首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Replicating polyoma virus DNA, pulse-labeled with 3H-thymidine, was isolated from infected mouse embryo cells by velocity sedimentation in neutral sucrose and purified by benzoylated-naphthoylated DEAE-cellulose chromatography. Nascent strands, prepared by heat denaturation of purified replicative intermediate, banded at a slightly higher buoyant density in neutral cesium sulfate gradients than single strands derived from superhelical viral DNA. Treatment of nascent strands with a mixture of ribonucleases 1A and T1 shifted their buoyant density to that of single strands derived from superhelical viral DNA. These results indicate that an oligoribonucleotide component is covalently associated with replicating polyoma DNA strands.  相似文献   

2.
Replicating simian virus 40 (SV40) chromosomes were found to be similar to other eukaryotic chromosomes in that the rate and extent of micrococcal nuclease (MNase) digestion were greater with replicating than with nonreplicating mature SV40 chromatin. MNase digestion of replicating SV40 chromosomes, pulse labeled in either intact cells or nuclear extracts, resulted in the rapid release of nascent DNA as essentially bare fragments of duplex DNA (3-7S) that had an average length of 120 base pairs and were degraded during the course of the reaction. In addition, nucleosomal monomers, equivalent in size to those from mature chromosomes, were released. On the other hand, MNase digestion of uniformly labeled mature SV40 chromosomes resulted in the release of only nucleosomal monomers and oligomers. The small nascent DNA fragments released from replicating chromosomes represented prenucleosomal DNA (PN-DNA) from the region of replication forks that encompasses the actual sites of DNA synthesis and includes Okazaki fragments. Predigestion of replicating SV40 chromosomes with both Escherichia coli exonuclease III (3'-5') and bacteriophage T7 gene 6 exonuclease (5'-3') resulted in complete degradation of PN-DNA. This result, together with the observation that isolated PN-DNA annealed equally well to both strands of SV40 restriction fragments, demonstrated that PN-DNA originates from both sides of replication forks. Over 90% of isolated Okazaki fragments annealed only to the retrograde DNA template. The characteristics of isolated PN-DNA were assessed by examining its sensitivity to MNase and single strand specific S1 endonuclease, sedimentation behavior before and after deproteinization, buoyant density in CsCl after formaldehyde treatment, and size on agarose gels. In addition, it was observed that MNase digestion of purified SV40 DNA also resulted in the release of a transient intermediate similar in size to PN-DNA, indicating that a DNA-protein complex is not required to account for the appearance of PN-DNA. These and other data provide a model of replicating chromosomes in which DNA synthesis occurs on a region of replication forks that is free of nucleosomes and is designated as prenucleosomal DNA.  相似文献   

3.
When DNA is extracted from Chinese hamster cells grown in the presence of 5-bromodeoxyuridine from the beginning of the S (synthesis) phase until the middle of the first replication round, a significant fraction of total replicated DNA bands at intermediate densities between light-light and light-heavy DNA, in a CsCl gradient. Incomplete bromodeoxyuridine substitution compared with light-heavy DNA justifies the displaced banding of these molecules. Since “intermediate DNA” following alkaline or thermal denaturation gives rise to unsubstituted and fully substituted single strands, its particular density in neutral gradients cannot be ascribed to a uniformly reduced degree of bromodeoxyuridine substitution nor to covalently joined light and heavy strands. The segregation of DNA of intermediate densities into light-light and light-heavy components after shearing suggests that it includes at least one junction between replicated and still unreplicated segments, i. e. one replication fork that may or may not have lost one of its prongs. DNA of intermediate density specifically contains one to two sites sensitive to breakage by Neurospora crassa endonuclease.When a two-minute pulse of tritiated bromodeoxyuridine is given during replication in unlabelled heavy medium, the DNA fragments (mol. wt 35 × 106) containing labelled segments band essentially at intermediate positions and are progressively converted to light-heavy molecules, with increasing duration of chase. The half-life of this pulse-labelled intermediate DNA (about 25 min) is consistent with the proportion of total replicated DNA found at displaced densities (10 to 15%) and, together with the distribution of the intermediate radioactivity, is compatible with the existence of adjacent growing replicons.If DNA is labelled and extracted during the second replication round in the presence of bromodeoxyuridine, “intermediate DNA” with similar properties is found between the light-heavy and heavy-heavy peaks.  相似文献   

