首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu, corresponding to the 14-21 sequence of bovine beta-casein A2 and 11 shorter and/or modified derivatives were synthesized and used as model substrates for three casein kinases: rat liver casein kinases 2 and 1 and a casein kinase isolated from the golgi-enriched fraction of lactating mammary gland (GEF-casein kinase). Casein kinase-2 readily phosphorylates the octapeptide at its Ser-4 residue with a Vmax value comparable to those obtained with protein substrates and Km values of 85 microM and 11 microM in the absence and presence of polylysine, respectively. These are the most favourable kinetic parameters reported so far with peptide substrates of casein kinase-2. Stepwise shortening of the octapeptide from its N terminus promotes both a gradual decrease of Vmax and an increase of Km, this being especially dramatic in passing from the hexapeptide Leu-Ser-Ser-Ser-Glu-Glu (Km 210 microM) to the pentapeptide Ser-Ser-Ser-Glu-Glu (Km 2630 microM). The tetrapeptide Ser-Ser-Glu-Glu is the shortest derivative still phosphorylated by casein kinase-2, albeit very slowly, and the tripeptides Ser-Glu-Glu and Glu-Leu-Ser were not substrates at all. Furthermore, the pentapeptide Ser-Ser-Ser-Glu-Glu was found to be a better substrate than Ser-Ser-Ala-Glu-Glu, Ser-Ala-Ser-Glu-Glu and Ser-Ala-Ala-Glu-Glu by virtue of its lower Km value. These data, while confirming that the motif Ser-Xaa-Xaa-Glu is specifically recognized by casein kinase-2, strongly suggest that additional local structural features can improve the phosphorylation efficiency of serine-containing peptides which are devoid of the large acidic clusters recurrent in many phosphorylation sites of casein kinase 2. In particular, predictive structural analysis as well as NMR and C18 reverse-phase HPLC elution profile data support the hypothesis that a beta-turn conformation is responsible for the remarkable suitability of the octapeptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu and some of its shorter derivatives to phosphorylation mediated by casein kinase-2. While neither the peptide Glu-Ser-Leu-Ser-Ser-Ser-Glu-Glu nor any of its derivatives were affected by casein kinase-1, a rapid phosphorylation of the octapeptide by GEF-casein kinase at Ser-5 (not Ser-4) was obtained.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The mechanism by which polybasic peptides stimulate the activity of casein kinase 2 (CK2) has been studied by comparing the effect of polylysine on the phosphorylation of a variety of protein and peptide substrates by the native CK2 holoenzyme and by its recombinant catalytic alpha subunit, either alone or in combination with the recombinant non-catalytic beta subunit. Calmodulin is not phosphorylated by the CK2 holoenzyme, in either the native or the reconstituted form, unless polylysine is added. In the presence of polylysine, it becomes a good substrate for CK2 (Km 14.2 microM, Kcat 4.6 mol.min-1.mol CK2-1). The recombinant alpha subunit, however, spontaneously phosphorylates calmodulin, this phosphorylation being actually inhibited rather than stimulated by polylysine. The calmodulin tridecapeptide, RKMKDTDSEEEIR, reproducing the phosphorylation site for CK2, is spontaneously phosphorylated by either CK2 holoenzyme or the recombinant alpha subunit with 5.8-fold and 2.8-fold stimulation by polylysine, respectively. The recombinant beta subunit of CK2 is itself a good exogenous substrate for the enzyme, its phosphorylation, however, is inhibited rather than enhanced by polylysine. On the contrary, the phosphorylation of the nonapeptide, MSSSEEVSW, reproducing the beta-subunit phosphoacceptor site, is dramatically stimulated by polylysine. Using a variety of small peptide substrates, it was shown that phosphorylation rate is diversely stimulated by polylysine. The observed stimulation, moreover, is variably accounted for by changes in Vmax and/or Km, depending on the structure of the peptide substrate. Maximum stimulation with all protein/peptide substrates tested requires the presence of the beta subunit, since the recombinant alpha subunit is much less responsive than CK2 holoenzyme, either native or reconstituted. While the phosphorylation of the peptide RRRDDDSDDD by CK2 is stimulated 2.8-fold, with 15 nM polylysine being required for half-maximal stimulation, a stimulation of only 1.9-fold, with 80 nM polylysine required for half-maximal stimulation, is attained with recombinant alpha subunit. The concentration of polylysine required for half-maximal stimulation is comparable to CK2 concentration and increases by increasing CK2 concentration, suggesting that polylysine primarily interacts with the enzyme, rather than with the peptide substrate.  相似文献   

