reactivity is no longer associated with the egg surface. The 35-kDa cortical granule protease has vitelline delaminase activity but does not appear to destroy vitelline envelope sperm receptors as judged by the fertility of protease-treated eggs.  相似文献   

4.
Ovoperoxidase, the enzyme that hardens the sea urchin fertilization envelope, is inserted into the assembling extracellular matrix through the action of an intermediary protein, proteoliaisin (PLN). The domain structure of PLN, a large, rod-shaped protein that binds to ovoperoxidase and the vitelline layer, was examined by limited proteolytic cleavage. Purified proteolytic fragments of PLN were tested for their ability to bind ovoperoxidase, inhibit the binding of 125I-PLN to the vitelline layer, or act as substrates for the hardening reaction. Based on these results, the vitelline layer-binding domain can be placed near the amino terminus, followed by the binding site for ovoperoxidase; the distal two-thirds of the protein contain sites for ovoperoxidase-catalyzed dityrosine formation. The pentapeptide GRGDS (but not RGD) inhibited PLN-vitelline layer binding half-maximally at 0.2 mM. Moreover, PLN promoted adhesion of bovine aortic endothelial cells to plastic dishes, a process inhibited by GRGDS. Thus PLN is a new member of the adhesive protein family, the function of which is to coordinate the morphogenesis of a specific, rapidly assembled extracellular matrix.  相似文献   

5.
At fertilization in most animals, cortical granules of the egg or oocyte secrete their contents, whose function it is to modify the extracellular matrix. This modified matrix then participates in the block to polyspermy and protection for early embryonic development. In the sea urchin, contents of the cortical granules are secreted within 30 sec of insemination. Several of these content proteins then bind to the nascent vitelline layer of the egg and lift off the cell surface to form a stable, impervious, fertilization envelope. At least six major proteins are present in the envelope, and recently we have identified cDNA clones of two, ovoperoxidase, and SFE9. Here we report on the identification and characterization of SFE1, a constituent of the fertilization envelope of the sea urchin Strongylocentrotus purpuratus, that has revealing characteristics of how the envelope might form and what protein interaction domains might predominate. We present the largest cDNA sequence we were able to identify representing approximately two thirds of the predicted protein coding region. The C-terminal half of the cognate SFE1 protein contains two different amino acid repeat motifs: a cysteine-rich (15%) motif of 40 amino acids that is tandemly repeated 22 times and is followed by a serine/threonine-rich (38%) repeat of 63 amino acids that is tandemly repeated 3.5 times. Surprisingly, just N-terminal to the cysteine-rich repeat region is a sequence of five repeats with similarity to repeats in another cortical granule protein, SFE9, and to the motif originally identified in the receptor of low-density lipoproteins, the LDLr motif. The amino acid composition deduced from the partial SFE1 cDNA is similar also to the composition of proteoliaisin, a protein thought to tether the ovoperoxidase to the vitelline layer of the egg and thereby sequester the crosslinking activity of the ovoperoxidase to a limited population of proteins in the fertilization envelope. However, by use of monoclonal and polyclonal antibodies to SFE1 and proteoliaisin, we show here that they are distinct gene products. We also show that SFE1 is packed selectively into the cortical granules and then is crosslinked into the fertilization envelope following fertilization. In situ RNA hybridization analysis shows that the mRNA of SFE1 (9 kilobases) is present in oocytes selectively and is turned over rapidly in the oocyte following germinal vesicle breakdown. Our findings suggest that the gene encoding this major product of the egg is activated concomitantly with the other cortical granule-specific products already identified, and that a common LDLr-like motif of the fertilization envelope may reveal a structural mechanism for protein interactions in its construction.  相似文献   

