首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Beef kidney 3-hydroxyanthranilic acid oxygenase has been purified to homogeneity. It is a single subunit protein of Mr = 34,000 +/- 2,000 with a frictional coefficient (f/f0) of about 1.1. The enzyme readily aggregates to form, apparently inactive, higher molecular weight oligomers. The very rapid loss of enzyme activity during the assay was analyzed extensively. It was found to be due to inactivation of the enzyme by the substrate, 3-hydroxyanthranilate, and unrelated to enzyme turnover or oxidation of bound iron. The loss of activity was shown to be a first order decay process, and methods are given for obtaining accurate initial reaction rates under all conditions. Evidence was presented that the enzyme assumes a catalytically inactive conformation at pH 3.4, which only relatively slowly rearranges to an active form at pH 6.5; the rearrangement can be blocked by the presence of substrate. We have found that Fe2+, which is required for enzymatic activity, can equilibrate freely, albeit slowly, with the enzyme during the course of the enzyme reaction even in the presence of saturating 3-hydroxanthranilate. Under assay conditons, the Fe2+ has an apparent dissociation constant of 0.04 mM. The kinetic properties of the enzyme were found to be dramatically different in beta,beta-dimethylglutarate buffer and collidine buffer; both the rate of loss of activity during the assay and the substrate Km and Vmax were affected.  相似文献   

2.
《Phytochemistry》1986,25(5):1063-1066
L-Usnic acid inactivates urease through the formation of high M, aggregates of the enzyme. In addition, L-usnic acid strongly binds to the protein, blocking the essential -SH groups of the urease molecule. Low concentrations of dithiothreitol (about 0.8 mM) reverse this blockade without any modification in the pattern of polymerization, inducing the appearance of active high M, polymers.  相似文献   

3.
A new form of active renin was separated from inactive prorenin in normal human plasma by a new affinity chromatographic method on a column of Cibacron Blue F3GA-agarose. This active renin has a molecular weight of 54,000, considerably higher than the hitherto recognized active renin of 40,000 dalton in human plasma. The molecular weight of inactive prorenin was 56,000±2,000. Active renin produced from the inactive prorenin by trypsin or pepsin digestion or by acid treatment in in vitro experiments showed a molecular weight of 54,000±2,000. Active renin with a molecular weight of 40,000 was not found in 6 samples of untreated plasma of normal human subjects nor was it formed by treatment with trypsin, pepsin, or acid pH. It is concluded that a large form of active renin (54,000 dalton) exists in normal human plasma which is distinct from a smaller form and that the activatable “big renin” is a mixture of this active renin and totally inactive prorenin. This explains the absence of molecular weight change during the activation of “big renin”.  相似文献   

4.
Rabbit skeletal muscle creatine kinase is inactivated when stored at ?17 °C in the presence of either chloride or nitrate. Other anions are not effective. Associated with the inactivation is an altered electrophoretic mobility and the loss of four out of the eight titratable thiol groups in the dimeric catalytic protein of molecular weight 82,600. The altered inactive form is separated from the native active enzyme by electrofocusing, and its catalytic activity is restored by treatment with 2-mercaptoethanol. Gel electrophoresis in the presence and absence of 2-mercaptoethanol establishes that solutions of the inactive enzyme are heterogeneous, containing mostly a protomeric polypeptide of molecular weight 41,000, but also significant amounts of disulfide-linked dimers, trimers, and tetramers. Sedimentation equilibrium analysis confirms the existence of higher molecular weight aggregates along with the preponderant protein species of molecular weight 43,000.  相似文献   

5.
1. Three forms of the Lactobacillus plantarum enzyme D-erythro-dihydroneopterin triphosphate synthetase, the first enzyme in folate biosynthesis, have been demonstrated by polyacrylamide gel electrophoresis. The enzyme forms designated the alpha prime, alpha and beta forms have been shown to be conformers with molecular weights of approx. 200 000. Study of the subunit structure of the beta enzyme species by sodium dodecylsulfate-polyacrylamide gel electrophoresis revealed a single protein with an estimated molecular weight of 20 000 which suggests that the enzyme molecule may be composed of ten polypeptide chains. 2. Of the three conformers only one form, the beta form, appears to be enzymatically active. The two other conformers must undergo conformational changes to the beta species before enzymatic activity can be demonstrated in reaction mixtures containing these enzyme forms. 3. The three enzyme species are interconvertible. The removal of phosphate ions from the enzymatically active beta form results in the formation of two inactive species which suggests that the conformation of the active enzyme is stabilized by non-covalently bound phosphate ions. Conversion of the inactive species to the beta enzyme form may be effected by the readdition of phosphate, substrate or certain nucleotides.  相似文献   