3.
DARPP-32 (dopamine- and cAMP-regulated phosphorprotein, Mr = 32,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis) is an inhibitor of protein phosphatase-1 and is enriched in dopaminoceptive neurons possessing the D1 dopamine receptor. Purified bovine DARPP-32 was phosphorylated in vitro by casein kinase II to a stoichiometry greater than 2 mol of phosphate/mol of protein whereas two structurally and functionally related proteins, protein phosphatase inhibitor-1 and G-substrate, were poor substrates for this enzyme. Sequencing of chymotryptic and thermolytic phosphopeptides from bovine DARPP-32 phosphorylated by casein kinase II suggested that the main phosphorylated residues were Ser45 and Ser102. In the case of rat DARPP-32, the identification of these phosphorylation sites was confirmed by manual Edman degradation. The phosphorylated residues are located NH2-terminal to acidic amino acid residues, a characteristic of casein kinase II phosphorylation sites. Casein kinase II phosphorylated DARPP-32 with an apparent Km value of 3.4 microM and a kcat value of 0.32 s-1. The kcat value for phosphorylation of Ser102 was 5-6 times greater than that for Ser45. Studies employing synthetic peptides encompassing each phosphorylation site confirmed this difference between the kcat values for phosphorylation of the two sites. In slices of rat caudate-putamen prelabeled with [32P]phosphate, DARPP-32 was phosphorylated on seryl residues under basal conditions. Comparison of thermolytic phosphopeptide maps and determination of the phosphorylated residue by manual Edman degradation identified the main phosphorylation site in intact cells as Ser102. In vitro, DARPP-32 phosphorylated by casein kinase II was dephosphorylated by protein phosphatases-1 and -2A. Phosphorylation by casein kinase II did not affect the potency of DARPP-32 as an inhibitor of protein phosphatase-1, which depended only on phosphorylation of Thr34 by cAMP-dependent protein kinase. However, phosphorylation of DARPP-32 by casein kinase II facilitated phosphorylation of Thr34 by cAMP-dependent protein kinase with a 2.2-fold increase in the Vmax and a 1.4-fold increase in the apparent Km. Phosphorylation of DARPP-32 by casein kinase II in intact cells may therefore modulate its phosphorylation in response to increased levels of cAMP.  相似文献   

4.
Intact pp60c-src, the cellular homologue of the transforming protein of Rous sarcoma virus, was purified from human platelets. The purified fractions also contained small amounts of a 54-kDa proteolytic degradation product of pp60c-src. We investigated some of the biochemical and kinetic properties of pp60c-src protein tyrosine kinase. Maximum kinase activity occurred at pH 6.5 and required a mixture of 2 mM Mn2+/Mg2+ as divalent cations. The enzyme most strongly phosphorylated casein, followed by enolase and alcohol dehydrogenase. The Km value for ATP was 4 microM for substrate phosphorylation and for autophosphorylation. Using casein, we determined a Vmax for substrate phosphorylation by pp60c-src in the range of 1.9-3.4 nmol.min-1.mg-1. Since the Vmax value for the purified 54-kDa fragment of pp60c-src was also included in this value, we conclude that proteolytic degradation of a 6-kDa fragment from the N-terminus of pp60c-src did not affect its kinase activity. Tryptic phosphopeptide analysis identified Tyr-416 as the major autophosphorylation site. Preincubation of purified pp60c-src with ATP increased the amount of autophosphorylation accompanied by an increase in Vmax, whereas the Km values were not altered. Our data directly demonstrate that autophosphorylation at Tyr-416 exerts, in contrast to phosphorylation at Tyr-527, a positive regulatory effect on the pp60c-src kinase activity.  相似文献   