4.
Replication of the DNA of chick embryo lethal orphan virus   总被引:16,自引:0,他引:16  
Replication of the DNA of chick embryo lethal orphan virus was semi-conservative. In CsCl density gradients a portion of pulse-labelled intracellular viral DNA was more dense than mature DNA and sometimes approached the density of denatured DNA. Chromatography on benzoylated naphthoylated DEAE-cellulose also suggested that replicating viral DNA had extensive single-stranded regions. In neutral sucrose, some pulse-labelled viral DNA sedimented faster than mature DNA. Short pulses of [3H]thymidine were incorporated into fragments that sedimented at about 12 s in alkaline sucrose. As the pulse length was increased, label was found in material that sedimented faster than 12 s fragments but more slowly than the strands of mature viral DNA, and finally in full length viral DNA strands. During a “chase” in unlabelled medium, pulse-labelled intracellular viral DNA was converted to a form with properties like those of mature DNA. No closed circular structures could be detected when pulse-labelled DNA was centrifuged in CsCl in the presence of ethidium bromide. Thus the replication of this DNA, which is linear and lacks terminal repetitions detectable by exonuclease digestion and annealing, does not involve circles or concatemers in which one or both strands are continuous. However, the 5′ ends of the daughter strands cannot be completed unless the nascent DNA forms a maturation intermediate, the most likely form of which is a concatemer with staggered nicks in both strands at one genome intervals. This implies an unusual structure of the ends of the DNA, or the existence of a protein that interacts with the ends.  相似文献   

5.
The protozoa Crithidia and Trypanosoma contain within a mitochondrion a mass of DNA known as kinetoplast DNA (kDNA) which consists mainly of an association of thousands of small circular molecules of similar size held together by topological interlocking. Using kDNA from Crithidia acanthocephali, Crithidia luciliae, and Trypanosoma lewisi, physicochemical studies have been carried out with intact associations and with fractions of covalently closed single circular molecules, and of open single circular and unit length linear molecules obtained from kDNA associations by sonication, sucrose sedimentation, and cesium chloride-ethidium bromide equilibrium centrifugation. Buoyant density analyses failed to provide evidence for base composition heterogeneity among kDNA molecules within a species. The complementary nucleotide strands of kDNA molecules of all three species had distinct buoyant densities in both alkaline and neutral cesium chloride. For C. acanthocephali kDNA, these buoyant density differences were shown to be a reflection of differences in base composition between the complementary nucleotide strands. The molar ratios of adenine: thymine:guanine:cytosine, obtained from deoxyribonucleotide analyses were 16.8:41.0:28.1:14.1 for the heavy strand and 41.6:16.6:12.8:29.0 for the light strand. Covalently closed single circular molecules of C. acanthocephali (as well as intact kDNA associations of C. acanthocephali and T. lewisi) formed a single band in alkaline cesium chloride gradients, indicating their component nucleotide strands to be alkaline insensitive. Data from buoyant density, base composition, and thermal melting analyses suggested that minor bases are either rare or absent in Crithidia kDNA. The kinetics of renaturation of 32P labeled C. acanthocephali kDNA measured using hydroxyapatite chromatography were consistent with at least 70% of the circular molecules of this DNA having the same nucleotide sequence. Evidence for sequence homologies among the kDNAs of all three species was obtained from buoyant density analyses of DNA in annealed mixtures containing one component kDNA strand from each of two species.  相似文献   

6.
A study of sedimentation and buoyant density of Okazaki fragments from mammalian chromosomes along with electron microscopic studies indicate that fragments from about 200 to 1200 nucleotides long may have RNA segments covalently attached. The fragments in some CsCl isopycnic gradients banded in two rather distinct bands. One band corresponds to the density of single-stranded DNA, but the other has a higher buoyant density which could be conferred by a segment of RNA up to 180 nucleotides or more in length. The RNA was not removed by denaturing conditions which separated DNA strands consisting of several thousand nucleotide pairs. When the material of higher buoyant density was spread for electron microscopy under conditions which would extend single-stranded DNA chains, but leave RNA in a coil or bush the chains with a higher buoyant density usually had a bush attached at one end. Under conditions that were thought to favor gap filling over chain elongation near growing forks, the DNA produced by pulse labeling with bromodeoxyuridine had a buoyant density which would indicate substitution to about 15 percent in one chain. If this substitution represents filling of gaps occupied by RNA before the pulse, the segments would be about 180 nucleotides in length assuming about 1,000 nucleotides between each segment.  相似文献   

