首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tryptic digestion followed by radioimmunoassay for (Leu)enkephalin-Arg6 has been used in this study as a general method to detect the presence of all possible products containing the enkephalin sequence from the opioid peptide prohormone, proenkephalin B. Tissue extracts of human hypothalamus and pituitary were examined. Gel filtration was used to separate the different precursor products according to molecular weight. The elution profile was also monitored with highly sensitive radioimmunoassays for dynorphin A and dynorphin B, respectively. Immunoreactive dynorphin A appeared in three peaks with the approximate molecular weight of 1000, 2000 and 5000. Immunoreactive dynorphin B partly occurred in other peaks, 1500, 5000 and 10 000 dalton. Profiles obtained by measuring immunoreactive (Leu)enkephalin-Arg6 in all fractions from gel filtration after trypsin digestion showed a more complex pattern compared to the profiles of immunoreactive dynorphin A and dynorphin B. The major peaks coincided with dynorphin A and dynorphin B but high levels of immunoreactive (Leu)enkephalin-Arg6 were also generated from higher molecular weight regions (MW greater than 5000).  相似文献   

2.
Using a highly specific and sensitive radioimmunoassay for dynorphin(1-13), dynorphin-like immunoreactivity (dynorphin-LI) was detected in rat pituitary and hypothalamus. Gel chromatographic studies on Sephadex G-50 revealed three components of dynorphin-LI with molecular weights of approximately 7500-9500 (big dynorphin), 3500-5500 (intermediate dynorphin) and 1600-1900 (small dynorphin), the latter of which eluted at the same position as authentic dynorphin contamination in porcine ACTH extracts (Sigma). Dynorphin-LI in rat anterior pituitary existed mainly as big dynorphin, whereas dynorphin-LI in rat intermediate-posterior pituitary and hypothalamus eluted mainly at the position of authentic small dynorphin.  相似文献   

3.
Experiments were conducted (i) to determine the hemodynamic (blood pressure and heart rate) responses of conscious rats following intrathecal (IT) administration of endogenous prodynorphin-derived opioids into the lower thoracic space, (ii) to identify the receptors involved in mediating their cardiovascular responses, and (iii) to reveal any possible hemodynamic interactions with the neuropeptide arginine vasopressin. Male Sprague-Dawley rats were surgically prepared with femoral arterial and venous catheters as well as a spinal catheter (into lower thoracic region, T9-T12). After recovery, hemodynamic responses were observed in conscious rats for 5-10 min after IT injections of artificial cerebrospinal fluid (CSF) solution, prodynorphin-derived opioids (dynorphin A, dynorphin B, dynorphin A (1-13), dynorphin A (1-10), alpha- and beta-neoendorphin, leucine enkephalin (LE), methionine enkephalin (ME), arginine vasopressin (AVP), or norepinephrine (NE)). IT injections of AVP (10 or 20 pmol), dynorphin A (1-13), or dynorphin A (10-20 nmol) caused pressor effects associated with a prolonged and significant bradycardia. Equimolar (20 nmol) concentrations of LE, ME, alpha- and beta-neoendorphin, and dynorphin A (1-10) caused no significant blood pressure or heart rate changes. Combined IT injections of dynorphin A (1-13) and AVP caused apparent additive pressor effects when compared with the same dose of either peptide given alone. IT infusion of the specific AVP-V1 antagonist d(CH2)5Tyr(Me)AVP before subsequent IT AVP, dynorphin A (1-13), or NE administration inhibited only the subsequent pressor responses to AVP. The kappa-opioid antagonist (Mr2266) infused IT blocked the pressor actions of subsequent dynorphin A administration and not AVP or NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Hemodynamic (blood pressure and heart rate) experiments were conducted in conscious and/or anesthetized male Sprague-Dawley (S.D.), heterozygous and homozygous Brattleboro rats given intravenous (iv) dynorphin A(1-13), arginine vasopressin (AVP), norepinephrine (HCl, (NE) or sterile saline before and 10 min after an iv bolus injection of a specific receptor antagonist. These receptor blockers (kappa receptor antagonist Mr2266, alpha adrenoceptor antagonist phentolamine HCl or the AVP-V1 receptor antagonist d(CH2)5Tyr-(Me)AVP were given in equimolar concentrations (15 nmol/kg iv). In all conscious S.D. groups, iv injection of AVP (60 pmol/kg), NE (12.5 nmol/kg) and dynorphin A(1-13) (60 nmol/kg) evoked significant increases in mean arterial pressure (MAP) associated with concomitant bradycardia. The hemodynamic responses to 'both' AVP and dynorphin A(1-13) were blocked if given subsequent to AVP-V1 administration but not following phentolamine or Mr2266 pretreatment. The pressor and bradycardic responses of conscious heterozygous and homozygous Brattleboro rats after iv AVP or dynorphin again were only blocked by the AVP-V1 receptor antagonist. Anesthetized heterozygous and homozygous Brattleboro rats again showed pressor responses following iv AVP, NE or dynorphin A(1-13) but with slight or no associated bradycardia. The rise in blood pressure with AVP 'and' dynorphin A(1-13) in these groups also was only blocked by the d(CH2)5Tyr(Me)AVP antagonist. The results indicate that the pressor responses of rats given intravenous dynorphin A(1-13) involve the interaction of AVP-V1 receptors and suggest a functional interaction of these two neuropeptides in the modulation of vascular tone.  相似文献   

