首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. Transmitters of motoneurons in the stomatogastric ganglion (STG) of Squilla were identified by analyzing the excitatory neuromuscular properties of muscles in the posterior cardiac plate (pcp) and pyloric regions. 2. Bath and iontophoretic applications of glutamate produce depolarizations in these muscles. The pharmacological experiments and desensitization of the junctional receptors elucidate the glutamatergic nature of the excitatory junctional potentials (EJPs) evoked in the constrictor and dilator muscles. The reversal potentials for the excitatory junctional current (EJC) and for the glutamate-induced current are almost the same. 3. Some types of dilator muscle show sensitivity to both glutamate and acetylcholine (ACh) exogenously applied. The pharmacological evidence and desensitization of the junctional receptors indicate the glutamatergic nature of neuromuscular junctions in these dually sensitive muscles. The reversal potentials for the EJC and for the ACh-induced current are not identical. 4. Glutamate is a candidate as an excitatory neuro-transmitter at the neuromuscular junctions which the STG motoneurons named PCP, PY, PD, LA and VC make with the identified muscles. Kainic and quisqualic acids which act on glutamate receptors are potent excitants of these muscles. Extrajunctional receptors to ACh are present in two types of the muscle innervated by LA and VC. 5. Neurotransmitters used by the STG motoneurons of stomatopods are compared to those of decapods.  相似文献   

2.
1. The effects of acetylcholine (ACh) on the soma of cultured ventrocaudal sensory neurons from the pleural ganglia of Aplysia kurodai were characterized. 2. Whole-cell recording was used for current and voltage clamping. ACh and other drugs were microapplied to the membranes of the cultured neurons. 3. Microapplication of ACh induced an outward current mediated by a conductance increase. No desensitization to repeated applications of ACh was detected. The threshold was 10(-7) M and the maximum response was at 10(-5) M. 4. The reversal potential in normal seawater is -80 mV, close to the K+ equilibrium potential. Increasing [K+]0 shifted the reversal potential by the amount predicted by the Nernst equation. Altering [Cl-]0 did not affect the reversal potential. Thus ACh opens a potassium channel in these sensory neurons and may act as a neurotransmitter on those neurons. 5. Atropine and d-tubocurarine partially blocked the ACh response. Hexamethonium had no obvious effect on this response. Tetraethylammonium reduced the response to 22% of control. Carbamylcholine and arecoline induced outward currents that were 71 and 12%, respectively, of the response to ACh. Nicotine and muscarine had almost no effect. 6. The ACh response was reduced by prior application of serotonin (5HT). The ACh response was also reduced by bath-applied 5HT, forskolin, and isobutylmethylxanthine. These data suggest that ACh activates an "S-like" channel in the ventrocaudal sensory neurons.  相似文献   

3.
The electrical properties and neuromuscular transmission of white and red fibers of pectoral fin muscles of the goldfish Carassius auratus were studied using an intracellular recording technique. The pectoral fin muscles consist mainly of white and red fibers. Almost all of white fibers elicited action potentials with overshoot by direct stimulation, but graded responses appeared in the red fibers. However, overshooting action potentials were often recorded from the red fibers in saline containing 20 microM tetraethylammonium (TEA) chloride. In response to single nerve stimulations, excitatory (EJPs) and inhibitory junction potentials (IJPs) were obtained from both white and red fibers in common. Both EJPs and IJPs were blocked completely or partially by d-tubocurarine, a nicotinic acetylcholine (ACh) receptor antagonist. Nicotine, a nicotinic ACh receptor agonist, and oxotremorine, a muscarinic ACh receptor agonist, depolarized both fiber types. The results suggest that white and red fibers receive double innervation from excitatory and inhibitory nerves, and have nicotinic and muscarinic ACh receptors. In the resting muscle, miniature excitatory junction potentials were generated spontaneously in both white and red fibers. Occasionally, miniature inhibitory junction potentials were recorded from the red fibers. The results indicate that the release of both excitatory and inhibitory transmitters is quantal in nature.  相似文献   