7.
Summary When three lines of mammalian cells were cultured with 5-bromodeoxyuridine (BrdUrd) for less than one generation, their DNAs displayed three peaks in CsCl gradients. In addition to the expected unsubstituted (LL) and hybrid (LH) peaks, there was a significant absorbance peak of intermediate density (INT) between LH and LL DNAs. This INT DNA has characteristics expected of an intermediate of DNA replication. Upon shearing, it behaves as though it contains contiguous segments of unsubstituted and hybrid DNAs. Upon continuous exposure of cells to [3H]-BrdUrd, radioactivity accumulates in INT DNA for 60–90 min when a steady state condition is reached. At that time, the rate of incorporation into LH DNA increases, consistent with a precursorproduct relationship. In a pulse-chase experiment, radioactivity is chased from INT DNA into LH DNA. To account for the above observations and for the size and sharpness of the INT DNA peak in CsCl, we suggest that a high molecular weight replication intermediate accumulates before completing replication into mature daughter molecules.  相似文献   

8.
The experiments described in this paper were part of an attempt to determine the mechanisms involved in the isomerization of the pseudorabies virus genome. To this end, [(14)C]thymidine-labeled parental virus DNA that was transferred to progeny virions produced by cells incubated in medium containing bromodeoxy-uridine was analyzed in neutral and alkaline CsCl density gradients. The buoyant density of the (14)C-labeled DNA indicated that the parental DNA strands had retained their integrity and had not undergone breakage and reunion with progeny DNA strands; neither massive intermolecular nor intramolecular recombination had occurred after replication of the DNA. Whereas breakage and reunion between parental and progeny virus DNA strands were not detectable, these processes were observed between differentially density-labeled parental DNAs. Furthermore, the frequency of recombination between progeny DNAs accumulating in the cells was low. These results indicate that in pseudorabies virus-infected rabbit kidney cells recombination occurs mainly between parental genomes and precedes DNA replication. An analysis of the kinetics of appearance of recombinants between pairwise combinations of temperature-sensitive mutants also indicated that recombination is an early event. The ratio between the number of recombinant virions and the number of temperature-sensitive mutant virions produced by the cells remained the same throughout infection. Since the relative amounts of viral DNAs synthesized early and late during the infective process that were integrated into virions were approximately the same, it appears that late viral DNA did not experience an increased number of recombinational events compared with early viral DNA. These results, which reinforce the conclusion reached from the results of the analysis of the behavior of the parental DNA molecules in density shift experiments, indicate that recombination is an early event.  相似文献   

9.
Detergent extraction of simian virus 40 (SV40) DNA from infected monkey CV-1 cells, after a brief exposure to the drug camptothecin, yields covalent complexes between topoisomerase I and DNA that band with reduced buoyant densities in CsCl. The following lines of evidence indicate that the enzyme is preferentially associated with SV40 replicative intermediates. First, the percentage of the isolated labeled viral DNA that exhibited a reduced buoyant density is inversely proportional to the length of the labeling period and approximately parallels the percentage of replicative intermediates for each labeling time (5 to 60 min). Second, after labeling for 60 min, the isolated low-density material was found to be enriched for replicative intermediates as measured by sedimentation in neutral sucrose. Third, analysis of extracted viral DNA by equilibrium centrifugation in CsCl-propidium diiodide gradients that separate replicating molecules from completed form I DNA revealed that camptothecin pretreatment specifically caused the linkage of topoisomerase I to replicating molecules. In addition, analysis of the low-density material obtained under conditions when only the newly synthesized strands of the replicative intermediates were labeled showed that the enzyme was associated almost exclusively with the parental strands. Taken together, these observations indicate that topoisomerase I is involved in DNA replication, and they are consistent with the hypothesis that the enzyme provides swivels to allow the helix to unwind. The observed bias in the distribution of topoisomerase I on intracellular SV40 DNA could be the result of rapid encapsidation of replicated molecules that precludes the association of topoisomerase I with the DNA or, alternatively, the result of a specific association of the enzyme with replicative intermediates.  相似文献   