5.
An endopeptidase that converts the opioid peptide dynorphin B (Tyr-Gly-Gly-Phe-Leu-Arg-aRg-Gln-Phe-Lys-Val-Val-Thr) to its bioactive fragment Leu-enkephalin-Arg6 was isolated from bovine spinal cord. The enzyme was purified about 230-fold from a concentrated spinal cord extract. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis, it stained as a protein of Mr 55,000. The purified enzyme is optimally active at around pH7 and has essential thiol groups. It appears to be highly specific for dynorphin B (Km = 11 microM) but not for alpha-neoendorphin or dynorphin A, two other opioids included in the prodynorphin precursor. From its specificity, molecular size, and inhibitory spectrum, this enzyme is different from other known dynorphin-converting or -degrading enzymes and appears to be a unique and novel endoprotease.  相似文献   

6.
Y.X. Zhu  V. Hllt  H. Loh 《Peptides》1983,4(6):871-874
We have developed a radioimmunoassay for synthetic dynorphin B, a novel opioid tridecapeptide, which shares a common precursor molecule with dynorphin1–17 (=dynorphin A) and the neo-endorphins. The levels of immunoreactivity towards this peptide in rat brain and pituitary show a pattern quantitatively and qualitatively similar to those found for dynorphin A and -neo-endorphin in earlier studies. The antiserum used was highly specific with only dynorphin-32 and dynorphin B-29, both of which contain the dynorphin B sequence, showing substantial cross-reactivity. Gel filtration of whole rat brain extracts in combination with HPLC analysis provide strong evidence for the existence of these latter two peptides in rat brain.  相似文献   

7.
Methionine-enkephalin (Met-enkephalin), leucine-enkephalin (Leu-enkephalin) and dynorphin A (1-17) (dynorphin A) concentrations in discrete brain areas were determined in the mice showing behavioral changes induced by stress using radioimmunoassay (RIA). In the present experiment, we used environment-induced conditioned suppression of motility and forced swimming-induced immobility. In the environment-induced conditioned suppression of motility, Met-enkephalin concentration in the striatum and hypothalamus significantly decreased. Leu-enkephalin concentration in the hypothalamus also decreased. Dynorphin A concentration in the striatum decreased, but significantly increased in the hypothalamus and pituitary. In the forced swimming-induced immobility, Met-enkephalin concentration in the striatum significantly decreased. Leu-enkephalin concentration in the hypothalamus and pituitary significantly decreased. Dynorphin A concentration in the pituitary decreased, but significantly increased in the hypothalamus. Our results indicated that the concentrations of Met-enkephalin, Leu-enkephalin and dynorphin A in the discrete brain areas changed in two different stressful situations. These findings suggested that these peptides might modulate the behavioral changes induced by stressors.  相似文献   