4.
The nicotinic acetylcholine (ACh) receptor is responsible for rapid conversion of chemical signals to electrical signals at the neuromuscular junction. Because the receptor and its ion channel are components of a single transmembrane protein, the time between ACh binding and channel opening can be minimized. To determine just how quickly the channel opens, we made rapid (100-400 microseconds) applications of 0.1-10 mM ACh to outside-out, multichannel membrane patches from BC3H-1 cells, while measuring the onset of current flow through the channels at 11 degrees C. Onset time is steeply dependent upon ACh concentration when channel activation is limited by binding of ACh (0.1-1 mM). At +50 mV, the 20-80% onset time reaches a plateau near 110 microseconds above 5 mM ACh as channel opening becomes rate limiting. Thus, we calculate the opening rate, beta = 12/ms, without reference to specific channel activation schemes. At -50 mV, the combination of a rapid, voltage-dependent block of channels by ACh with a finite solution exchange time distorts onset. To determine opening rate at -50 mV, we determine the kinetic parameters of block from "steady-state" current and noise analyses, assume a sequential model of channel activation/block, and numerically simulate current responses to rapid perfusion of ACh. Using this approach, we find beta = 15/ms. In contrast to the channel closing rate, the opening rate is relatively insensitive to voltage.  相似文献   

5.
Wang WZ  Wang XM  Rong WF  Wang JJ  Yuan WJ 《生理学报》2000,52(6):468-472
实验采用细胞外记录和微电泳等电生理方法,研究乙酰胆碱(ACh)对氨基甲酸乙酯麻醉的大鼠头端延髓腹外侧区(RVLM)前交感神经元放电频率的影响。在RVLM共记录到35个前交感神经元,微电泳ACh能增加其放电(P〈0.05),并且具有剂量依赖性。其中22个神经元微电泳M型胆碱受体阻断剂阿托品(ATR)后能明显降低前交感神经元的基础放电(P〈0.05)和完全阻断ACh引起的神经元兴奋作用;分别向其余7和  相似文献   

6.
1. Kinetics of activation and desensitization phases of the acetylcholine (ACh)-induced chloride current (ICI) were studied using isolated single neurons of Japanese land snail and the "concentration clamp" technique. 2. The dose-response curve for the peak ICI gave a dissociation constant of 7.1 x 10(-6) M and a Hill coefficient of 1.8. 3. The current-voltage relationship was linear in the voltage range examined (-60 to +10 mV) and the reversal potential (EACh) was -7.2 +/- 1.5 mV (N = 10). The value was close to the calculated equilibrium potential for chloride ions (ECI). 4. Both activation and desensitization phases of the ACh-induced ICI consisted of a single exponential at concentrations less than 3 x 10(-6) M and a double exponential at higher concentrations. The time constants of both phases decreased with increasing ACh concentrations but showed no potential dependency. 5. The recovery from desensitization of the ICI induced by 5 x 10(-6) M ACh proceeded double exponentially, with time constants of 11 and 114 sec at a holding potential of -30 mV. 6. Noise analysis was performed on a steady-state current induced by 3 x 10(-7) to 2 x 10(-6) M ACh. The mean open time was about 60 msec at 10(-6) M ACh and the single-channel conductance was 14 PS. 7. These results suggest that the ACh receptor-Cl channel complex in snail neurons has two binding sites with the dissociation constant of 7.1 x 10(-6) M and is rapidly activated and desensitized to a steady level in the presence of the agonist.  相似文献   

7.
Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief ( approximately 1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure-function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction.  相似文献   

8.
Important insights into mechanisms by which neuromuscular activity can be modulated have been gained by the study of experimentally advantageous preparations such as the ARC neuromuscular system of Aplysia. Previous studies have indicated that one source of modulatory input to the ARC muscle is its own two motor neurons, B15 and B16. Both of these neurons synthesize multiple peptide cotransmitters in addition to their primary neurotransmitter acetylcholine (ACh). Peptides present in the ARC motor neurons include SCPA, SCPB, buccalin A and B, and myomodulin A. We have now purified a novel neuropeptide, myomodulin B, which is structurally similar to myomodulin A. Myomodulin B is present in two identified Aplysia neurons that contain myomodulin A; the ARC motor neuron B16 and the abdominal neuron L10. Ratios of myomodulin A to myomodulin B are approximately 6:1 in both cells. Like myomodulin A, myomodulin B potentiates ARC neuromuscular activity; it acts postsynaptically, and increases the size and relaxation rate of muscle contractions elicited either by motor neuron stimulation or by direct application of ACh to the ARC. When myomodulin A is applied to the ARC in high doses (e.g., at about 10(-7) M), it decreases the size of motor neuron-elicited muscle contractions. This inhibitory effect is never seen with myomodulin B. Thus, despite the structural similarity between the two myomodulins, there exists what may be an important difference in their bioactivity.  相似文献   