5.
Phosphorylation of pure fructose-6-phosphate,2-kinase:fructose-2,6-bisphosphatase from bovine heart by cAMP-dependent protein kinase and protein kinase C was investigated. The major enzyme form (subunit Mr of 58,000) was rapidly phosphorylated by both cAMP-dependent protein kinase and protein kinase C, incorporating 0.8 and 1.0 mol/mol of subunit, respectively. The rate of phosphorylation of the heart enzyme by cAMP-dependent protein kinase was 10 times faster than that of the rat liver enzyme. The minor enzyme (subunit Mr of 54,000), however, was phosphorylated only by protein kinase C and was phosphorylated much more slowly with a phosphate incorporation of less than 0.1 mol/mol of subunit. Phosphorylation by either cAMP-dependent protein kinase or protein kinase C activated the enzyme, but each phosphorylation affected different kinetic parameters. Phosphorylation by cAMP-dependent protein kinase lowered the Km value for fructose 6-phosphate from 87 to 42 microM without affecting the Vmax, whereas the phosphorylation by protein kinase C increased the Vmax value from 55 to 85 milliunits/mg without altering the Km value. The phosphorylated peptides were isolated, and their amino acid sequences were determined. The phosphorylation sites for both cAMP-dependent protein kinase and protein kinase C were located in a single peptide whose sequence was Arg-Arg-Asn-Ser-(P)-Phe-Thr-Pro-Leu-Ser-Ser-Ser-Asn-Thr(P)-Ile-Arg-Arg-Pro. The seryl residue nearest the N terminus was the residue specifically phosphorylated by cAMP-dependent protein kinase, whereas the threonine residue nearest the C terminus was phosphorylated by protein kinase C.  相似文献   

6.
The substrate specificities of cyclic GMP-dependent and cyclic AMP-dependent protein kinases have been compared by kinetic analysis using synthetic peptides as substrates. Both enzymes catalyzed the transfer of phosphate from ATP to calf thymus histone H2B, as well as to two synthetic peptides, Arg-Lys-Arg-Ser32-Arg-Lys-Glu and Arg-Lys-Glu-Ser36-Tyr-Ser-Val, corresponding to the amino acid sequences around serine 32 and serine 36 in histone H2B. Serine 38 in the latter peptide was not phosphorylated by either enzyme. Cyclic GMP-dependent kinase and cyclic AMP-dependent kinase catalyzed the incorporation of 1.1 and 2.0 mol of phosphate/mol of histone H2B, respectively. The phosphorylation of histone H2B, respectively. The phosphorylation of histone H2B by cyclic GMP-dependent kinase showed two distinct optima as the magnesium concentration was increased. However, the phosphorylation of either synthetic peptide by this enzyme was depressed at high magnesium concentrations. As the pH of reaction mixtures was elevated from pH 6 to pH 9, the rate of phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase continually increased. Acetylation of the NH2 terminus of the peptide did not qualitatively affect this pH profile, but did increase the Vmax value of the enzyme 3-fold. The apparent Km and Vmax values for the phosphorylation of Arg-Lys-Arg-Ser32-Arg-Lys-Glu by cyclic GMP-dependent kinase were 21 microM and 4.4 mumol/min/mg, respectively. The synthetic peptide Arg-Lys-Glu-Ser36-Tyr-Ser-Val was a relatively poor substrate for cyclic GMP-dependent kinase, exhibiting a Km value of 732 microM, although the Vmax was 12 micromol/min/mg. With histone H2B as substrate for the cyclic GMP-dependent kinase, two different Km values were apparent. The Km values for cyclic AMP-dependent kinase for either synthetic peptide were approximately 100 microM, but the Vmax for Arg-Lys-Arg-Ser32-Arg-Lys-Glu was 1.1 mumol/min/mg, while the Vmax for Arg-Lys-Glu-Ser36-Tyr-Ser-Val was 16.5 mumol/min/mg. These data suggest that although the two cyclic nucleotide-dependent protein kinases have similar substrate specificities, the determinants dictated by the primary sequence around the two phosphorylation sites in histone H2B are different for the two enzymes.  相似文献   