8.
Immunoreactive dynorphin (I-dynorphin) was measured by radioimmunoassay in human cerebrospinal fluid (CSF). I-dynorphin concentration in CSF was 30 +/- 2 pg/ml. Sephadex G-25 column chromatography showed the main peak eluted at the position of dynorphin-(1-17). HPLC elution profile of this major peak from gel filtration showed a large peak corresponding to the position of dynorphin-(1-17) and small peaks corresponding to the positions of dynorphin-(1-13), dynorphin-(1-12) and other unknown peptides.  相似文献   

9.
Antisera to a synthetic peptide corresponding to the 95-117 sequence of proenkephalin were used to develop a sensitive radioimmunoassay. Gel-filtration of acid extracts of bovine adrenal medulla and purified chromaffin granules revealed that the antisera recognized high molecular weight material (Mr approximately 5,000-30,000). The material in peak I ( Mr 20 ,000-30,000) and peak II (Mr 10,000-20,000) was further purified by immunoaffinity chromatography. Sequential digestion of each of these fractions with trypsin and carboxypeptidase B generated immunoreactive Met-enkephalin. This study demonstrates that antisera against a synthetic peptide cross-react with high molecular weight enkephalin-containing precursors, validating the use of these antisera in studies of enkephalin biosynthesis.  相似文献   

10.
L K McDonald  R M Dores 《Peptides》1991,12(3):541-547
Acid extracts of the brains of the American eel, Anguilla rostrata, and the coho salmon, Oncorhynchus kisutch, were screened for enkephalin-related products and dynorphin-related products. Following Sephadex G-50 column chromatography, a peak of Met-enkephalin-related immunoreactivity was detected near the total volume of the column for both species. No higher molecular weight forms of Met-enkephalin-related material were detected, nor were any immunoreactive forms with antigenic determinants similar to mammalian dynorphin A(1-17), dynorphin A(1-8), dynorphin B(1-13) or alpha-neo-endorphin detected for either species. The enkephalin-sized immunoreactivity was further analyzed by reverse phase HPLC. For both species, a peak of authentic Met-enkephalin was detected. However, Leu-enkephalin, Met-enkephalin-RGL and Met-enkephalin-RF were not detected by RIA in either species. In addition, no novel C-terminally extended forms of Met-enkephalin were detected in either species. Finally, opiate receptor binding activity was only found associated with the peak of immunoreactive Met-enkephalin.  相似文献   

11.
A peptidase activity cleaving at single arginine residues has been detected in extracts of the atrial gland of Aplysia Californica. The enzyme assay consisted of incubation of enzyme with the mammalian opioid peptide dynorphin A and detection by specific radioimmunoassay of dynorphin (1-8), a single arginine cleavage product. The peptidase activity was characterized following chromatography on DEAE-cellulose. Activity was abolished by a thiol-directed inhibitor and chelators and activated by dithiothreitol and cobalt chloride. The pH optimum was 6.2 in phosphate buffer. Analysis of the products of two substrates suggested that cleavage was occurring on the amino side of the arginine residue.  相似文献   

