首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Synaptic scaffolding molecule (S-SCAM) is a multiple PDZ domain-containing protein, which interacts with neuroligin, a cell adhesion molecule, and the NMDA receptor. In this study, we searched for S-SCAM-interacting proteins and obtained a neuralplakophilin-related armadillo-repeat protein (NPRAP)/delta-catenin. NPRAP/delta-catenin bound to the last PDZ domain of S-SCAM via its carboxyl-terminus in three different cell-free assay systems, was coimmunoprecipitated with S-SCAM from rat crude synaptosomes, and was localized at the excitatory synapses in rat hippocampal neurons. NPRAP/delta-catenin may be implicated in the molecular organization of synaptic junctions through the interaction with S-SCAM.  相似文献   

2.
Synaptic scaffolding molecule (S-SCAM) is a synaptic protein that consists of PDZ domains, a guanylate kinase domain, and WW domains. It interacts with N-methyl-d-aspartate receptor subunits, neuroligin, and beta-catenin. Here, we identified Axin as a novel binding partner of S-SCAM. Axin was co-immunoprecipitated with S-SCAM from rat brain, detected in the post-synaptic density fraction in rat brain subcellular fractionation, and partially co-localized with S-SCAM in neurons. The guanylate kinase domain of S-SCAM directly bound to the GSK3beta-binding region of Axin. S-SCAM formed a complex with beta-catenin and Axin, but competed with GSK3beta for Axin-binding. Thereby, S-SCAM inhibited the Axin-mediated phosphorylation of beta-catenin by GSK3beta.  相似文献   

3.
Neuroligins are cell adhesion proteins that are thought to instruct the formation and alignment of synaptic specializations. The three known rodent neuroligin isoforms share homologous extracellular acetylcholinesterase-like domains that bridge the synaptic cleft and bind beta-neurexins. All neuroligins have identical intracellular C-terminal motifs that bind to PDZ domains of various target proteins. Neuroligin 1 is specifically localized to glutamatergic postsynaptic specializations. We show here that neuroligin 2 is exclusively localized to inhibitory synapses in rat brain and dissociated neurons. In immature neurons, neuroligin 2 is found at synapses and also at GABAA receptor aggregates that are not facing presynaptic termini, indicating that postsynaptic mechanisms lead to synaptic recruitment of neuroligin 2. Our findings identify neuroligin 2 as a new cell adhesion protein specific for inhibitory synapses and open new avenues for identifiying the constituents of this unique type of postsynaptic specialization.  相似文献   

4.
Synaptic adhesion molecules regulate diverse aspects of synapse formation and maintenance. Many known synaptic adhesion molecules localize at excitatory synapses, whereas relatively little is known about inhibitory synaptic adhesion molecules. Here we report that IgSF9b is a novel, brain-specific, homophilic adhesion molecule that is strongly expressed in GABAergic interneurons. IgSF9b was preferentially localized at inhibitory synapses in cultured rat hippocampal and cortical interneurons and was required for the development of inhibitory synapses onto interneurons. IgSF9b formed a subsynaptic domain distinct from the GABAA receptor– and gephyrin-containing domain, as indicated by super-resolution imaging. IgSF9b was linked to neuroligin 2, an inhibitory synaptic adhesion molecule coupled to gephyrin, via the multi-PDZ protein S-SCAM. IgSF9b and neuroligin 2 could reciprocally cluster each other. These results suggest a novel mode of inhibitory synaptic organization in which two subsynaptic domains, one containing IgSF9b for synaptic adhesion and the other containing gephyrin and GABAA receptors for synaptic transmission, are interconnected through S-SCAM and neuroligin 2.  相似文献   