7.
Phosphorylation of high mobility group protein 14 by casein kinase II   总被引:7,自引:0,他引:7  
Phosphorylation of chromosomal high mobility group (HMG) protein 14 by casein kinase II has been characterized. Two mol of 32P are incorporated per mol of bovine HMG 14. Kinetic analysis provided evidence for two distinct sites with apparent Km values of 14.5 and 134 microM and respective Vmax values of 0.17 and 0.68 mumol/min/mg casein kinase II. Tryptic peptide mapping identified two phosphorylated products, each with phosphoserine. Amino acid composition and sequence analysis demonstrate that the major high affinity phosphorylation site for casein kinase II is serine 89. This sequence located at the carboxyl-terminal of HMG 14 contains the primary sequence determinants for casein kinase II. On the basis of reverse-phase high performance liquid chromatography and amino acid analysis, HMG 14, serine 99 represents the low affinity phosphorylation site.  相似文献   

8.
The specificities of cAMP-dependent and cGMP-dependent protein kinases were studied using synthetic peptides corresponding to the phosphorylation site in 6-phosphofructo-2-kinase/Fru-2,6-P2ase (Murray, K.J., El-Maghrabi, M.R., Kountz, P.D., Lukas, T.J., Soderling, T.R., and Pilkis, S.J. (1984) J. Biol. Chem. 259, 7673-7681) as substrates. The peptide Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser-Ser-Ile-Pro-Gln was phosphorylated by the catalytic subunit of cAMP-dependent protein kinase on predominantly the first of its 2 seryl residues. The Km (4 microM) and Vmax (14 mumol/min/mg) values were comparable to those for the phosphorylation of this site within native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. An analog peptide containing only two arginines was phosphorylated with poorer kinetic constants than was the parent peptide. These results suggest that the amino acid sequence at its site of phosphorylation is a major determinant that makes 6-phosphofructo-2-kinase/Fru-2,6-P2ase an excellent substrate for cAMP-dependent protein kinase. Although 6-phosphofructo-2-kinase/Fru-2,6-P2ase was not phosphorylated by cGMP-dependent protein kinase, the synthetic peptide corresponding to the cAMP-dependent phosphorylation site was a relatively good substrate (Km = 33 microM, Vmax = 1 mumol/min/mg). Thus, structures other than the primary sequence at the phosphorylation site must be responsible for the inability of cGMP-dependent protein kinase to phosphorylate native 6-phosphofructo-2-kinase/Fru-2,6-P2ase. Peptides containing either a -Ser-Ser- or -Thr-Ser- moiety were all phosphorylated by cGMP-dependent kinase to 1.0 mol of phosphate/mol of peptide, but the phosphate was distributed between the two hydroxyamino acids. Substitution of a proline in place of the glycine between the three arginines and these phosphorylatable amino acids caused the protein kinase selectively to phosphorylate the threonyl or first seryl residue and also enhanced the Vmax values by 4-6-fold. These results are consistent with a role for proline in allowing an adjacent threonyl residue to be readily phosphorylated by cGMP-dependent protein kinase.  相似文献   