12.
L-DOPA-induced dyskinesia is a troublesome complication of L-DOPA pharmacotherapy of Parkinson's disease and has been associated with disturbed brain opioid transmission. However, so far the results of clinical and preclinical studies on the effects of opioids agonists and antagonists have been contradictory at best. Prodynorphin mRNA levels correlate well with the severity of dyskinesia in animal models of Parkinson's disease; however the identities of the actual neuroactive opioid effectors in their target basal ganglia output structures have not yet been determined. For the first time MALDI-TOF imaging mass spectrometry (IMS) was used for unbiased assessment and topographical elucidation of prodynorphin-derived peptides in the substantia nigra of a unilateral rat model of Parkinson's disease and L-DOPA induced dyskinesia. Nigral levels of dynorphin B and alpha-neoendorphin strongly correlated with the severity of dyskinesia. Even if dynorphin peptide levels were elevated in both the medial and lateral part of the substantia nigra, MALDI IMS analysis revealed that the most prominent changes were localized to the lateral part of the substantia nigra. MALDI IMS is advantageous compared with traditional molecular methods, such as radioimmunoassay, in that neither the molecular identity analyzed, nor the specific localization needs to be predetermined. Indeed, MALDI IMS revealed that the bioconverted metabolite leu-enkephalin-arg also correlated positively with severity of dyskinesia. Multiplexing DynB and leu-enkephalin-arg ion images revealed small (0.25 by 0.5 mm) nigral subregions with complementing ion intensities, indicating localized peptide release followed by bioconversion. The nigral dynorphins associated with L-DOPA-induced dyskinesia were not those with high affinity to kappa opioid receptors, but consisted of shorter peptides, mainly dynorphin B and alpha-neoendorphin that are known to bind and activate mu and delta opioid receptors. This suggests that mu and/or delta subtype-selective opioid receptor antagonists may be clinically relevant for reducing L-DOPA-induced dyskinesia in Parkinson's disease.  相似文献   

13.
The primary structure of the common precursor of porcine beta-neo-endorphin and dynorphin (preproenkephalin B) has shown the existence of a third leucine-enkephalin (leu-enkephalin) sequence with a C-terminal extension of 24 amino acids. This nonacosapeptide, named leumorphin, was approximately 70 times more potent than leu-enkephalin in inhibiting the contraction of the myenteric plexus-longitudinal muscle preparation of the guinea pig ileum. This action of leumorphin, like those of beta-neo-endorphin and dynorphin, was antagonized less effectively by naloxone than that of leu-enkephalin, but more effectively by Mr2266, an antagonist relatively specific for the kappa type opiate receptor. The inhibitory action of leumorphin or beta-neo-endorphin on the contraction of the guinea pig ileum muscle strip was reduced in a dose-dependent manner by pretreatment with dynorphin and vice versa. Leumorphin as well as beta-neo-endorphin and dynorphin inhibits the contraction of the rabbit vas deferens which is known to have only the kappa type opiate receptor. This action was also effectively antagonized by Mr2266. It is concluded that leumorphin has potent opioid activity and acts at the kappa receptor, like other opioid peptides derived from preproenkephalin B.  相似文献   

14.
Abstract: Intense immunohistochemical staining of the intermediate lobe of the pituitary was observed by using an antiserum raised against synthetic dynorphin(1-13) treated with a water-soluble carbodiimide (CDI). Subsequent studies showed that the immunostaining was blocked by preincubation of the antiserum with acetylated derivatives of both β-endorphin and dynorphin(1-13) as well as by CDI-treated dynorphin(1-13), but only weakly by authentic dynorphin(1-13). Neither nonacetylated β-endorphin nor any other fragments of the ACTH/endorphin precursor blocked the immunostaining of the intermediate lobe. Analysis of the CDI-treated dynorphin(1-13) used as an antigen showed that most of the peptide was acetylated at primary amino groups. CDI treatment of dynorphin(1-13) results in the formation of an acetyl derivative because the commercially available peptide is supplied as the acetate salt. The antibodies responsible for the intermediate lobe staining were isolated by affinity chromatography, using a column containing partially purified intermediate lobe extract linked to an affinity resin and a radioimmunoassay (RIA) was developed with CDI-treated dynorphin(1-13) used as a trace and as a standard. Competition studies showed 0.5-1% cross-reactivity with α-N-acetyl β-endorphin(1-31), α-N-acetyl β-endorphin(1-27), and totally acetylated β-endorphin(1-31). Nonacetylated β-endorphins did not cross-react. Posterior-intermediate lobe extracts from rat and beef were fractionated by gel filtration. Rat posterior-intermediate lobe extracts were also fractionated by cation-exchange chromatography. Fractionated extracts were analyzed by RIAs for β-endorphin, CDI-treated dynorphin(1-13), and authentic dynorphin(1-13). The results suggested that the peptides responsible for the intermediate lobe staining were mainly four different derivatives of β-endorphin bearing an acetyl group at the amino terminus. No immunostaining was seen in the posterior and anterior lobes of the pituitary. This suggests that the intermediate lobe is the main source of acetylated β-endorphins in the pituitary.  相似文献   