6.
Integrins are expressed on the surface of some vertebrate eggs where they are thought to have a role in fertilization. The objective of this study is to determine if integrins are expressed on sea urchin eggs. The alphaB and betaC subunits were cloned using the homology polymerase chain reaction. Monoclonal and polyclonal antibodies were developed against bacterially expressed fragments of the extracellular domains of the betaC subunit and the alphaB subunit. As well, a monoclonal antibody was developed against a synthesized peptide corresponding to part of the cytoplasmic domain of betaC. Analysis of biotinylated egg cortex extracts immunoprecipitated with either anti-betaC or anti-alphaB yields bands of 130 and 225 kDa. Immunoblots confirm that betaC is part of the complex immunoprecipitated with anti-alphaB. Confocal immunofluorescence and immunogold electron microscopy show that betaC is present on the surface of the unfertilized egg at the tips of microvilli and in cortical granules. During the cortical reaction, immunoreactivity with antibodies to the extracellular domains of betaC and alphaB disappears from the egg surface, and microvillar casts on the fertilization envelope become immunoreactive. With antibodies to the cytoplasmic domain of betaC, immunoreactivity is lost from the surface of the egg, but the fertilization envelope does not immediately become immunoreactive. In immunoblots of egg cortex there are immunoreactive bands of the predicted sizes for alphaB and betaC. However, in fertilization envelopes, a second band that is slightly lower in molecular weight is also present. Eggs fertilized in the presence of soybean trypsin inhibitor have elongated microvilli that remain bound to the elevating fertilization envelope and immunoreactive to anti-betaC antibodies. Eggs fertilized in the presence of an ovoperoxidase inhibitor, 3-amino-1,2,4-triazole, have a patchy distribution of betaC immunoreactivity in fertilization envelopes. Together, these data suggest that alphaBbetaC integrins are expressed on the surface of unfertilized eggs and, during the cortical reaction, the extracellular domains are cleaved by proteases and cross-linked into the fertilization envelope by ovoperoxidase. The alphaBbetaC integrin receptors may have several potential functions prior to their removal at fertilization, including attachment of the vitelline envelope to the egg surface and anchoring the cortical cytoskeleton.  相似文献   

7.
We report the purification and characterization of proteoliaisin, a protein that participates in the assembly of the sea urchin fertilization envelope. Proteoliaisin was purified from egg cortical granule exudate to greater than 99% homogeneity using chromatography on DEAE-Sepharose and on phenyl-Sepharose. Native proteoliaisin is a highly asymmetric protein (f/fo = 2.0) composed of a single Mr approximately 230,000 peptide. Its asymmetry was demonstrated both by analytical ultracentrifugation and by nondenaturing polyacrylamide gel electrophoresis, a novel analysis that detects molecular asymmetry in heterogeneous protein mixtures. Proteoliaisin is enriched in six amino acids: aspartic acid/asparagine, glutamic acid/glutamine, glycine, and cysteine, which account for over 50% of its mass. Nearly all of the cysteine residues are disulfide bonded. The protein contains a small proportion of aromatic amino acids with phenylalanine greater than tyrosine greater than tryptophan. At neutral pH its absorbance maximum is at 274.5 nm, with an extinction coefficient of 0.43 ml mg-1 cm-1. Proteoliaisin forms a 1:1 Ca2+-stabilized complex with ovoperoxidase, another component of the fertilization envelope, with Kd = 1.1 X 10(-6) M. Proteoliaisin, a constituent of the specialized echinoderm extracellular matrix called the fertilization envelope, has certain structural similarities to mammalian extracellular matrix proteins.  相似文献   

8.
Sea urchin fertilization envelope assembly provides an ideal model system for investigating the production and modification of an extracellular matrix. The contents of secretory vesicles and the egg glycocalyx mix to initiate assembly. Limited proteolysis and covalent crosslinking by a transglutaminase act as early events to modify the nascent envelope. A subset of secreted proteins binds to this matrix through ionic interactions that require divalent cations. For example, one secreted protein, proteoliaisin, is responsible for attaching ovoperoxidase to the envelope. Ovoperoxidase hardens the envelope by using hydrogen peroxide, produced by the egg during the respiratory burst, to form dityrosine crosslinks between a subset of fertilization envelope proteins. Numerous spatial and temporal regulatory mechanisms exist to ensure that proper assembly occurs in an environment isolated from the normal cytosolic regulatory machinery.  相似文献   

