共查询到20条相似文献,搜索用时 15 毫秒
1.
Reactive oxygen species play an important role in cancer and metastasis. Kalpaamruthaa is a modified Siddha preparation, which
has been formulated in our laboratory. The preparation is an amalgamation of Semecarpus anacardium (SA), Emblica officinalis (EO) and honey, which gives an extra protectiveness to mammary carcinoma bearing animals (Sprague-Dawley stains were used
for this study). The aim of our research is to determine the therapeutic efficiency of the drug with respect to lipid peroxidation
and antioxidant status. The levels of lipid peroxides and antioxidant levels were measured in blood, and vital organs (liver,
kidney and breast tissue) of control and experimental animals. In cancer condition, the LPO was increased and antioxidant
levels were decreased. On drug (SA and KA) administration, decreased LPO and increased antioxidant levels were seen in control
and experimental animals. This may be due to additive property of the drugs (SA, Emblica and honey), which possesses anticancer effect. The present study shows the good therapeutic efficacy of Kalpaamruthaa against
mammary carcinoma. 相似文献
2.
BACKGROUND: Rheumatoid arthritis (RA) is a prevalent and debilitating disease that affects the joints. Infiltration of blood-derived cells in the affected joints upon activation generate reactive oxygen/nitrogen species, resulting in an oxidative stress. One approach to counteract this oxidative stress is the use of antioxidants as therapeutic agents. OBJECTIVES: Kalpaamruthaa (KA), a modified indigenous Siddha preparation constituting Semecarpus anacardium nut milk extract (SA), Emblica officinalis (EO) and honey was evaluated for its synergistic antioxidant potential in adjuvant induced arthritic rats than sole SA treatment. MATERIALS AND METHODS: Levels/activities of reactive oxygen species (ROS)/reactive nitrogen species (RNS), myeloperoxidase, lipid peroxide and enzymic and non-enzymic antioxidants were determined in control, arthritis induced, SA and KA treated (150 mg/kg b.wt.) animals. RESULTS AND CONCLUSION: The levels/activities of ROS/RNS, myeloperoxidase and lipid peroxide were increased significantly (p<0.05) and the activities of enzymic and non-enzymic antioxidants were in turn decreased in arthritic rats, whereas these changes were reverted to near normal levels upon SA and KA treatment. KA showed an enhanced antioxidant potential than sole treatment of SA in adjuvant induced arthritic rats. KA via enhancing the antioxidant status in adjuvant induced arthritic rats than sole SA treatment proves to be an important therapeutic modality in the management of RA and thereby instituting the role of oxidative stress in the clinical manifestation of the disease RA. The profound antioxidant efficacy of KA than SA alone might be due to the synergistic action of the polyphenols such as flavonoids, tannins and other compounds such as vitamin C and hydroxycinnamates present in KA. 相似文献
3.
人mtDNA比核DNA更易受到自由基的氧化损伤,这些损伤可以被线粒体内的DNA修复机制所修复,损伤与修复是决定突变是否产生的两个重要因素.为了确定氧化损伤与损伤后修复对mtDNA突变的具体影响,采用四氧嘧啶处理LO2细胞,这种试剂进入细胞后,经氧化还原反应生成的自由基与线粒体自身代谢产生的自由基类似,然后观察自由基对细胞mtDNA的氧化损伤与损伤后DNA修复的动力学变化.由于线粒体的正常功能为修复机制所必需,采用MTT细胞活力实验检测不同浓度四氧嘧啶处理下线粒体酶活力,发现9 mmol/L四氧嘧啶培养细胞1h后,线粒体琥珀酸脱氢酶功能在撤去药物后0,2,8和24 h时间点均无明显变化.提取各组细胞的mtDNA,用EndoⅢ和Fgp两种酶切除受氧化损伤的核苷酸,然后用碱性琼脂糖凝胶电泳分离大小不等的mtDNA,进行DNA印迹实验,地高辛-抗体-碱性磷酸酶系统显色,检测完整与断裂的mtDNA量,利用Poisson公式(s=-lnP0/P,P0为未断裂链光密度值,P为所有链光密度值总和)计算一个mtDNA分子的平均损伤频率,结果显示,9 mmol/L四氧嘧啶处理细胞1 h,链平均损伤频率由对照的0.11个/分子增加至5.60个/分子,明显增加了mtDNA上核苷酸的氧化损伤,除去药物后8 h,绝大部分损伤可被修复,损伤频率减至0.40个/分子,除去药物后24 h核苷酸的氧化损伤恢复至正常水平.采用接头介导PCR(LM-PCR)检测MTTL1基因区域内单个核苷酸的损伤与修复动力学.这种方法可以检测各组mtDNA上MTTL1基因75 bp区域内单个核苷酸损伤的部位及频率.结果显示,人MTTL1基因存在20个易受氧化损伤的核苷酸热点,经与相应区域内文献报道的16个突变热点比较,有12个热点部位重合,而修复未显示热点部位或区域.结果提示,自由基对核苷酸的选择性氧化损伤是决定mtDNA点突变发生及发生部位的主要原因. 相似文献
4.