6.
An acid-denaturation of the beta 2 subunit of Escherichia coli tryptophan synthase has been recently described. In the present study, renaturation yield of acid-denaturated beta 2, and the influence of temperature, protein concentration and presence of ligands are investigated. It is also demonstrated that 3 forms of the protein are obtained at the end of the renaturation process: one is fully active, and is identical to native beta 2, as indicated by some of its chemical and physical properties, as well as by its immunological reactivity towards monoclonal antibodies specific for the native protein. A second form is composed of high molecular weight insoluble and inactive aggregates. A third form consists of low molecular weight soluble and inactive aggregates. The results obtained for the immunochemical reactivity of these small aggregates indicate that they are formed with partly correctly folded beta monomers assembled by specific but incorrect quaternary interactions. The capacity of monoclonal antibodies to detect such incorrect structures and to characterize renatured proteins is particularly emphasized.  相似文献   

7.
Partially purified inactive glucose dehydrogenase obtained from spores which were heated at 87 or 90 C for 30 min is converted to an active from by the addition of ethylenediaminetetraacetic acid, dipicolinic acid, or some salts. The molecular weight of the inactive glucose dehydrogenase in the heated spores is about one-half of that of the active glucose dehydrogenase in the intact resting spores. The possibility is discussed that the active glucose dehydrogenase in the intact resting spores divides into subunits and is converted to stable and inactive form during heating of spores at a particular range of temperature (87 to 90 C).  相似文献   

8.
Two distinctly different high molecular weight forms of renin are present in mouse plasma in addition to the well-recognized active 40 000 dalton form. The biggest form has a molecular weight of about 800 000, and is stable in 4 M urea, but can be converted to the active 40 000 dalton form, by storage, exposure to acid and limited proteolysis. The 70 000 dalton form can be activated by acid and limited proteolysis. However, the 70 000 dalton form does not change molecular weight with activation. By measuring renin, not only by its enzymatic activity, but also by the direct radioimmunoassay for the renin molecule, which measures enzymatically active as well as inactive renin, it was found that both forms were activated but neither of them completely. The validity of the currently used term "total" renin as the enzymatic renin activity after acid activation, is, therefore, questionable. The quantitative significance of this must await methods which can ensure complete conversion or activation of the high molecular weight forms of renin in plasma.  相似文献   

9.
Catabolic dehydroquinase which functions in the inducible quinic acid catabolic pathway in Neurospora crassa has been purified 8000-fold. The enzyme was purified by two methods. One used heat denaturation of contaminating proteins; the other used antibody affinity chromatography. The preparations obtained by these two methods were identical by all criteria. The purified enzyme is extremely resistant to thermal denaturation as well as denaturation 0y urea and guanidine hydrochloride at 25 degrees. It is irreversibly inactivated, although not efficiently dissociated, by sodium dodecyl sulfate and guanidine hydrochloride at 55 degrees. At pH 3.0, the enzyme is reversibly dissociated into inactive subunits. At high concentrations catabolic dehydroquinase aggregates into an inactive, high molecular weight complex. The native enzyme, which has a very high specific activity, has a molecular weight of approximately 220,000 and is composed of identical subunits of 8,000 to 12,000 molecular weight each. The native enzyme and the subunit are both asymmetric.  相似文献   

10.
Many protein kinases are characterized by at least two structural forms corresponding to the highest level of activity (active) and low or no activity, (inactive). Further, protein dynamics is an important consideration in understanding the molecular and mechanistic basis of enzyme function. In this work, we use protein kinase A (PKA) as the model system and perform microsecond range molecular dynamics (MD) simulations on six variants which differ from one another in terms of active and inactive form, with or without bound ligands, C‐terminal tail and phosphorylation at the activation loop. We find that the root mean square fluctuations in the MD simulations are generally higher for the inactive forms than the active forms. This difference is statistically significant. The higher dynamics of inactive states has significant contributions from ATP binding loop, catalytic loop, and αG helix. Simulations with and without C‐terminal tail show this differential dynamics as well, with lower dynamics both in the active and inactive forms if C‐terminal tail is present. Similarly, the dynamics associated with the inactive form is higher irrespective of the phosphorylation status of Thr 197. A relatively stable stature of active kinases may be better suited for binding of substrates and detachment of the product. Also, phosphoryl group transfer from ATP to the phosphosite on the substrate requires precise transient coordination of chemical entities from three different molecules, which may be facilitated by the higher stability of the active state.  相似文献   

11.
Some differences between the effects of oxalate and oxamate were observed. The oxalate formed the stable tetramers and some aggregates, while the oxamate formed the mixture of dimers, tetramers, octamers and aggregates. The ratios between these molecular forms were different as the oxamate concentration was changed. In the coexistence of inhibitors and pyruvate, pyruvate may act to decrease the molecular weight and to increase the amount of aggregates. The lower molecular weight may be caused by the existence of the active complex, Ed N S1. The effect of the exchange between pyruvate and oxamate bound with enzyme complexes may be expected.  相似文献   