9.
Summary The ability of the vitelline and fertilization envelopes of rainbow trout eggs to trap toxins was investigated using cholera enterotoxin B and staphylococcal enterotoxin B in cytochemical or immunocytochemical experiments. Extracts from both envelopes were investigated by immunoblot analysis to identify toxin-binding proteins after SDS-PAGE. Binding studies of cholera enterotoxin B to vitelline envelopes and fertilization envelopes revealed a greater reactive intensity in the former. Treatment with neuraminidase enhanced the reactive intensity (or deposit) in the vitelline envelope and fertilization envelope outermost layers, with more conspicuous reactivity in the former. Cytochemical experiments showed that exogenous ganglioside GM1 considerably enhanced cholera enterotoxin B binding to vitelline and fertilization envelopes. This enhancement was shown by an intense reactivity following the occurrence of new binding sites on the vitelline envelope inner surface and the inner wall of the zona radiata, a simultaneous extreme reduction in the reactivity of the vitelline envelope outermost layer, and a striking increase in reactive products in the fertilization envelope outermost layer. The surface region of the vitelline or fertilization envelope outermost layer was the binding site for staphylococcal enterotoxin B, and neuraminidase treatment caused a considerable reduction of reactive products in these areas. Immunoblot analysis of cholera enterotoxin Bor staphylococcal enterotoxin B-binding substances in extracts from the vitelline envelopes or fertilization envelopes demonstrated that the great majority of the binding substances are glycoproteins. The present results suggest that glycoproteins constituting the vitelline envelope or fertilization envelope may contribute to the protection of the egg itself or the embryo by trapping noxious toxins.  相似文献   

10.
Morphological features of fertilization envelope assembly in egges from the sea urchin Lytechinus pictus were examind in platinum replicas of samples quick-frozen, deep-etched, and rotary-shadowed at various times after insemination. Unfertilized eggs are surrounded by the vitelline layer, a glycocalyx, which faith-fully follows the contours of the microvillus-studded egg surface. The vitelline layer is secured to the plasma membrane below via a series of short projections called vitelline posts. The vitelline matrix itself is an elaborate meshwork of uniformly sized filaments, which are decorated in places with globular particles. At fertilization, the vitelline layer elevates off the egg surface and by 1 min after insemination appears as a thin, airy network of fibers. In contrast to Strongylocentrotus purpuratus, impressions of the underlying microvilli are not retained in this species. The vitelline template appears to become filled in by the deposition of amorphous secretory material between 1 and 5 min after fertilization. This smooth, amorphous layer is then coated with a thin sheet of paracrystalline material. Paracrystalline coating is incomplete at 5 min, but by 20 min after insemination the coat is complete, consisting of ordered parallel rows of roset-telike particles.  相似文献   

11.
A quantitative assay was developed to study the interaction of Xenopus laevis sperm and eggs. Using this assay it was found that sperm bound in approximately equal numbers to the surface of both hemispheres of the unfertilized egg, but not to the surface of the fertilized egg. To understand the molecular basis of sperm binding to the egg vitelline envelope (VE), a competition assay was used and it was found that solubilized total VE proteins inhibited sperm-egg binding in a concentration-dependent manner. Individual VE proteins were then isolated and tested for their ability to inhibit sperm binding. Of the seven proteins in the VE, two related glycoproteins, gp69 and gp64, inhibited sperm-egg binding. Polyclonal antibody was prepared that specifically recognized gp69 and gp64. This gp69/64 specific antibody bound to the VE surface and blocked sperm binding, as well as fertilization. Moreover, agarose beads coated with gp69/64 showed high sperm binding activity, while beads coated with other VE proteins bound few sperm. Treatment of unfertilized eggs with crude collagenase resulted in proteolytic modification of only the gp69/64 components of the VE, and this modification abolished sperm-egg binding. Small glycopeptides generated by Pronase digestion of gp69/64 also inhibited sperm-egg binding and this inhibition was abolished by treatment of the glycopeptides with periodate. Based on these observations, we conclude that the gp69/64 glycoproteins in the egg vitelline envelope mediate sperm-egg binding, an initial step in Xenopus fertilization, and that the oligosaccharide chains of these glycoproteins may play a critical role in this process.  相似文献   