9.
How aging affects the communication between neurons is poorly understood. To address this question, we have studied the electrophysiological properties of identified neuron R15 of the marine mollusk Aplysia californica. R15 is a bursting neuron in the abdominal ganglia of the central nervous system and is implicated in reproduction, water balance, and heart function. Exposure to acetylcholine (ACh) causes an increase in R15 burst firing. Whole-cell recordings of R15 in the intact ganglia dissected from mature and old Aplysia showed specific changes in burst firing and properties of action potentials induced by ACh. We found that while there were no significant changes in resting membrane potential and latency in response to ACh, the burst number and burst duration is altered during aging. The action potential waveform analysis showed that unlike mature neurons, the duration of depolarization and the repolarization amplitude and duration did not change in old neurons in response to ACh. Furthermore, single neuron quantitative analysis of acetylcholine receptors (AChRs) suggested alteration of expression of specific AChRs in R15 neurons during aging. These results suggest a defect in cholinergic transmission during aging of the R15 neuron.  相似文献   

10.
Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp), similar to that which has been described at the crustacean neuromuscular junction, is observed in Aplysia neurons which are glutamate sensitive. Potentiation of the inhibitory responses to ionophoretically applied Glu in neurons preconditioned with Asp permits experiments which serve to differentiate among four hypotheses previously proposed to explain the underlying mechanism of the phenomenon. The potentiation is inhibited by cooling (Q10 = 1.3 +/- 0.2) and is blocked in Na+-free seawater, where the response to Glu applied alone is increased in both amplitude and duration. These results are most consistent with the view that Glu is normally removed from the extracellular medium through an active reuptake process which is Na+ dependent, is slightly temperature sensitive, and may be blocked by Asp. Potentiation of the excitatory response to L-glutamate (Glu) by L-aspartate (Asp) has been previously described at the crustacean neuromuscular junction (Kravitz et al., 1970; Nistri and Constanti, 1979). This potentiation has been attributed to an Asp-induced change in conformation of the Glu receptor, thereby increasing its affinity for Glu (Shank and Freeman, 1975); suppression of the rate of desensitization of the Glu receptor induced by Asp (Dudel, 1977); blockade by Asp of a Glu reuptake process (Crawford and McBurney, 1977); and release, triggered by Asp, of a bound store of Glu (Constanti and Nistri, 1978).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Calcium entry induced by acetylcholine action on snail neurons   总被引:1,自引:0,他引:1  
A study was made of excitatory and inhibitory responses elicited by acetylcholine (ACh) in neurons of the snail Eobania vermiculata. At resting potential, ACh evoked a depolarizing inward current in some neurons (D-cells) and a hyperpolarizing current in others (H-cells). The currents elicited by ACh were nonlinearly dependent on membrane potential. After either D- or H-cells were equilibrated in chloride-free isotonic calcium, ACh evoked a depolarizing inward current which reversed sign at about -55 mV. These results suggest that ACh causes an influx of Ca2+ in both types of neurons.  相似文献   

12.
The blocking actions of strychnine on excitatory acetylcholine (ACh) responses in isolated, voltage clamped Aplysia neuronal cell bodies has been studied using a rapid drug application technique. Rapid microperfusion of strychnine (10-50 microM) produced a reduction of the steady-state ACh-induced inward current in Aplysia neurons which decayed exponentially with a highly dose-dependent time constant. At the cessation of strychnine perfusion the ACh-induced current recovered to its original value with an exponential time course which was not sensitive to the dose of strychnine previously applied. The calculated association (k1) and dissociation (k-1) constants for a pseudo-first-order reaction between strychnine and its binding site were k1 = 1.2 X 10(4) M-1. sec-1 and k-1 = 0.12 sec-1 (KD = 1 X 10(-5) M-1). These results demonstrate that concentration jump relaxation experiments can be performed on isolated neurons for the study of voltage-independent antagonists by the use of rapid microperfusion systems and provide the first direct estimates to date of the rate constants of the cholinolytic effect of strychnine.  相似文献   