9.
Calmodulin is specifically phosphorylated by casein kinase 2 (CK 2), but not by casein kinase 1, A kinase, or C kinase. In the present report, the stoichiometry of the phosphorylation of calmodulin by CK 2 in the presence and absence of polylysine and its phosphorylation sites were examined. In the absence of polylysine, the radioactive phosphate incorporated into calmodulin by CK 2 was only 0.01 mol/mol and the phosphorylation occurred at Ser-101. In the presence of polylysine, 1.2 mol of radioactive phosphate was incorporated into 1 mol of calmodulin. In this case, Thr-79 in addition to Ser-101 was phosphorylated, but Ser-81 was not. The sequence around the phosphorylated Thr is Asp-Thr(P)-Asp-Ser-Glu-Glu-Glu-.  相似文献   

10.
Two protein kinases active on casein and phosvitin were partially purified from the soluble fraction of ejaculated bovine spermatozoa. They were operationally termed casein kinase A and B based on the order of their elution from a phosphocellulose column. CK-A showed an approximate molecular mass of 38 kDa, and it phosphorylated serine residues of casein and phosvitin utilizing ATP as a phosphate donor (Km 19 microM). Enzyme activity was maximal in the presence of 10 mM MgCl2, whereas it decreased in the presence of spermine, polylysine, quercetin, and NaCl (20-250 mM). CK-B seemed to have a monomeric structure of about 41 kDa; it underwent autophosphorylation and cross-reacted with polyclonal antibodies raised against recombinant alpha, but not beta, subunit of human type 2 casein kinase. It phosphorylated both serine and threonine residues of casein and phosvitin, utilizing ATP (Km 12 microM) but not GTP as a phosphate donor. Threonine was more affected in the phosphorylated phosvitin than in the partially dephosphorylated substrate. CK-B was active toward the synthetic peptide Ser-(Glu)5 and calmodulin (in the latter case, in the presence of polylysine), and it was activated by spermine, polylysine, MgCl2 (30 mM), and NaCl (20-400 mM). The activity of the enzymes was not affected by cAMP, or the heat-stable inhibitor of the cAMP-dependent protein kinase, or calcium.  相似文献   

11.
The substrate specificity of cGMP-dependent protein kinase has been investigated by examining the ability of the enzyme to phosphorylate a series of synthetic peptides that correspond to the amino acid sequence at its site of autophosphorylation. The undecapeptide Ile53-Gly-Pro-Arg-Thr-Thr58-Arg-Ala-Gln-Gly-Ile63 which corresponds to the sequence around threonine-58 in cGMP-dependent protein kinase (Takio, K., Smith, S.B., Walsh, K.A., Krebs, E.G., and Titani, K. (1983) J. Biol. Chem. 258, 5531-5536) was synthesized and tested as a substrate for that enzyme. It was phosphorylated to the extent of 1.0 mol of phosphate/mol of peptide. Analysis of the products of Edman degradation of the phosphopeptide indicated that only threonine-58 was phosphorylated, as is the case for the autophosphorylation reaction in the native enzyme. The peptide was phosphorylated by cGMP-dependent protein kinase with a Km value of 578 +/- 25 microM and a Vmax of 0.069 +/- 0.003 mumol/min/mg of enzyme. This low Vmax value is consistent with the relatively slow rate of the autophosphorylation reaction. An analog peptide that contained serine in place of threonine-58 was also phosphorylated to 1.0 mol of phosphate/mol of peptide. That phosphopeptide contained only phosphoserine. The serine-containing analog peptide had a Km value similar to that of the parent peptide but was phosphorylated with a 70-fold higher Vmax value. Substitution of arginine-56 in the parent peptide by an alanine residue resulted in a peptide that was essentially not a substrate. Substitution of arginine-59, COOH-terminal to the phosphorylatable threonine, yielded a peptide with a Vmax similar to that of the parent peptide but a Km value of almost 22,000 microM. These results indicate that serine is a better phosphate-accepting residue than is threonine and that both arginine residues around the site of autophosphorylation are important specificity determinants for the cGMP-dependent protein kinase.  相似文献   