The effects of foliar spraying of the dithiocarbamate zineb on two cultivars of tomato grown in the field in a site with high ozone concentrations were studied by means of biomass assessment, antioxidant enzyme assays, lipid peroxidation, and chlorophyll fluorescence measurements. Zineb prevented the peroxidation of membrane lipids and decreased the activity of scavenging enzymes, which suggests that plants sprayed with zineb are subjected to lower oxidative stress than controls. The beneficial effects of zineb protection is the utilization of a larger fraction of absorbed radiant energy in photosynthesis and a larger fruit yield in plants of both cultivars. 相似文献
5.
Tinospora cordifolia induces enzymes of carcinogen/drug metabolism and antioxidant system, and inhibits lipid peroxidation in mice 总被引:3,自引:0,他引:3
The present study is an effort to identify a potent chemopreventive agent against various diseases (including cancer) in which oxidative stress plays an important causative role. Here, we investigated the effect of a hydroalcoholic (80% ethanol: 20% distilled water) extract of aerial roots of Tinospora cordifolia (50 and 100mg/kg body wt./day for 2 weeks) on carcinogen/drug metabolizing phase-I and phase-II enzymes, antioxidant enzymes, glutathione (GSH) content, lactate dehydrogenase and lipid peroxidation in liver of 8-week-old Swiss albino mice. The modulatory effect of the extract was also examined on extrahepatic organs, i.e., lung, kidney and forestomach, for the activities of GSH S-transferase (GST), DT-diaphorase (DTD), superoxide dismutase (SOD) and catalase. Significant increases in the levels of acid-soluble sulfhydryl (-SH) and cytochrome P(450) contents, and enzyme activities of cytochrome P(450) reductase, cytochrome b(5) reductase, GST, DTD, SOD, catalase, GSH peroxidase (GPX) and GSH reductase (GR) were observed in the liver. Both treated groups showed decreased malondialdehyde (MDA) formation. In lung SOD, catalase and GST; in kidney SOD and catalase; and in forestomach SOD, DTD and GST showed significant increase at both dose levels of treatment. BHA (0.75%, w/w in diet), a pure antioxidant compound, was used as a positive control. This group showed increase in hepatic levels of GSH content, cytochrome b(5), DTD, GST, GR and catalase, whereas MDA formation was inhibited significantly. In the BHA-treated group, the lung and kidney showed increased levels of catalase, DTD and GST, whereas SOD was significantly increased in the kidney and forestomach; the latter also showed an increase in the activities of DTD and GST. The enhanced GSH level and enzyme activities involved in xenobiotic metabolism and maintaining antioxidant status of cells are suggestive of a chemopreventive efficacy of T. cordifolia against chemotoxicity, including carcinogenicity, which warrants further investigation of active principle (s) present in the extract responsible for the observed effects employing various carcinogenesis models. 相似文献
6.