13.
Excitatory postsynaptic currents (EPSCs) were recorded with loose patch electrodes placed over visualized boutons on the surface of rat pelvic ganglion cells. At 34 degrees C the time to peak of the EPSC was about 0.7 ms, and a single exponential described the declining phase with a time constant of about 4.0 ms; these times were not correlated with changes in the amplitude of the EPSC. The amplitude-frequency histogram of the EPSC at individual boutons was well described by a single Gaussian-distribution that possessed a variance similar to that of the electrical noise. Nonstationary fluctuation analysis of the EPSCs at a bouton indicated that about 120 ACh receptor channels were available beneath boutons for interaction with a quantum of ACh. The characteristics of these EPSCs were compared with the results of Monte Carlo simulations of the quantal release of 9000 acetylcholine (ACh) molecules onto receptor patches of density 1400 microns-2 and 0.41 micron diameter, using a kinetic scheme of interaction between ACh and the receptors similar to that observed at the neuromuscular junction. The simulated EPSC generated in this way had temporal characteristics similar to those of the experimental EPSC when either the diffusion of the ACh is slowed or allowance is made for a finite period of transmitter release from the bouton. The amplitude of the simulated EPSC then exhibited stochastic fluctuations similar to those of the experimental EPSC.  相似文献   

14.
The non-L-glutamate (L-Glu) receptor component of D-aspartate (D-Asp) currents in Aplysia californica buccal S cluster (BSC) neurons was studied with whole cell voltage clamp to differentiate it from receptors activated by other well-known agonists of the Aplysia nervous system and investigate modulatory mechanisms of D-Asp currents associated with synaptic plasticity. Acetylcholine (ACh) and serotonin (5-HT) activated whole cell excitatory currents with similar current voltage relationships to D-Asp. These currents, however, were pharmacologically distinct from D-Asp. ACh currents were blocked by hexamethonium (C6) and tubocurarine (D-TC), while D-Asp currents were unaffected. 5-HT currents were blocked by granisetron and methysergide (MES), while D-Asp currents were unaffected. Conversely, while (2S,3R)-1-(Phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid(PPDA) blocked D-Asp currents, it had no effect on ACh or 5-HT currents. Comparison of the charge area described by currents induced by ACh or 5-HT separately from, or with, D-Asp suggests activation of distinct receptors by all 3 agonists. Charge area comparisons with L-Glu, however, suggested some overlap between L-Glu and D-Asp receptors. Ten minute exposure to 5-HT induced facilitation of D-Asp-evoked responses in BSC neurons. This effect was mimicked by phorbol ester, suggesting that protein kinase C (PKC) was involved.  相似文献   

15.
1. Effects of bath-applied recombinant human interleukin-1 (rhIL-1) and interleukin-2 (rhIL-2) on the acetylcholine (ACh)-induced K+ current recorded from identified neurons (R9 and R10) of Aplysia kurodai were investigated with voltage-clamp and pressure ejection techniques. 2. Bath-applied rhIL-1 and rhIL-2 (10-40 U/ml) reduced the ACh-induced current in the neurons without affecting the resting membrane conductance and holding current. 3. The suppressing effects of these cytokines on the current were completely reversible. 4. Heat-inactivated rhIL-1 and rhIL-2 were without effect. 5. These results suggest that the immunomodulators, IL-1 and IL-2, can modulate the ACh-induced response in the nervous system.  相似文献   

16.
Positive modulators of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) channels reduce desensitization and alter their gating kinetics. We have discovered a novel compound nitric oxide-mimetic that similarly modulates the AMPA receptor by reducing desensitization. This, designated GT-005, belongs to the organic nitrate family that includes the nitrovasodilator nitroglycerine. In acutely isolated hippocampal neurons, GT-005 enhanced kainate (100 microM)-evoked currents with an EC50 of 1.7+/-0.2 mM and a 176+/-10% maximal increase in the steady-state current response. Similar results were found in cultured hippocampal neurons (EC50 of 1.3+/-0.2 mM and a maximal 83+/-14% increase in the steady-state current response). GT-005 reduced the desensitization of glutamate-evoked currents and slowed the onset of desensitization. This compound also increased the rate of recovery from the desensitized state. With respect to alteration of the excitatory synaptic transmission, GT-005 delayed the decay and increased the frequency of spontaneous miniature excitatory postsynaptic currents (mepsc) recorded in cultured hippocampal neurons.  相似文献   