12.
1. Phosphatase II is a form of phosphoprotein phosphatase originally found in rat liver extract; it has a molecular weight of 160 000 by gel filtration and is highly active towards phosphorylase alpha. This phosphatase has been purified 1800-fold by using DEAE-cellulos (DE-52), aminohexyl--Sepharose-4B, protamine--Sepharose-4B and Sephadex G-200 chromatography. Throughout the purification steps, the original molecular weight and substrate specificity of phosphatase II were almost perfectly preserved. 2. The product of the final purification step migrated predominantly as a single protein band on non-denaturing gel electrophoresis. Sodium dodecyl sulfate gel electorphoresis revealed that the enzyme contains two types of subunit, alpha and beta, with molecular weights of 35 000 and 69 000, respectively. When treated with 0.2 M 2-mercaptoethanol at -20 degrees C, phosphatase II was dissociated to release the catalytically active alpha subunit. The beta subunit may be catalytically inactive but interacts with the alpha subunit so that phosphatase II becomes much less susceptible than the alpha subunit to inactivation by ATP or pyrophosphate.  相似文献   

13.
An active form of the Dengue virus protease NS3 (CF40.Gly.NS3pro) was expressed in Escherichia coli. This construct consists of a critical 40 amino acid cofactor domain from NS2B fused to the N-terminal 184 amino acid protease domain of NS3 via a flexible, covalent linker (Gly(4)SerGly(4)). The recombinantly produced protein is soluble and has a hexa-histidine tag engineered at the N-terminus for ease of purification using metal affinity chromatography. However, the presence of lower molecular weight impurities after affinity chromatography indicated the need for additional purification steps. The consistent appearance of these impurities suggested that they may be the products of proteolysis and/or auto-proteolysis. The latter possibility was subsequently excluded by the observation of the same impurities in a purified, catalytically inactive form of the recombinant protease (CF40.Gly.NS3pro.SA). Further analysis indicated that these impurities may represent premature translation termination products. Regardless of their origin, they were shown to form various sized aggregates with full-length CF40.Gly.NS3pro that can be separated by size exclusion chromatography, yielding fractions of active protease of sufficient purity for crystallisation trials. The ultimate goal of these studies is to obtain a crystal structure of a catalytically active form of the Dengue virus NS3 protease for structure-based drug design.  相似文献   

14.
2,3-Diaminopropionate:ammonia-lyase, an induced enzyme in a Pseudomonas isolate, has been purified 40-fold and found to be homogeneous by disc gel electrophoresis and by ultracentrifugation. Some of its properties have been studied. The optimum pH and temperature for activity are 8 and 40 degrees C, respectively. The enzyme shows a high degree of substrate specificity, acting only on 2,3-diaminopropionate; the D-isomer is only one-eighth as effective as the L-form. L-Homoserine and DL-cystathionine are not substrates, and 3-cyanolalanine does not inhibit its activity. It is a pyridoxal phosphate enzyme which requires free enzyme sulphhydryls for activity. The Km values for L-2,3-diaminopropionate and pyridoxal phosphate are 1mM and 25 muM, respectively. The molecular weight of the enzyme is about 80 000 as determined by gel filtration. On treatment with 0.5M urea or guanidine by hydrochloride, the enzyme dissociates into inactive subunits with an approximate molecular weight of 45 000. One mole of the active enzyme binds one mole of pyridoxal phosphate. The bacterial enzyme seems to be quite different in many of its properties from the rat liver enzyme which also exhibits the substrate specificity of cystathionine gamma-lyase.  相似文献   

15.
Plasminogen activator inhibitor-1 (PAI-1), the primary physiological inhibitor of tissue-type plasminogen activator (t-PA) in plasma, is a serine proteinase inhibitor (serpin) that forms a 1:1 stoichiometric complex with its target proteinase leading to the formation of a stable inactive complex. The active, inhibitory form of PAI-1 spontaneously converts to a latent form that can be reactivated by protein denaturants. In the present study we have isolated another molecular form of intact PAI-1 that, in contrast with active PAI-1, does not form stable complexes with t-PA but is cleaved at the P1-P1' bond (Arg346-Met347). Other serine proteinases, e.g. urokinase-type plasminogen activator and thrombin, also cleaved this "substrate" form of PAI-1. Fluorescence spectroscopy revealed conformational differences between the latent, active, and substrate forms of PAI-1. This observation confirms our hypothesis that the three functionally different forms of PAI-1 are the consequence of conformational transitions. Thus PAI-1 may occur in three interconvertible conformations: latent, inhibitor, and substrate PAI-1. The identification of two distinct conformations of PAI-1 which interact with their target protease either as an inhibitor or as a substrate is a previously unrecognized phenomenon among the serpins. Conversion of substrate PAI-1 to its inactive degradation product may constitute a pathway for the physiological regulation of PAI-1 activity.  相似文献   