Influence of 100 μM Ni on growth, Ni accumulation,, H2O2 and lipid peroxides contents as well as the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase
(APX), guaiacol peroxidase (POD) and glutathione peroxidase (GSH-Px) were studied in the leaves of wheat plants on the 3rd,
6th and 9th days after treatment. Exposure of the plants to Ni for only 3 days led to almost 200-fold increase in this metal
concentration in the leaf tissue but later the rate of Ni accumulation was much slower. Length and fresh weight of the leaves
were substantially reduced, up to 25% and 39%, respectively at the end of experiment. Visible symptoms of Ni toxicity: chlorosis
and necrosis were observed following the 3rd day. Treatment with Ni resulted in the increase in and H2O2 contents in the leaves. Both showed their highest values, approximately 250% of those of the control, on the 3rd day and
then their levels decreased but still markedly exceeded the control values. SOD and CAT activities decreased significantly
in response to Ni treatment, however a several-fold increase in APX and POD activities was found. No significant changes in
lipid peroxides content were observed in the leaves after Ni application. The activity of GSH-Px showed a 29% induction on
the 3rd day. Our results indicated that despite prolonged increases in and H2O2 levels, oxidative damage, measured as the level of lipid peroxidation, did not occur in the leaves of Ni-treated wheat. 相似文献
7.
《Bioscience, biotechnology, and biochemistry》2013,77(1):286-289
Intake of green tea catechin (GTC) for 4 weeks was found to elevate vitamin E level in the mucosa of the rat large intestine. Iron-induced lipid peroxidation of the mucosal homogenate was suppressed by intake of GTC in rats fed monounsaturated fatty acid (MUFA), indicating that the protective effect of dietary GTC on mucosal oxidative stress is enhanced by combination with a MUFA-rich diet. 相似文献
8.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation. 相似文献
9.
10.
Drought Induces Oxidative Stress and Enhances the Activities of Antioxidant Enzymes in Growing Rice Seedlings 总被引:7,自引:0,他引:7
When rice seedlings grown for 10 and 20 days were subjected to in vitro drought stress of −0.5 and −2.0 MPa for 24 h, an increase in the concentration of superoxide anion (O2.−), increased level of lipid peroxidation and a decrease in the concentration of total soluble protein and thiols was observed
in stressed seedlings compared to controls. The concentration of H2O2 as well as ascorbic acid declined with imposition of drought stress, however glutathione (GSH) concentration declined only
under severe drought stress. The activities of total superoxide dismutases (SODs) as well as ascorbate peroxidase (APX) showed
consistent increases with increasing levels of drought stress, however catalase activity declined. Mild drought stressed plants
had higher guaiacol peroxidase (GPX) and chloroplastic ascorbate peroxidase (c-APX) activity than control grown plants but
the activity declined at the higher level of drought stress. The activities of enzymes involved in regeneration of ascorbate
i.e. monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) were higher
in drought stressed plants compared to controls. Results suggest that drought stress induces oxidative stress in rice plants
and that besides SOD, the enzymes of ascorbate-glutathione cycle, which have not been studied in detail earlier under stressful
conditions, appear to function as important component of antioxidative defense system under drought stress. 相似文献
11.
The possible protective effect of kolaviron on rat erythrocytes followingsimultaneous administration of kolaviron (100 mg/kg of body weight/day) withcarbon tetrachloride CCl4 (1.195 g/kg of body weight/day) by separateintraperitoneal injections was investigated.Kolaviron, a biflavonoid fraction of the defatted alcoholic extract ofGarcinia kola seed, inhibits the accumulation of lipid peroxidationproducts in erythrocytes. A significant reduction (p>0.05) by about34% of lipid peroxidation products was observed in erythrocytes of ratstreated simultaneously with CCl4 and kolaviron when compared to CCl4-treatedrats. Similarly, the significant increase (p>0.05) in membranecholesterol observed in CCl4-treated rats was significantly decreased(p>0.05) in rats treated simultaneously with CCl4 andkolaviron. Therefore, there was no significant difference (p>0.05) incholesterol–phospholipid ratio (C/P) of rats treated simultaneouslywith CCl4 and kolaviron, and the controls. Thus, kolaviron normalizes theCCl4-induced change in erythrocyte membrane composition.In addition, kolaviron antagonizes the effect of CCl4 on the activity ofthe membrane bound enzyme, Ca2+-ATPase. These results suggest thatkolaviron protects erythrocyte membranes from free radical attack, on bothlipids and proteins. 相似文献
12.