5.
Synaptic scaffolding molecule (S-SCAM) has six PDZ domains through which it interacts with N-methyl-d-aspartate receptors and neuroligin at synaptic junctions. We isolated here a novel S-SCAM-binding protein. This protein has one PDZ, one Ras association, one Ras GDP/GTP exchange protein (Ras GEP) domain, and one C-terminal consensus motif for binding to PDZ domains. We named it nRap GEP (neural Rap GEP). nRap GEP moreover has an incomplete cyclic AMP (cAMP)-binding (CAB) domain. The domain organization of nRap GEP is similar to that of Epac/cAMP-guanine nucleotide exchange factor (GEF) I, except that Epac/cAMP-GEFI has complete CAB and Ras GEP domains but lacks the other two domains and the C-terminal motif. nRap GEP showed GEP activity for Rap1 but did not bind cAMP. nRap GEP was specifically expressed in rat brain. Immunohistochemical analysis revealed that nRap GEP and S-SCAM were localized at synaptic areas of the cerebellum. These results suggest that nRap GEP is a novel neural Rap1-specific GEP which is associated with S-SCAM.  相似文献   

6.
The synaptic scaffolding molecule (S-SCAM) has been identified as a protein interacting with SAP90/PSD-95-associated protein (SAPAP) (also called guanylate kinase-associated protein/hDLG-associated protein). S-SCAM has six PDZ (we have numbered them PDZ-0 to -5), two WW, and one guanylate kinase (GK) domains and interacts with N-methyl-D-aspartate (NMDA) receptor via PDZ-5 and SAPAP via the GK domain. We have identified here shorter isoforms of S-SCAM that start at the 164th or 224th methionine, and we renamed the original one, S-SCAMalpha, the middle one, S-SCAMbeta, and the shortest one, S-SCAM-gamma. S-SCAMbeta and -gamma have five PDZ (PDZ-1 to -5), two WW, and one GK domains. S-SCAMalpha interacted with S-SCAMbeta and -gamma through the region containing PDZ-4 and -5. The region containing both of PDZ-4 and -5 is sufficient for the clustering of NMDA receptors and forms a dimer in gel filtration, suggesting that S-SCAM forms multimers via the interaction between the C-terminal PDZ domains and assembles NMDA receptors into clusters. S-SCAMbeta and -gamma also interacted with SAPAP, suggesting that the N-terminal region of the GK domain is not necessary for the interaction. Finally, we have identified the interaction of the PDZ domains of S-SCAM with the GK domain of PSD-95/SAP90. S-SCAM, PSD-95/SAP90, and SAPAP are colocalized at least in some part in brain. Therefore, S-SCAM, PSD-95/SAP90, and SAPAP may form a complex in vivo.  相似文献   

7.
Postsynaptic density (PSD)-95/Synapse-associated protein (SAP) 90 and synaptic scaffolding molecule (S-SCAM) are neuronal membrane-associated guanylate kinases. Because PSD-95/SAP90 and S-SCAM function as synaptic scaffolding proteins, identification of ligands for these proteins is important to elucidate the structure of synaptic junctions. Here, we report a novel protein interacting with the PDZ domains of PSD-95/SAP90 and S-SCAM and named it MAGUIN-1 (membrane-associated guanylate kinase-interacting protein-1). MAGUIN-1 has one sterile alpha motif, one PDZ, and one plekstrin homology domain. MAGUIN-1 is localized at the plasma membrane via the plekstrin homology domain and the C-terminal region and interacts with PSD-95/SAP90 and S-SCAM via a C-terminal PDZ domain-binding motif. MAGUIN-1 has a short isoform, MAGUIN-2, which lacks a PDZ domain-binding motif. MAGUINs are expressed in neurons and localized in the cell body and neurites and are coimmunoprecipitated with PSD-95/SAP90 and S-SCAM from rat crude synaptosome. MAGUIN-1 may play an important role with PSD-95/SAP90 and S-SCAM to assemble the components of synaptic junctions.  相似文献   