15.
An endopeptidase releasing the common N-terminal hexapeptide, (Leu)-enkephalin-Arg6, from dynorphins A and B, and alpha-neoendorphin was purified from human cerebrospinal fluid. Purification involved ion-exchange chromatography (DEAE-Sepharose CL-6B), hydrophobic interaction chromatography (phenyl-Sepharose CL-4B) and molecular sieving (Sephadex G-100). The enzyme showed molecular heterogeneity. A major fraction had an apparent molecular weight of about 40,000. It had an optimum activity in the pH range of 6-8. The conversion of dynorphin A was not affected by EDTA or iodoacetate but strongly reduced in the presence of phenylmethyl-sulphonyl fluoride, suggesting the enzyme is a serine protease.  相似文献   

16.
Smooth muscle cells were isolated from the fundus of the canine gallbladder and examined for the presence of opioid receptors. The cells contracted in a concentration-dependent manner in response to three opioid peptides (Met-enkephalin, dynorphin1-13 and Leu-enkephalin), which are known derivatives of opioid precursors present in myenteric neurons of the gut. The order of potency was Met-enkephalin greater than dynorphin1-13 greater than Leu-enkephalin. The contractile response to opioid agonists was selectively inhibited by opioid antagonists (naloxone and Mr2266) but not by muscarinic, CCK/gastrin or tachykinin antagonists. Equivalent responses to the three opioid peptides exhibited differential sensitivity to preferential antagonists of mu (naloxone) and kappa (Mr2266) opioid receptors consistent with the presence of the three main types of opioid receptors (mu, delta and kappa) on canine gallbladder muscle cells.  相似文献   

17.
An antiserum was generated against a synthetic peptide corresponding to amino acids 95-117 of bovine proenkephalin, and a sensitive radioimmunoassay was developed. Comparison of the reactivities of the synthetic peptide, its specific cleavage products, and other synthetic peptides showed that the important immunological determinant was contained within residues 101-109 of bovine proenkephalin (-Gly-Gly-Glu-Val-Leu-Gly-Lys-Arg-Tyr-). Radioimmunoassay of fractions after gel filtration of bovine adrenal medullary chromaffin granule lysate showed three pools of immunoreactivity: pool 1 (Mr 20,000-30,000), pool 2 (Mr 10,000-20,000), and pool 3 (Mr approximately 5,000). Further characterization by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting showed that the antiserum recognized 27-, 20.5-, 16.5-, and 5.6-kilodalton enkephalin-containing proteins. The radioimmunoassay was also used to detect proenkephalin-like material in extracts of rat adrenal and regions of rat brain and spinal cord following gel filtration. Immunoreactivity from the rat adrenal chromatographed predominantly as high molecular weight material (Mr 31,500-43,500), whereas material in regions of rat brain showed a broader molecular weight distribution (Mr 4,000-43,500). This indicated differences in the processing of proenkephalin between rat adrenal and brain tissue. Differences were also seen in the molecular weight profile of immunoreactivity in different brain regions, most noticeable in the case of striatum and hypothalamus, suggesting regional differences in processing. Based on quantitation of higher molecular weight immunoreactive proenkephalin-like material and free Met-enkephalin immunoreactivity in different brain regions, it was apparent that extensive processing of proenkephalin occurs in brain. We concluded that antisera against proenkephalin-(95-117) recognize a wide range of intermediates in the processing of proenkephalin in both bovine adrenal medulla and rat adrenal, brain, and spinal cord, making it a useful tool for further studies concerned with the expression and post-translational processing of proenkephalin.  相似文献   