12.
The substrate specificity of protein kinase C has been examined using a series of synthetic peptide analogs of glycogen synthase, ribosomal protein S6, and the epidermal growth factor receptor. The glycogen synthase analog peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala10 was phosphorylated at Ser7 with a Km of 40.3 microM. Peptide phosphorylation was strongly dependent on Arg4. When lysine was substituted for Arg4 the Km was increased approximately 20-fold. Addition of basic residues on either the NH2-terminal or COOH-terminal side of the phosphorylation site of the glycogen synthase peptide improved the kinetics of peptide phosphorylation. The analog Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ala-Ala-Lys-Lys was phosphorylated with a Km of 4.1 microM. Substitution of Ser7 with threonine increased the apparent Km to 151 microM. The truncated peptide Pro1-Leu-Ser-Arg-Thr-Leu-Ser-Val8 was phosphorylated with similar kinetic constants to the parent peptide, however, deletion of Val8 increased the apparent Km to 761 microM. The ribosomal peptide S6-(229-239) was phosphorylated with a Km of approximately 0.5 microM predominantly on Ser236 and is one of the most potent synthetic peptide substrates reported for a protein kinase. The apparent Km for S6 peptide phosphorylation was increased by either deletion of the NH2-terminal 3 residues Ala229-Arg-231 or by substitution of Arg238 on the COOH-terminal side of the phosphorylation site with alanine. This analog peptide, [Ala238]S6-(229-239) was phosphorylated with an approximate 6-fold reduction in Vmax and a switch in the preferred site of phosphorylation from Ser236 to Ser235. These results support the concept that basic residues on both sides of the phosphorylation site can have an important influence on the kinetics of phosphorylation and site specificity of protein kinase C.  相似文献   

13.
Specific substrate for histone kinase II: a synthetic nonapeptide   总被引:1,自引:0,他引:1  
Based on the previously determined intrinsic substrate specificity of histone kinase II, a nonapeptide was synthesized which was a specific substrate for this enzyme. The Vmax value of phosphorylation of the peptide (Ala-Ala-Ala-Ser-Phe-Lys-Ala-Lys-Lys-amide) was about the same as that for H1 histone and the apparent Km for the phosphorylation of the peptide was 0.2 mM, an order of magnitude higher than that for H1 histone. H1 histone inhibited the phosphorylation of the peptide, while the peptide did not inhibit the phosphorylation of H1 histone. In the crude extracts of calf thymus, spleen and liver, histone kinase II was the only enzyme which phosphorylated the synthetic peptide. The rate of phosphorylation of this peptide was used to determine the activity of histone kinase II in the crude extracts of several tissues obtained from different species.  相似文献   

14.
The mechanism for synergistic phosphorylation by glycogen synthase kinase 3 (GSK-3) and casein kinase II was studied using a synthetic peptide which contains the sequence of a potentially important proline/serine-rich regulatory region of rabbit muscle glycogen synthase. The peptide, Ac-PRPAS(3a)VPPS(3b)PSLS(3c)RHSS(4)PHQS(5) EDEEEP-amide, has five known phosphorylation sites of the native enzyme designated sites 3a, 3b, 3c, 4, and 5, which are spaced every fourth residue. The peptide was phosphorylated specifically at site 5 by casein kinase II with an apparent Km of 23 microM, but it was not phosphorylated by GSK-3. However, after initial phosphorylation of site 5 by casein kinase II, the peptide became an effective substrate for GSK-3 with an apparent Km of 2 microM. GSK-3 introduced up to four phosphates and appeared to catalyze the sequential modification of sites 4, 3c, 3b, and 3a, respectively. The results can be explained if GSK-3 recognizes the sequence -SXXXS(P). Phosphorylation of site 5 by casein kinase II creates this recognition site. Thereafter, each successive phosphorylation introduced by GSK-3 generates a new recognition site. The results provide a molecular basis to explain the synergistic action of casein kinase II and GSK-3 that is also observed with native glycogen synthase. In addition, this investigation emphasizes how protein recognition sites in some cellular targets may have to be formed post-translationally.  相似文献   