12.
Immunoelectron microscopic studies demonstrated cortical granule lectins (CGLs) in coelomic, unfertilized and fertilized eggs of Xenopus laevis . An antiserum raised against purified cortical granule lectin 1 specifically reacted with the CGLs in immunoblotting and agar diffusion tests. When ultrathin sections were treated with the antiserum and protein A-gold solution, gold particles, indicating antigenic sites, were seen over cortical granules of coelomic and unfertilized eggs, and over the perivitelline space, the vitelline coat and the condensed region of the fertilization layer of fertilized eggs. The pre-fertilization layer immediately adjacent to the outer margin of the vitelline coat in unfertilized eggs was free from gold particles. These observations suggest that released CGLs permeate through the vitelline coat of fertilized eggs and interact with the pre-fertilization layer mainly at the outer margin of the vitelline coat, resulting in formation of the fertilization layer which acts as a block to polyspermy.  相似文献   

13.
A procedure is described for the complete removal of the vitelline layer of the eggs of the sea urchin, Strongylocentrotus purpuratus. The method involves treatment of unfertilized eggs with an S. purpuratus cortical granule protease preparation followed by incubation in an alkaline dithiothreitol seawater solution. Eggs denuded of their vitelline layers react metabolically to parthenogenetic agents and sperm like unfertilized eggs, whereas the fertilizability of denuded eggs and receptivity to sperm is much less than controls. The present method is superior to previous methods using mercaptans in that all of the vitelline layer is removed and to procedures using other proteolytic enzymes in that no 125I-labelled plasma membrane proteins are extensively modified. Thus the cortical granule protease dithiothreitol procedure is ideal for studies of the plasma membrane of the unfertilized egg and for studies on the role of the vitelline layer in normal fertilization and development.  相似文献   

14.
It has been recently shown that, in several genera of annelids, including Chaetopterus, fertilizing sperm attach to and fuse with egg microvilli which penetrate the vitelline envelope. This suggests that the annelid vitelline envelope may have no direct or obligatory role in normal fertilization. The present study was undertaken to investigate the involvement of the vitelline envelope in fertilization in Chaetopterus experimentally, by examining the fertilization of vitelline envelope-free eggs quantitatively and qualitatively. Brief exposure of the eggs to isotonic sucrose-EDTA removed the vitelline envelope as determined by both phase-contrast and electron microscopy, rendered the eggs more sensitive to polyspermy and substantially reduced the binding of supernumerary sperm to eggs but did not decrease fertilizability as determined by sperm dilution assay and did not make the eggs more sensitive to cross-fertilization. The events of fertilization were examined by electron microscopy and found to be very similar in vitelline envelope-free eggs to those in intact eggs. We conclude that the vitelline envelope in Chaetopterus has binding sites for sperm but that it has no obligatory role in fertilization and is primarily involved in the prevention of polyspermy.  相似文献   

15.
Formation and structure of the fertilization envelope in Xenopus laevis   总被引:19,自引:0,他引:19  
This paper reports the morphological events that occur when the vitelline envelope (VE) of an unfertilized egg of Xenopus laevis is transformed into the fertilization envelope (FE) surrounding the zygote. The VE is about 1 μm thick and is composed of an interlacing network of small filaments. The FE is constructed from the VE plus an electron-dense layer (fertilization layer), about 2–6 μm thick, on the outer surface of the VE, i.e., at the interface between the VE and the innermost jelly-coat layer. The fertilization layer is a stable component of the FE and is not removed by mercaptan solutions used to dejelly eggs. The events of FE formation were observed in the light and electron microscopes after dejellied eggs were activated by pricking. The FE is established when material from the cortical granules is extruded into the perivitelline space. The cortical granule material passes through the VE as the envelope lifts away from the egg surface. Some cortical granule material deposits in the interstices of the VE, but most of it forms the fertilization layer on the outer surface of the envelope. The cortical reaction is completed about 8–9 min after addition of sperm when eggs are fertilized in vitro.  相似文献   