18.
Micropuncture samples of luminal fluid were collected from the rete testis and along the epididymis. Quantitative analyses showed that the ductuli efferentes reabsorb about half the protein leaving the testis. Considerable protein is secreted by the caput epididymidis (initial segment) and there is a net loss of protein from the corpus and cauda epididymidis. Denatured, polyacrylamide gel electrophoresis showed that there are 5 proteins in rete testis fluid which are not present in blood (Mr of 14,700, 22,800, 24,100, 43,000 and 44,800). One of these proteins (Mr 14,700) is lost from plasma in the ductuli efferentes and 2 (Mr 43,200 and 44,800) are lost in the corpus epididymidis. Twelve proteins appear in the epididymal plasma and are not present in rete testis fluid or blood: 6 appear in the caput epididymidis (Mr 30,000, 31,000, 32,300, 17,400, 18,700 and 21,400), 3 in the corpus epididymidis (Mr 12,800, 39,800 and 90,600) and 3 in the cauda epididymidis (Mr 10,900, 56,300 and 63,000). A protein with the same molecular weight as a blood protein (149,500) accumulates in the corpus and cauda epididymidis. None of the samples of luminal fluid contained particulate matter other than spermatozoa, indicating that the tammar is a useful animal for micropuncture studies.  相似文献   

19.
Pools of follicular fluid (FF) were obtained from large or small follicles of cows which were pregnant or in the luteal phase of the estrous cycle. Cells present in each FF pool were collected by centrifugation and measured for content of follicle-stimulating hormone (FSH) and luteinizing hormone (LH) receptors. Steroid levels in FF were quantitated by radioimmunoassay (RIA). Since the quantity of bovine follicular cells (mostly granulosa cells) was limited, FSH binding inhibition was studied utilizing a calf testis receptor system. Low (less than 6000) molecular weight (Mr) fractions prepared by dialysis were shown to account for most (76 to 94%) of the FSH binding inhibition (FSH-BI) present in unfractionated FF. The concentration of low Mr FSH-BI was higher in pools of FF from cows in the luteal phase of the estrous cycle than in pools of FF from pregnant cows. The concentration of low Mr FSH-BI was also higher in FF pooled from small follicles than in FF pooled from large follicles of either pregnant or luteal phase cows. Relative concentrations of receptors for gonadotropins (FSH, LH) on granulosa cells were used to rank the pools according to relative degree of follicular maturation. Other parameters of follicular maturation were concentration of estrogens and the ratio of estrogens to androgens in FF. Biochemical parameters for follicular atresia were the concentration of androgens and the ratio of estrogens to androgens in FF.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
A novel soluble non-opioid dynorphin A-binding factor (DABF) was identified and characterized in neuronal cell lines, rat spinal cord, and brain. DABF binds dynorphin A(1-17), dynorphin A(2-17), and the 32 amino acid prodynorphin fragment big dynorphin consisting of dynorphin A and B, but not other opioid and non-opioid peptides, opiates, and benzomorphans. The IC50 for dynorphin A(1-17), dynorphin A(2-17), and big dynorphin is in the 5-10 nM range. Using dynorphin A and big dynorphin fragments a binding epitope was mapped to dynorphin A(6-13). DABF has a molecular mass of about 70 kDa. SH-groups are apparently involved in the binding of dynorphin A since p-hydroxy-mercuribenzoic acid inhibited this process. Upon interaction with DABF dynorphin A was converted into Leu-enkephalin, which remained bound to the protein. These data suggest that DABF functions as an oligopeptidase that forms stable and specific complexes with dynorphin A. The presence of DABF in brain structures and other tissues with low level of prodynorphin expression suggests that DABF as an oligopeptidase may degrade other peptides. Dynorphin A at the sites of its release in the CNS may attenuate this degradation as a competitor when it specifically binds to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号