8.
SynArfGEF, also known as BRAG3 or IQSEC3, is a member of the brefeldin A-resistant Arf-GEF/IQSEC family and was originally identified by screening for mRNA species associated with the post-synaptic density fraction. In this study, we demonstrate that synArfGEF activates Arf6, using Arf pull down and transferrin incorporation assays. Immunohistochemical analysis reveals that synArfGEF is present in somata and dendrites as puncta in close association with inhibitory synapses, whereas immunoelectron microscopic analysis reveals that synArfGEF localizes preferentially at post-synaptic specializations of symmetric synapses. Using yeast two-hybrid and pull down assays, we show that synArfGEF is able to bind utrophin/dystrophin and S-SCAM/MAGI-2 scaffolding proteins that localize at inhibitory synapses. Double immunostaining reveals that synArfGEF co-localizes with dystrophin and S-SCAM in cultured hippocampal neurons and cerebellar cortex, respectively. Both β-dystroglycan and S-SCAM were immunoprecipitated from brain lysates using anti-synArfGEF IgG. Taken together, these findings suggest that synArfGEF functions as a novel regulator of Arf6 at inhibitory synapses and associates with the dystrophin-associated glycoprotein complex and S-SCAM.  相似文献   

9.
Tech is a RhoA guanine nucleotide exchange factor (GEF) that is highly enriched in hippocampal and cortical neurons. To help define its function, we have conducted studies aimed at identifying partner proteins that bind to its C-terminal PDZ ligand motif. Yeast two hybrid studies using the Tech C-terminal segment as bait identified MUPP1, a protein that contains 13 PDZ domains and has been localized to the post-synaptic compartment, as a candidate partner protein for Tech. Co-transfection of Tech and MUPP1 in human embryonic kidney 293 cells confirmed that these full-length proteins interact in a PDZ-dependent fashion. Furthermore, we confirmed that endogenous Tech co-precipitates with MUPP1, but not PSD-95, from hippocampal and cortical extracts prepared from rat brain. In addition, immunostaining of primary cortical cultures revealed co-localization of MUPP1 and Tech puncta in the vicinity of synapses. In assessing which PDZ domains of MUPP1 mediate binding to Tech, we found that Tech can bind to either PDZ domain 10 or 13 of MUPP1 as mutation of both these domains is needed to disrupt their interaction. Taken together, these findings demonstrate that Tech binds to MUPP1 and suggest that it regulates RhoA signaling pathways in the vicinity of synapses.  相似文献   

10.
Inside cells, membrane proteins are localized at particular surface domains to perform their precise functions. Various kinds of PDZ domain proteins have been shown to play important roles in the intracellular trafficking and anchoring of membrane proteins. In this study, we show that delta2 glutamate receptor is interacting with S-SCAM/MAGI-2, a PDZ domain protein localized in the perinuclear region and postsynaptic sites of cerebellar Purkinje cells. The binding is regulated by PKC (protein kinase-C) mediated phosphorylation of the receptor with a unique repetitive structure in S-SCAM/MAGI-2. Co-expression of both proteins resulted in drastic changes of the receptor localization in COS7 cells. These results show a novel regulatory mechanism for the binding of PDZ domain proteins and suggest that the interaction between delta2 receptor and S-SCAM/MAGI-2 may be important for intracellular trafficking of the receptor.  相似文献   