10.
Simian virus 40 DNA replication has been studied in nuclear monolayers prepared by treatment of monolayers of BSC-1 monkey kidney cells with Nonidet P-40. These nuclear monolayers incorporated [3H]TTP into two types of viral replicative intermediates that sediment as 25-26S and 22-23S species, respectively, in neutral sucrose gradients. The 22-23S species behaves, in dye buoyant density equilibrium gradients, as a late replicative intermediate. Examination of both species in alkaline sucrose gradients revealed the presence of two types of newly synthesized strands: (i) 4-7S strands and (ii) full-length, or nearly full-length, 10-16S strands. At low TTP concentrations (less than 0.5 muM), the two size classes were found in approximately equal amounts. However, at 10 to 50 muM TTP, the proportion of the longer strands increased, with a corresponding decrease in the relative amount of the 4-7S species. Thus, the joining of small, Okazaki-like fragments to the growing chain appears to require a much higher concentration of TTP than the synthesis of the fragments themselves. Replicating simian virus 40 DNA synthesized in the nuclear monolayers is is associated with "M bands", as previously demonstrated for replicating simian virus 40 DNA in cultured whole cells.  相似文献   

11.
Chromosomal DNA replication was examined in temperature-sensitive mutants of Saccharomyces cerevisiae defective in a gene required for the completion of S phase at the nonpermissive temperature, 37 degrees C. Based on incorporation of radioactive precursors and density transfer experiments, strains carrying three different alleles of cdc2 failed to replicate approximately one-third of their nuclear genome at 37 degrees C. Whole-cell autoradiography experiments demonstrated that 93 to 96% of the cells synthesized DNA at 37 degrees C. Therefore, all cells failed to replicate part of their genome. DNA isolated from terminally arrested cells was of normal size as measured on neutral and alkaline sucrose gradients, suggesting that partially replicated DNA molecules do not accumulate and that DNA strands are ligated properly in cdc2 mutants. In addition, electron microscopic examination of the equivalent of more than one genome's DNA from arrested cells failed to reveal any partially replicated molecules. The sequences which failed to replicate at 37 degrees C were not highly specific; eight different cloned sequences replicated to the same extent as total DNA. The 2-microns plasmid DNA and rDNA replicated significantly less well than total DNA, but approximately one-half of these sequences replicated at 37 degrees C. These observations suggest that cdc2 mutants are defective in an aspect of initiation of DNA replication common to all chromosomes such that a random fraction of the chromosomes fail to initiate replication at 37 degrees C, but that once initiated, replication proceeds normally.  相似文献   

12.
Deoxyribonucleic acid (DNA) extracted from herpes simplex virions forms multiple partially overlapping bands upon denaturation and centrifugation in alkaline sucrose density gradients. The most rapidly sedimenting DNA corresponds to an intact strand 48 x 10(6) daltons in molecular weight. In this study, we analyzed the DNA fragments generated in alkaline sucrose gradients with respect to size and uniqueness of base sequences. The distribution of sedimentation constants of the various fragments obtained in numerous gradients showed that the fragments smaller than the whole strand fall into six distinct classes ranging in molecular weight from 10 x 10(6) to 39 x 10(6) daltons. Four types of DNA strands can be reconstructed from the whole strand and six fragments on the basis of their molecular weights. DNA from each of the bands self-hybridizes to a lower extent than unfractionated viral DNA, indicating that each of the bands preferentially contains sequences from one unique strand. The data permit reconstruction of four possible types of DNA duplexes differing in the positions of the strand interruptions. Analysis of viral DNA extracted from nuclei of cells labeled with (3)H-thymidine for intervals from 3 to 120 min showed that nascent DNA is invariably attached to small fragments and that the fragments become elongated only upon prolonged incubation of cells. The experiments suggest that viral DNA replication begins at numerous initiation sites along each strand and that the elongation beyond the size of the replication unit involves repair or ligation, or both. Since newly made DNA yields more fragments than viral DNA extracted from mature virions, it is suggested that the fragmentation of mature DNA on denaturation with alkali arises from incomplete processing of specific initiation sites. Comparison of viral DNA extracted from nuclei with that extracted from mature cytoplasmic virions in cells labeled for 120 min indicates that packaged DNA is not randomly selected from among the nuclear DNA population but rather represents DNA molecules which in alkaline gradients yield a minimal number of fragments.  相似文献   