Hossein Hosseinzadeh Siavash Parvardeh Marjan Nassiri Asl Hamid R. Sadeghnia Toktam Ziaee 《Phytomedicine》2007,14(9):621-627
It has been previously reported that Nigella sativa oil (NSO) and thymoquinone (TQ), active constituent of N. sativa seeds oil, may prevent oxidative injury in various models. Therefore, we considered the possible effect of TQ and NSO on lipid peroxidation level following cerebral ischemia-reperfusion injury (IRI) in rat hippocampus. Male NMRI rats were divided into nine groups, namely, sham, control, ischemia and ischemia treated with NSO or TQ. TQ (2.5, 5 and 10 mg/kg), NSO (0.048, 0.192 and 0.384 mg/kg), phenytoin (50 mg/kg, as positive control) and saline (10 ml/kg, as negative control) were injected intraperitoneally immediately after reperfusion and the administration was continued every 24h for 72 h after induction of ischemia. The transient global cerebral ischemia was induced using four-vessel-occlusion method for 20 min. Lipid peroxidation level in hippocampus portion was measured as malondialdehyde (MDA) based on its reaction with thiobarbituric acid (TBA) following ischemic insult. The transient global cerebral ischemia induced a significant increase in TBA reactive substances (TBARS) level (p<0.001), in comparison with sham-operated animal. Pretreatment with TQ and NSO were resulted a significant decrease in MDA level as compared with ischemic group (66.9+/-1.5 vs. 297+/-2.5 nmol/g tissue for TQ, 10 mg/kg; p<0.001 and 153.5+/-1.3 nmol/g tissue for NSO, 0.384 mg/kg; p<0.001). Using a reversed-phase HPLC system, the amount of TQ in NSO was also quantified and was 0.58% w/w. These results suggest that TQ and NSO may have protective effects on lipid peroxidation process during IRI in rat hippocampus. 相似文献
13.
The effects of chronic exposure to cadmium (Cd) on some selected biochemical parameters, as well as the possible protective
role of aqueous extracts of Hibiscus sabdariffa L petal were studied in 12-wk-old male Wistar albino rats. Exposure to Cd caused a significant increase in plasma l-alanine aminotransferases (ALT) only but with a corresponding decrease in liver l-alanine and l-aspartate aminotransferases (L-ALT, L-AST) when compared to the Cd-free control. Total superoxide dismutase activity was
decreased in the liver, testis, and prostate of Cd-exposed rats, whereas malondialdehyde (MDA) concentrations were increased
relative to the Cd-free control. The metal significantly increased prostatic acid phosphatase activity in the prostate, but
decreased the body weight gain of the rats and organ/body weight ratio for prostate and testis compared to the Cd-free control.
Pretreatment of rats with aqueous extract of H. sabdariffa resulted in significantly less hepatotoxicity than with Cd alone as measured by plasma ALT and liver ALT and AST activities.
The extract also protected the rats against Cd-induced liver, prostate, and testis lipoperoxidation as evidenced by significantly
reduced MDA values in these organs, as well as reduced prostatic acid phosphatase activity in the prostate, when compared
to the Cd-only exposed rats. Also, when compared to the organ/body weight ratios obtained from rats exposed to Cd alone the
prostate and testis were protected by the extract as shown by enhanced prostate/body weight and testis/body weight ratios
of Cd- and extract-treated rats. These data suggest that H. sabdarrifa L might be protective in Cd toxicity. 相似文献
14.
Its high oxidant capacity and ability to generate reactive oxygen species cause ozone toxicity. We studied the effect of ambient ozone on chlorophyll (Chl) a fluorescence, antioxidant enzymes, ascorbate contents, and lipid peroxidation in potatoes grown in open-top chambers in the field. In plants grown in non-filtered air (NFA), the development of non-photochemical quenching brought about a decrease in photosystem 2 (PS2) photochemical efficiency. Also the ability of PS2 to reduce the primary acceptor QA was lower than in charcoal-filtered, ozone-free air (CFA). Changes in Chl fluorescence yield were associated with changes in the thylakoid membrane. Ozone altered chloroplast membrane properties, as indicated by an increase in membrane lipid peroxidation in FNA-leaves compared to CFA plants. The ascorbate pool and activities of antioxidant enzymes were used for an indication of the detoxification system state in NFA and CFA leaves, whereby ozone affects the ascorbate concentration and decreases the antioxidant enzymes activities. The capacity of both detoxifying systems together was not high enough to protect potato plants against ambient ozone concentrations which reduced the photosynthetic yield in this potato cultivar. 相似文献
15.