11.
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.  相似文献   

12.
We have isolated, from a rat brain cDNA library, a clone corresponding to a 2779-bp cDNA encoding a novel splice form of the glutamate receptor interacting protein-1 (GRIP1). We call this 696-amino acid splice form GRIP1c 4-7 to differentiate it from longer splice forms of GRIP1a/b containing seven PDZ domains. The four PDZ domains of GRIP1c 4-7 are identical to PDZ domains 4-7 of GRIP1a/b. GRIP1c 4-7 also contains 35 amino acids at the N terminus and 12 amino acids at the C terminus that are different from GRIP1a/b. In transfected HEK293 cells, a majority of GRIP1c 4-7 was associated with the plasma membrane. GRIP1c 4-7 interacted with GluR2/3 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor. In low density hippocampal cultures, GRIP1c 4-7 clusters colocalized with GABAergic (where GABA is gamma-aminobutyric acid) and glutamatergic synapses, although a higher percentage of GRIP1c 4-7 clusters colocalized with gamma-aminobutyric acid, type A, receptor (GABA(A)R) clusters than with alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid receptor clusters. Transfection of hippocampal neurons with hemagglutinin-tagged GRIP1c 4-7 showed that it could target to the postsynaptic complex of GABAergic synapses colocalizing with GABA(A)R clusters. GRIP1c 4-7-specific antibodies, which did not recognize previously described splice forms of GRIP1, recognized a 75-kDa protein that is enriched in a postsynaptic density fraction isolated from rat brain. EM immunocytochemistry experiments showed that in intact brain GRIP1c 4-7 concentrates at postsynaptic complexes of both type I glutamatergic and type II GABAergic synapses although it is also presynaptically localized. These results indicate that GRIP1c 4-7 plays a role not only in glutamatergic synapses but also in GABAergic synapses.  相似文献   

13.
The synapse contains densely localized and interacting proteins that enable it to adapt to changing inputs. We describe a Ca2+-sensitive protein complex involved in the regulation of AMPA receptor synaptic plasticity. The complex is comprised of MUPPI, a multi-PDZ domain-containing protein; SynGAP, a synaptic GTPase-activating protein; and the Ca2+/calmodulin-dependent kinase CaMKII. In synapses of hippocampal neurons, SynGAP and CaMKII are brought together by direct physical interaction with the PDZ domains of MUPP1, and in this complex, SynGAP is phosphorylated. Ca2+CaM binding to CaMKII dissociates it from the MUPP1 complex, and Ca2+ entering via the NMDAR drives the dephosphorylation of SynGAP. Specific peptide-induced SynGAP dissociation from the MUPP1-CaMKII complex results in SynGAP dephosphorylation accompanied by P38 MAPK inactivation, potentiation of synaptic AMPA responses, and an increase in the number of AMPAR-containing clusters in hippocampal neuron synapses. siRNA-mediated SynGAP knockdown confirmed these results. These data implicate SynGAP in NMDAR- and CaMKII-dependent regulation of AMPAR trafficking.  相似文献   

14.
Membrane-associated guanylate kinase inverted (MAGI)-1 plays a role as a scaffold at cell junctions in non-neuronal cells, while S-SCAM, its neuronal isoform, is involved in the organization of synapses. A search for MAGI-1-interacting proteins by yeast two-hybrid screening of a kidney cDNA library yielded dendrin. As dendrin was originally reported as a brain-specific postsynaptic protein, we tested the interaction between dendrin and S-SCAM and revealed that dendrin binds to the WW domains of S-SCAM. Dendrin is known to be dendritically translated but its function is largely unknown. To gain insights into the physiological meaning of the interaction, we performed a second yeast two-hybrid screening using dendrin as a bait. We identified CIN85, an endocytic scaffold protein, as a putative dendrin-interactor. Immunocytochemistry and subcellular fractionation analysis supported the synaptic localization of CIN85. The first SH3 domain and the C-terminal region of CIN85 bind to the proline-rich region and the N-terminal region of dendrin, respectively. In vitro experiments suggest that dendrin forms a ternary complex with CIN85 and S-SCAM and that this complex formation facilitates the recruitment of dendrin and S-SCAM to vesicle-like structures where CIN85 is accumulated.  相似文献   