16.
The mature oöcyte of Acanthoscelides obtectus is surrounded by three envelopes: an external layer, a chorion and a vitelline membrane. The external layer is secreted by the walls of the lateral oviducts. The chorion and vitelline membrane are secreted by the follicular cells. The vitelline membrane becomes very compact during the hour following fertilization and laying. The chorion is composed of three layers, one of which has a paracrystalline ultrastructure.Mature, unfertilized, chorion-containing oöcytes, whose vitelline membranes are loose, dehydrate rapidly in a dry atmosphere after laying or after removal from the lateral oviducts. Fertilized eggs are quite resistant to desiccation: after 12 days at 25°C and 5% relative humidity, viable larvae are obtained.The compact vitelline membrane is the most effective protection against dehydration. The chorion and the external layer are much less effective in preventing water loss from the egg.The retention of eggs in the lateral oviducts does not seem to lead to any modification of the structure of their envelopes.  相似文献   

17.
During the initial stages of fertilization envelope elevation in eggs of Strongylocentrotus pur puratus and S. droebachiensis a large concavity of the egg cortex was observed in the light microscope. This concavity corresponded in shape and size with the elevating fertilization envelope. However, after the vitelline layers of eggs were disrupted and the eggs inseminated, the concavity failed to develop although the eggs were fertilized and developed normally. We propose that the concavity is formed owing to increased hydrostatic pressure within the perivitelline space. To further support this hypothesis we measured total egg protein secreted during fertilization, and found that 98% was retained within the perivitelline space. Furthermore, 80% of the total protein was contributed by the hyaline layer. Presumably, colloidal osmotic pressure and/or hydration of fertilization product, trapped beneath the fertilization envelope, is responsible for increased hydrostatic pressure within the perivitelline space, and therefore promotes not only fertilization envelope elevation, but the cortical concavity as well.  相似文献   

18.
《The Journal of cell biology》1988,107(6):2447-2454
The involvement of transglutaminase activity in fertilization envelope (FE) formation was investigated using eggs from the sea urchin, Strongylocentrotus purpuratus. Eggs fertilized in the presence of the transglutaminase inhibitors, putrescine and cadaverine, had disorganized and expanded FEs with inhibition of the characteristic I-T transition. The permeability of the FE was increased by these agents, as revealed by the loss of proteins from the perivitelline space and the appearance of ovoperoxidase activity in supernates from putrescine- treated eggs. [3H]putrescine was incorporated into the FE during fertilization in a reaction catalyzed by an egg surface transglutaminase that could also use dimethylcasein as a substrate in vitelline layer-denuded eggs. Egg secretory products alone had no transglutaminase activity. The cell surface transglutaminase activity was transient and maximal within 4 min of activation. The enzyme was Ca2+ dependent and was inhibited by Zn2+. We conclude that sea urchin egg surface transglutaminase catalyzes an early step in a hierarchy of cross-linking events during FE assembly, one that occurs before ovoperoxidase-mediated dityrosine formation (Foerder, C. A., and B. M. Shapiro. 1977. Proc. Natl. Acad. Sci. USA. 74:4214-4218). Thus it provides a graphic example of the physiological function of a cell surface transglutaminase.  相似文献   

19.
Fertilization of investment-free Xenopus eggs   总被引:1,自引:0,他引:1  
The vitelline envelope of unfertilized Xenopus egg can be removed manually after treating the dejellied eggs for 10 min with 20% (w/v) sucrose in F-1 saline. Fertilization occurred in 52% of the eggs denuded in this way when UV-solubilized jelly was added to the sperm-egg mixture; without the jelly the level of fertilization was only 6%. Fertilization did not occur synchronously in the denuded eggs; the average delay between insemination and fertilization was 19 +/- 18 min.  相似文献   

20.
An isolated surface complex consisting of the vitelline layer, plasma membrane, and attached secretory vesicles has been examined for its ability to bind sperm and to form the fertilization envelope. Isolated surface complexes (or intact eggs) fixed in glutaraldehyde and then washed in artificial sea water are capable of binding sperm in a species-specific manner. Sperm which bind to the isolated surface complex exhibit the acrosomal process only when they are associated with the exterior surface (vitelline layer) of the complex. Upon resuspension of the unfixed surface complex in artificial sea water, a limiting envelope is formed which, based on examination of thin sections and negatively stained surface preparations, is structurally similar to the fertilization envelope formed by the fertilized egg. These results suggest that the isolated egg surface complex retains the sperm receptor, as well as integrated functions for the secretion of components involved in assembly of the fertilization envelope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号