Senthilnathan P Padmavathi R Magesh V Sakthisekaran D 《Molecular and cellular biochemistry》2006,292(1-2):13-17
The present study was aimed to evaluate the therapeutic effects of Withania somnifera along with paclitaxel on lung tumor induced by benzo(a)pyrene in male Swiss albino mice. The levels of ATPase enzymes and lipid peroxidation were evaluated in lung cancer bearing mice, in erythrocyte membrane and tissues. The extent of peroxidation was estimated by measuring the thiobarbituric acid-reactive substances. Simultaneously the activities of different ATPases (Na+/K+-ATPases, Mg2+-ATPases and Ca2+-ATPases) were determined. The alterations of these enzyme activities in membrane and tissues were indicative of the tumor formation caused by benzo(a)pyrene (50 mg/kg body weight, orally) in cancer bearing animals. The activities of these enzymes were reversed to near normal control values in animals treated with Withania somnifera (400 mg/kg b.wt, orally) along with paclitaxel (33 mg/kg b.wt, i.p). Treatment with Withania somnifera along with paclitaxel altered these damage mediated through free radicals, and the treatment displays the protective role of these drugs by inhibiting free radical mediated cellular damages. Over, based on the data providing a correlation Withania somnifera along with paclitaxel provide stabilization of membrane bound enzyme profiles and decreased lipid peroxidation against benzo(a)pyrene induced lung cancer in mice. 相似文献
16.
McFadden CS Tullis ID Hutchinson MB Winner K Sohm JA 《Marine biotechnology (New York, N.Y.)》2004,6(6):516-526
Low rates of evolution in cnidarian mitochondrial genes such as COI and 16S rDNA have hindered molecular systematic studies in this important invertebrate group. We sequenced fragments of 3 mitochondrial protein-coding genes (NADH dehydrogenase subunits ND2, ND3 and ND6) as well as the COI-COII intergenic spacer, the longest noncoding region found in the octocoral mitochondrial genome, to determine if any of these regions contain levels of variation sufficient for reconstruction of phylogenetic relationships among genera of the anthozoan subclass Octocorallia. Within and between the soft coral families Alcyoniidae and Xeniidae, sequence divergence in the genes ND2 (539 bp), ND3 (102 bp), and ND6 (444 bp) ranged from 0.5% to 12%, with the greatest pairwise distances between the 2 families. The COI-COII intergenic spacer varied in length from 106 to 122 bp, and pairwise sequence divergence values ranged from 0% to 20.4%. Phylogenetic trees constructed using each region separately were poorly resolved. Better phylogenetic resolution was obtained in a combined analysis using all 3 protein-coding regions (1085 bp total). Although relationships among some pairs of species and genera were well supported in the combined analysis, the base of the alcyoniid family tree remained an unresolved polytomy. We conclude that variation in the NADH subunit coding regions is adequate to resolve phylogenetic relationships among families and some genera of Octocorallia, but insufficient for most species - or population-level studies. Although the COI-COII intergenic spacer exhibits greater variability than the protein-coding regions and may contain useful species-specific markers, its short length limits its phylogenetic utility. 相似文献
17.
以蝴蝶兰品种‘台湾黄金’幼苗(苗龄15个月)为试验材料,通过叶面喷施200μmol·L-1的NO供体硝普钠(SNP),低温胁迫(昼/夜:12℃/7℃)处理5d和10d,分别测定叶片电解质渗漏率、丙二醛(MDA)含量、pH、渗透调节物质含量及几种保护酶活性,探讨外源NO缓解蝴蝶兰低温胁迫伤害的生理机制。结果表明:低温胁迫条件下,预施SNP处理可以有效抑制蝴蝶兰叶片电解质渗漏率、MDA含量和pH的上升,显著提高叶片可溶性糖、可溶性蛋白及脯氨酸(Pro)含量,显著延缓超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)等抗氧化酶活性的下降,增强多酚氧化酶(PPO)和苯丙氨酸解氨酶(PAL)的活性。研究认为,外源NO供体SNP可以通过保护蝴蝶兰幼苗的细胞膜系统,增加渗透调节物质含量,提高保护酶活性来减轻低温胁迫对蝴蝶兰幼苗的伤害,提高其抗低温胁迫的能力。 相似文献
18.