15.
Tamalin is a scaffold protein that comprises multiple protein-interacting domains, including a 95-kDa postsynaptic density protein (PSD-95)/discs-large/ZO-1 (PDZ) domain, a leucine-zipper region, and a carboxyl-terminal PDZ binding motif. Tamalin forms a complex with metabotropic glutamate receptors and guanine nucleotide exchange factor cytohesins and promotes intracellular trafficking and cell surface expression of group 1 metabotropic glutamate receptors. In the present study, using several different approaches we have shown that tamalin interacts with multiple neuronal proteins through its distinct protein-binding domains. The PDZ domain of tamalin binds to the PDZ binding motifs of SAP90/PSD-95-associated protein and tamalin itself, whereas the PDZ binding motif of tamalin is capable of interacting with the PDZ domain of S-SCAM. In addition, tamalin forms a complex with PSD-95 and Mint2/X11beta/X11L by mechanisms different from the PDZ-mediated interaction. Tamalin has the ability to assemble with these proteins in vivo; their protein complex with tamalin was verified by coimmunoprecipitation of rat brain lysates. Interestingly, the distinct protein-interacting domains of tamalin are evolutionarily conserved, and mRNA expression is developmentally up-regulated at the postnatal period. The results indicate that tamalin exists as a key element that forms a protein complex with multiple postsynaptic and protein-trafficking scaffold proteins.  相似文献   

16.
Densin-180, a protein purified from the postsynaptic density fraction of the rat forebrain, is the founding member of a newly described family of proteins termed the LAP (leucine-rich repeats and PSD-95/Dlg-A/ZO-1 (PDZ) domains) family that plays essential roles in establishment of cell polarity. To identify Densin-180-binding proteins, we screened a yeast two-hybrid library using the carboxyl-terminal fragment of Densin-180 containing PDZ domain as bait, and we isolated delta-catenin/neural plakophilin-related armadillo repeat protein (NPRAP) as a Densin-180-interacting protein. delta-catenin/NPRAP, a member of the armadillo repeat family, is a nervous system-specific adherens junction protein originally discovered as an interactor with presenilin-1, a protein involved in Alzheimer's disease. Densin-180 PDZ domain binds the COOH terminus of delta-catenin/NPRAP containing the PDZ domain-binding sequence. Endogenous Densin-180 was co-immunoprecipitated with delta-catenin/NPRAP and N-cadherin. Although Densin-180 was reported to be a transmembrane protein, Densin-180 was not accessible to surface biotinylation in dissociated hippocampal neurons; hence Densin-180 may be a cytosolic protein. Densin-180 co-localized with delta-catenin/NPRAP at synapses in delta-catenin/NPRAP and may be involved in organization of the synaptic cell-cell junction through interaction with the delta-catenin/NPRAP-N-cadherin complex.  相似文献   

17.
Brain-specific angiogenesis inhibitor (BAI)-associated protein (BAP)1 (also called membrane-associated guanylate kinase [MAGI]-1) is composed of six PSD-95/Dlg-A/ZO-1 (PDZ) domains, two WW domains, and one guanylate kinase (GK) domain. We previously reported that BAP1 is localized at tight junctions in Madine Darby canine kidney (MDCK) cells and intestinal epithelial cells. Here, we have determined the localization of BAP1 in normal rat kidney (NRK) cells that do not form tight junctions. BAP1 was colocalized with E-cadherin along the lateral membrane, suggesting its localization at adherens junctions. Green fluorescent protein (GFP)-BAP1 was distributed in the cytosol in separate NRK cells, and accumulated to the cell-cell contacts when NRK cells have contact with each other. The GFP-BAP1 mutant containing either the first PDZ and GK domains or the WW and second PDZ domains was localized in the cytosol and the nucleus. The GFP-BAP1 mutant containing the second to fourth PDZ domains was distributed in the cytosol. The construct containing the fifth and sixth PDZ domains was localized at the cell-cell contacts along the lateral membrane and slightly in the nucleus, whereas the construct lacking the fifth and sixth PDZ domains was localized in the cytosol and in the nucleus. BAP1 was tyrosine-phosphorylated in vivo, but the tyrosine phosphorylation of BAP1 was not correlated with its localization. These results suggest that the signal in the carboxyl-terminal PDZ domains functions dominantly in vivo to target BAP1 to the lateral membrane, although potential nuclear localization signals exist in the N-terminal region of BAP1.  相似文献   