16.
Over-expression of recombinant proteins in microbial hosts results in the formation of active soluble protein or of insoluble aggregates (inclusion bodies). Efficient in vitro refolding strategies have been developed to reactivate inactive proteins from inclusion bodies. Co-expression of molecular chaperones may provide a tool to promote correct structure formation of recombinant proteins in vivo.  相似文献   

17.
Deoxycytidylate deaminase has been highly purified (1232-fold) from human leukemia CCRF-CEM cells. The native molecular weight of the enzyme is 108 000 and subunit molecular weight 50 500, suggesting that the native enzyme exists as a dimer. The enzyme exhibits a sigmoidal initial velocity vs substrate concentration curve and is regulated by allosteric effectors, dCTP and TTP. The curve relating substrate concentration to initial velocity was changed from a sigmoidal shape to a hyperbolic one by the activator dCTP, while the inhibitor TTP increased the sigmoidicity of the curve. The molecular weight of deoxycytidylate deaminase was unchanged in the presence of allosteric effectors, indicating that aggregation-disaggregation is not the basis of regulation. Deoxycytidylate deaminase exhibited the greatest affinity for the substrate dCMP, with lesser affinity for ara-CMP, and least affinity for CMP. Ara-CMP was an effective substrate in the presence of dCTP concentrations exceeding 4 microM. These data indicate that human neoplastic cell deoxycytidylate deaminase is a highly regulated allosteric enzyme, which is likely to have a significant influence on cellular dUMP, dCTP and TTP pools. These findings further suggest, that the enzyme through its influence on dUMP levels is likely to modulate the biochemical effects of pyrimidine antimetabolites active against the thymidylate synthetase reaction and in the presence of elevated dCTP pools will promote deamination of ara-CMP to the inactive ara-UMP.  相似文献   

18.
Abstract— The localization of an acid lipase-esterase which cleaves the fluorogenic substrate 4-methyl-umbelliferyl oleate at pH 5 was studied, because previous experiments has shown this activity to be reduced in the plaques of multiple sclerosis. In the human cerebellum, quantitative histochemical methods showed the activity to be relatively low in the molecular layer, compared to the granule cell layer; but the underlying white matter was the most active. In the human spinal cord, anterior horn cell bodies were richest in acid lipase, but white matter was, on a dry weight basis, as active as neuropil. Oligodendrocytes obtained in bulk from bovine white matter according to Poduslo & Norton (1972) had a specific activity up to 20 times greater than the crude myelin fraction. While it remains possible that in myelin the enzyme is in an inactive or inhibited state, the results indicate that the enzyme is localized in oligodendroglial cell bodies and suggest its use as a marker.  相似文献   

19.
Tian B  Eriksson LA 《Proteins》2011,79(5):1564-1572
Listeria monocytogenes is one of the most virulent foodborne pathogens. L. monocytogenes Sortase A (SrtA) enzyme, which catalyzes the cell wall anchoring reaction of the leucine, proline, X, threonine, and glycine proteins (LPXTG, where X is any amino acid), is a target for the development of antilisteriosis drugs. In this study, the structure of the L. monocytogenes SrtA enzyme-substrate complex was obtained using homology modeling, molecular docking and molecular dynamics simulations. Explicit enzyme-substrate interactions in the inactive and active forms of the enzyme were compared, based on 30 ns simulations on each system. The active site arginine (Arg 197) was found to be able change its hydrogen donor interactions from the LP backbone carbonyl groups of the LPXTG substrate in the inactive form, to the TG backbone carbonyls in the active form, which could be of importance for holding the substrate in position for the catalytic process.  相似文献   

20.
1. o-Diphenol oxidase was isolated from potato tubers by a new approach that avoids the browning due to autoxidation. 2. There are at least three forms of the enzyme, of different molecular weights. The major form, of highest molecular weight, was separated from the others in good yield and with high specific activity by gel filtration through Bio-Gel P-300. 3. The major form is homogeneous by disc electrophoresis but regenerates small amounts of the species of lower molecular weight, as shown by rechromatography on Bio-Gel P-300. 4. There is an equal amount of RNA and protein by weight in the fully active enzyme. The RNA cannot be removed without loss of activity, and is not attacked by ribonuclease. 5. The pH optimum of the enzyme is at pH5.0 when assayed with 4-methylcatechol as substrate. It is ten times more active with this substrate than with chlorogenic acid or catechol. The enzyme is fully active in 4m-urea. 6. A minimal molecular weight of 36000 is indicated by copper content and amino acid analysis of the protein component of the enzyme. 7. The protein contains five half-cystinyl residues per 36000 daltons, a value similar to that found in o-diphenol oxidase from mushrooms. It also contains tyrosine residues although, when pure, it does not turn brown by autoxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号