采用水培实验研究了4个浓度(5、10、20、40 mg·L-1)除草剂阿特拉津胁迫下,皇竹草(Pennisetum hydridum)叶片内超氧阴离子生成速率、过氧化氢(H2O2)含量、超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、丙二醛(MDA)含量、原生质膜透性的变化,探讨皇竹草对阿特拉津的抗性及其生理机制。结果显示:(1)低浓度(5、10 mg·L-1)的阿特拉津胁迫使皇竹草叶片内超氧阴离子生成速率和CAT活性升高,却使H2O2含量及SOD和POD活性降低,但随着培养时间的延长,培养液中阿特拉津浓度的降低导致上述指标又有恢复到正常水平的趋势;而高浓度(40 mg·L-1)的阿特拉津胁迫则使皇竹草叶片内H2O2含量、SOD、POD和CAT活性持续降低。(2)在各胁迫浓度下持续胁迫10 d后,皇竹草叶片内MDA含量开始逐渐升高,并且升高幅度随着胁迫浓度的提高而明显增加,但各胁迫浓度下叶片原生质膜相对透性未见明显的变化。研究表明,皇竹草可能通过活性氧等信号分子调控自身保护酶系统的活性来缓解阿特拉津造成的伤害,从而对低浓度(5、10 mg·L-1)的阿特拉津胁迫表现出较强抗性。 相似文献
19.
Effect of Overexpression of Protective Genes on Mitochondrial Function of Stressed Astrocytes 总被引:2,自引:0,他引:2
Antiapoptotic members of the Bcl-2 family have been shown to reduce ischemic brain injury in vivo and in vitro. Understanding early changes in respiration are important in understanding the cells response to stress and the mechanisms of protection afforded by overexpression of protective genes. This mini-review summarizes current knowledge regarding early responses of astrocytes to ischemia-like stress and the effects of overexpression of protective Bcl-2 family genes on astrocyte mitochondrial function. Overexpression of Bcl-x(L) improves mitochondrial respiratory function, normalizes mitochondrial membrane potential, and reduces production of free radicals early after the imposition of a stress in primary cultured murine astrocytes. 相似文献
20.
Ramaprasad TR Baskaran V Krishnakantha TP Lokesh BR 《Molecular and cellular biochemistry》2005,280(1-2):9-16
Spray-dried milk enriched with n-3 fatty acids from linseed oil or fish oil were fed to rats to study its influence on liver lipid peroxides, hepatic antioxidant
enzyme activities, serum prostaglandins and platelet aggregation. Significant level of α linolenic acid, eicosapentaenoic
acid and docosahexaenoic acid were accumulated at the expense of arachidonic acid in the liver of rats fed n-3 fatty acid enriched formulation. The linseed oil and fish oil enriched formulation fed group had 44 and 112% higher level
of lipid peroxides in liver homogenate compared to control rats fed groundnut oil enriched formulation. Catalase activity
in liver homogenate was increased by 37 and 183% respectively in linseed oil and fish oil formulation fed rats. The glutathione
peroxidase activity decreased to an extent of 25–36% and glutathione transferase activity increased to an extent of 34–39%
in rats fed n-3 fatty acids enriched formulation. Feeding n-3 fatty acid enriched formulation significantly elevated the n-3 fatty acids in platelets and increased the lipid peroxide level to an extent of 4.2–4.5 fold compared to control. The serum
thromboxane B2 level was decreased by 35 and 42% respectively in linseed oil and fish oil enriched formulation fed rats, whereas, 6-keto-
prostaglandin F1α level was decreased by 17 and 23% respectively in linseed oil and fish oil enriched formulation fed rats.
The extent and rate of platelet aggregation was decreased significantly in n-3 fatty acids enriched formulation fed rats. This indicated that n-3 fatty acids enriched formulation beneficially reduces platelet aggregation and also enhances the activities of hepatic
antioxidant enzymes such as catalase and glutathione transferase. (Mol Cell Biochem xxx: 9–16, 2005) 相似文献