18.
Membrane-associated guanylate kinase-interacting protein (MAGUIN)-1 was identified as a protein interacting with synaptic scaffolding molecule (S-SCAM) and postsynaptic density (PSD)-95/synapse-associated protein (SAP)90. MAGUIN-1 has a chimerical molecular structure composed of one sterile alpha motif, one PSD-95/Dlg-A/ZO-1 (PDZ), and one pleckstrin homology (PH) domain, and interacts with the PDZ domains of S-SCAM and PSD-95/SAP90 via its carboxyl-terminal PDZ-binding motif. MAGUIN-1 is considered as a mammalian homologue of Drosophila CNK, which is a Raf-interacting protein implicated in the regulation of eye development. Here we have tested whether MAGUIN-1 interacts directly with Raf-1. MAGUIN-1 and Raf-1 were coimmunoprecipitated from rat brain. MAGUIN-1 binds to the kinase domain of Raf-1, and Raf-1 binds to the middle region of MAGUIN-1 containing the PH domain. However, in contrast to the dominant active mutant of Ki-Ras, which interacts with Raf-1, recruits it to the plasma membrane from the cytosol, and activates it, MAGUIN-1 neither activates Raf-1 nor recruits it to the plasma membrane. MAGUIN-1 may link Raf-1 to components of synapses assembled by PSD-95/SAP90 and S-SCAM.  相似文献   

19.
Scaffolding proteins are involved in the incorporation, anchoring, maintenance, and removal of AMPA receptors (AMPARs) at synapses, either through a direct interaction with AMPARs or via indirect association through auxiliary subunits of transmembrane AMPAR regulatory proteins (TARPs). Synaptic scaffolding molecule (S-SCAM) is a newly characterized member of the scaffolding proteins critical for the regulation and maintenance of AMPAR levels at synapses, and directly binds to TARPs through a PDZ interaction. However, the functional significance of S-SCAM–TARP interaction in the regulation of AMPARs has not been tested. Here we show that overexpression of the C-terminal peptide of TARP-γ2 fused to EGFP abolished the S-SCAM-mediated enhancement of surface GluA2 expression. Conversely, the deletion of the PDZ-5 domain of S-SCAM that binds TARPs greatly attenuated the S-SCAM-induced increase of surface GluA2 expression. In contrast, the deletion of the guanylate kinase domain of S-SCAM did not show a significant effect on the regulation of AMPARs. Together, these results suggest that S-SCAM is regulating AMPARs through TARPs.  相似文献   

20.
Neuroligins are cell adhesion molecules that interact with neurexins on adjacent cells to promote glutamatergic and GABAergic synapse formation in culture. We show here that neuroligin enhances nicotinic synapses on neurons in culture, increasing synaptic input. When neuroligin is overexpressed in neurons, the extracellular domain induces presynaptic specializations in adjacent cholinergic neurons as visualized by SV2 puncta. The intracellular domain is required to translate the SV2 puncta into synaptic input as reflected by increases in the frequency of spontaneous mini-synaptic currents. The PDZ-binding motif of neuroligin is not needed for these effects. Together, the extracellular and proximal intracellular domains of neuroligin are sufficient to induce presynaptic specializations, align them over postsynaptic receptor clusters, and increase synaptic function. Manipulation of endogenous neuroligin with beta-neurexin-expressing cells confirms its presence; repressing function with dominant negative constructs and inhibitory shRNA shows that endogenous neuroligin helps confer functionality on existing nicotinic synaptic contacts. Endogenous neuroligin does not appear to be required, however, for initial formation of the contacts, suggesting that other components under these conditions can also initiate synapse formation. The results indicate that postsynaptic neuroligin is important for functional nicotinic synapses on neurons and that the effects achieved will likely depend on neuroligin levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号