13.
The length of newly synthesized DNA strands from mouse P-815 cells was analyzed after denaturation both by electrophoresis and by sedimentation in alkaline sucrose gradients. [3-H]-Thymidine pulses of 2-8 min at 37 degrees C predominantly label molecules of 20-60 S. With 30-s pulses at 25 degrees C, all the [3-H]thymidine appears in short DNA strands of 50-200 nucleotides. Thus, DNA strand elongation occurs discontinuously via Okazaki fragments at both the 5' end and the 3' end. In dodecylsulfate lysates, only 10% of the Okazaki fragments are found as single-stranded molecules. About 90% are resistant to hydrolysis by the single-strand-specific nuclease S-1 and band in isopycnic gradients at the buoyant density of double-stranded DNA. No evidence for ribonucleotides at the 5' end of Okazaki fragments was obtained either in isopycnic CsCl or Cs2SO4 gradients or after incubation with polynucleotide kinase and [gamma-32P]ATP.  相似文献   

14.
A catenated intermediate in plasmid replication   总被引:8,自引:0,他引:8  
An intermediate in the replication of three different staphylococcal plasmids is a catenated mixed dimer consisting of an open circular and a closed circular monomer. The mixed dimer, having a buoyant density intermediate between that of circular duplex and relaxed DNA's in dye-buoyant density gradients is rapidly and transiently labeled and appears to be a precursor of mature closed circular monomers. Whether it is an obligatory intermediate or a step on an alternate replication pathway remains uncertain.  相似文献   

15.
Artifacts were encountered during caesium salt density gradient centrifugation which simulated results expected if newly synthesized DNA is covalently attached to RNA. Newly synthesized DNA (in baby hamster kidney cells, BHK-21/C13), pulse-labelled with [3H]thymidine for 10 min at temperatures below 25 degrees C, banded at a greater buoyant density than mature [14C]DNA (heat-denatured nucleic acids) when centrifuged to equilibrium in caesium chloride gradients. Some of the newly synthesized RNA, labelled with [3H]uridine, banded at a buoyant density slightly greater than DNA in caesium sulphate gradients. These results were not obtained when nucleic acids were pulse-labelled at 37 degrees C, nor when samples were heat-denatured in the presence of formaldehyde. This suggests that nucleic acids can aggregate during centrifugation; this is discussed in relation to the molecular size of the DNA.  相似文献   

16.
The accessibility of five specific DNA sequences to six different single site restriction endonucleases was evaluated in replicating and mature simian virus 40 chromosomes isolated by three different methods. Electron microscopic and gel electrophoretic analysis of the DNA digestion products demonstrated that DNA accessibility in chromatin was established within 400 base pairs of replication forks and remained essentially unchanged during production of mature chromosomes and their subsequent re-entry into the replication pool. Saturating amounts of each enzyme reproducibly cut a fraction of the chromosomes, ranging from 13 to 49%. This is consistent with a nearly random phasing of chromatin structure. Examples in which all chromosomes were either cleaved or intact were never observed. Although variation in the accessibility of DNA sites near the origin of replication could be interpreted as preferred phasing in about 25% of the chromosomes, the finding that two isoschizomers, Hpa II and Msp I, did not cut chromosomes to the same extent precludes an unambiguous interpretation of the extents of cleavage of individual restriction enzymes. Since the extent of DNA cleavage observed at each restriction site was essentially indistinguishable in replicating as compared to mature chromosomes, the accessibility of DNA sequences near the origin is not obviously related to replication. Furthermore, the accessibility of DNA sites on one arm of a single replication fork was the same as the homologous sites on the other arm, consistent with a nearly random phasing of chromatin structure on both arms. This suggests that chromatin assembly occurs independently on the 2 sibling molecules of a single replicating chromosome.  相似文献   