17.
Fasciculin II, a potential inhibitor of acetylcholinesterase (AChE), was tested on two types of Aplysia cholinergic receptors: H type, opening Cl- channels; and D type, opening cationic channels. Evoked postsynaptic inhibitory responses and responses to ionophoretic application of acetylcholine (ACh) or carbachol onto H-type receptors were potentiated in the presence of fasciculin II at 10(-9) M, whereas the same concentration of this drug was without effect on the evoked postsynaptic excitatory responses or on the application of ACh or carbachol on D-type receptors. The observed effects of fasciculin II were identical to those obtained with other inhibitors of AChE on the same preparation. The facilitatory effect on the carbachol response in H-type cells indicates that fasciculin II, as other AChE inhibitors, does not act on H-type synapses solely by blocking the hydrolysis of ACh. We concluded that fasciculin II was a good inhibitor of acetylcholinesterase on neuronal preparations in vivo. The results are further discussed as a new element in favor of a previously proposed hypothesis of a molecular interaction between AChE and ACh H-type receptors.  相似文献   

18.
Unit activity of 46 pairs of neurons of sensorimotor cortex of rats was studied in a model situation of habituation to repetitive microiontophoretic applications of acetylcholine (ACh). The difference between the types of reactions to ACh of two neighbouring neurons recorded by the same microelectrode was observed on 37% of cases. The difference between the dynamics of activity of neurons with similar patterns of reactions during repetitive action of stimuli was also shown. Stability of the excitatory connections between two neighbouring neurons under the conditions when one of them demonstrated the habituation to repetitive action of ACh were indicated by analysis of cross-correlation histograms.  相似文献   

19.
Y Ikemoto  N Akaike  K Ono 《Life sciences》1988,42(16):1557-1564
The primary site of anesthetic action remains controversial. In addition to non-specific actions of hydrophobic substances on the membrane, specific effects of volatile anesthetics on neuronal activity have been reported. In the present study, effects of enflurane on the chloride currents (ICl) induced by L-glutamic acid (Glu) and acetylcholine (ACh) in isolated Aplysia neurons were examined, using the 'concentration clamp' technique. Enflurane increased the peak amplitude of the ICl induced by low concentrations of Glu but decreased those evoked by higher concentrations of the agonist. The anesthetic accelerated both activation and desensitization phases of the Glu-induced ICl. On the other hand, the ACh-induced ICl in the same neuron was depressed in an uncompetitive manner in the presence of enflurane. The desensitization phase was not affected, although the activation phase became more rapid and the mean open time obtained by noise analysis was shortened. These results suggest the existence of specific steps in the process of activation and desensitization of channels, at which the volatile anesthetic exerts differential effects on the postsynaptic currents.  相似文献   

20.
The nicotinic acetylcholine (ACh) receptor is an integral membrane protein which mediates synaptic transmission at the skeletal neuromuscular junction. A key event in the development of the neuromuscular junction is the formation of high density aggregates of ACh receptors in the postsynaptic membrane. Receptor clustering has been attributed, in part, to their association with a peripheral membrane protein of Mr 43,000 (43K protein). We have addressed whether the association of the 43K protein can alter the single channel properties of the ACh receptor, and thus influence neuromuscular transmission at developing synapses, by expressing ACh receptors with and without the 43K protein in heterologous expression systems. We found that coexpression of the 43K protein with the receptor did not significantly alter either its single channel conductance or its mean channel open time. This was true in oocytes and also in COS cells where it was possible to localize 43K-induced clusters by fluorescence microscopy and to record from those clustered receptors. These data are in agreement with previous single channel studies which have shown that the properties of diffusely distributed and clustered receptors in native muscle cells from both mice and Xenopus do not differ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号