17.
The rate of DNA synthesis in cultures of human lymphoblasts decreased more than 80% within 30 min after the cells were exposed to methotrexate, a potent inhibitor of dihydrofolate reductase. Despite this rapid initial inhibition, DNA continued to be synthesized for at least an additional 6 h. The mode of this subsequent replication appeared to be semiconservative, as indicated by the buoyant density of 5-bromodeoxyuridine-substituted DNA in alkaline CsCl gradients. The growth rates of DNA chains in cells exposed to methotrexate were determined by sedimentation rate analysis in alkaline sucrose gradients. DNA synthesized during 2-min or 10-min pulses with labeled deoxycitidine in the presence of methotrexate had about the same sedimentation coefficient, 35 S, as controls. When methotrexate-treated cultures were pulse-labeled for 10 min and then chased for various times, DNA fragments of about 80 S accumulated. DNA synthesized in the presence of methotrexate was stable and elongated to bulk-size DNA after methotrexate inhibition of growth was removed by addition of thymidine and deoxycytidine. The data suggest that methotrexate reduces the rate of DNA replication by inhibiting chain initiation independently of chain elongation.  相似文献   

18.
Evidence was presented to support the hypothesis that long single strands appearing at late times (15 min after infection) are produced as a result of recombination and not as a continuous elongation during the replication process. The production of long strands does not depend on the multiplicity of infection, and the first long strands appear at the time when 20 to 50 phage equivalent units of deoxyribonucleic (DNA) are synthesized, and not earlier. The addition of chloramphenicol at 5 min, which prevents molecular recombination but allows replication of DNA, prevents the formation of long, single strands. Chloramphenicol added between 8 and 10 min after infection, a time at which molecular recombination is fully expressed and covalent repair of recombinant molecules is allowed, does not prevent formation of long single strands. Cutting of single-strand DNA with a limited amount of endonuclease I allows confirmation that the fast-sedimenting characteristic of intracellular denatured DNA is caused primarily by the length of the strands, and not by the formation of aggregates. The computer simulation of two recombination models indicates the feasibility of random breakage and rejoining of molecules in generating long concatenates.  相似文献   

19.
Examination of in vivo long-labeled, pulse-labeled and pulse-chase-labeled mitochondrial DNA has corroborated and extended the basic elements of the displacement model of replication. Mitochondrial DNA molecules are shown to replicate an average of once per cell doubling in exponentially growing cultures. Analysis of the separate strands of partially replicated molecules indicates that replication is highly asynchronous with heavy-strand synthesis preceding light-strand synthesis. Native and denatured pulse-labeled replicating molecules exhibit sedimentation properties predicted by the displacement model of replication. Pulse-label incorporated into molecules isolated in the lower band region of ethidium bromide/cesium chloride gradients is found primarily in heavy daughter strands. Pulse-label incorporated into molecules isolated in the upper band region is found primarily in light daughter strands. The results of a series of pulse-chase experiments indicate that the complete process of replication requires approximately 120 minutes. Both daughter molecules are shown to segregate in an open circular form. They are then converted to closed circular molecules having a superhelix density near zero. After closure, the 7 S heavy-strand initation sequence is synthesized, and this process is accompanied by nicking, unwinding and closing of at least one of the parental strands resulting in the formation of the D-loop structure. The 7 S heavy-strand initiation sequence of the D-loop structure is not stable and turns over with a half-life of 7·9 hours. We suggest that all in vivo forms of parental closed circular mitochondrial DNA have superhelix densities of near zero, and that the previously observed superhelix density of closed circular mitochondrial DNA, σ~ ?0·02, results from the loss of the 7 S heavy-strand initiation sequence from D-loop mitochondrial DNA molecules during isolation.  相似文献   

20.
Letter: Some unusual properties of replicating adenovirus type 2 DNA   总被引:12,自引:0,他引:12  
Replicating adenovirus type 2 DNA was isolated from KB cells 13 hours after infection. The buoyant density in caesium chloride of the replicating DNA was found to be 5 to 10 mg/cm2 greater than that of mature adenovirus type 2 DNA. The single-strand specific nuclease from Neurospora crassa released 25 to 30% of the radioactivity from replicating DNA and the density difference between replicating and mature adenovirus DNA was eliminated after digestion with this enzyme, but not after digestion with RNase or pronase. The results suggest that the complementary strands of adenovirus type 2 DNA are replicated asynchronously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号