15.
Recombinant murine BID protein was used as an in vitro substrate for the CK2 holoenzyme and the catalytic CK2alpha subunit. The results obtained show that BID can only serve as a substrate for the catalytic CK2alpha subunit. Phosphorylation of BID using the CK2 holoenzyme was only possible in the presence of polylysine, supporting the notion that BID behaves similarly to calmodulin. Co-immunoprecipitation of BID and CK2 subunits revealed that BID is preferentially associated with the CK2alpha subunit. Enzyme kinetic analyses yielded a Km value for BID that is a level of magnitude lower than that measured for casein and the synthetic peptide, suggesting more specific and tight binding of BID to CK2alpha. In contrast are the Vmax values observed, with a significantly higher phosphorylation rate measured for casein and the synthetic peptide than for BID. When BID was phosphorylated by polylysine-stimulated CK2 holoenzyme prior to caspase-8 cleavage, the formation of tC-BID was reduced in comparison to treatment with caspase-8 in the absence of protein kinase. Mass spectrometric analysis of BID phosphorylated by CK2alpha before and after cleavage with caspase-8 showed phosphorylation of residues Thr58 and Ser76.  相似文献   

16.
A synthetic peptide substrate for selective assay of protein kinase C.   总被引:24,自引:0,他引:24  
Among various phosphate acceptor proteins and peptides so far tested, a synthetic peptide having the sequence surrounding Ser(8) of myelin basic protein, Gln-Lys-Arg-Pro-Ser(8)-Gln-Arg-Ser-Lys-Tyr-Leu, (MBP4-14), is the most specific and convenient substrate which can be used for selective assay of protein kinase C. This peptide is not phosphorylated by cyclic AMP-dependent protein kinase, casein kinases I and II, Ca2+/calmodulin-dependent protein kinase II, or phosphorylase kinase, and can be routinely used for the assay of protein kinase C with low background in the crude tissue extracts. The Km value is considerably low (7 microM) with a Vmax value of twice as much as that for H1 histone.  相似文献   

17.
Kinetic studies on the activity of purified cGMP-dependent protein kinase and catalytic subunit of cAMP-dependent protein kinase have been carried out using a protein termed G-substrate (see preceding paper) as the phosphate acceptor. Each enzyme catalyzed the phosphorylation of 2.0-2.1 mol of 32P/mol of G-substrate, with phosphorylation occurring primarily at threonine residues. When phosphorylation was carried out in the simultaneous presence of the two enzymes, the stoichiometry increased only slightly, to a value of 2.4, suggesting that both enzymes phosphorylated the same two sites. Initial rate studies on the phosphorylation of G-substrate by cGMP-dependent protein kinase yielded a Km of 0.21 microM and a Vmax of 2.2 mumol/min/mg. Similar studies with the cAMP-dependent protein kinase yielded a Km of 5.8 microM and a Vmax of 2.3 mumol/min/mg. cGMP-dependent protein kinase thus exhibited a high degree of specificity towards this substrate which was apparently based on selective substrate binding rather than catalytic efficacy. The activity of cGMP-dependent protein kinase towards G-substrate was maximal at pH 7.5-8.0 and a Mg2+ concentration of 1-3 mM. Activity declined sharply at high ionic strength (greater than 20 mM KCl).  相似文献   

18.
Casein kinase I has been shown to phosphorylate Ser123 and possibly Thr124, in simian virus 40 (SV40) large T antigen; the same sites are also modified in cultured cells incubated with 32Pi [Friedrich A. Gr?sser, Karl H. Scheidtmann, Polygena T. Tuazon, Jolinda A. Traugh & Gernot Walter (1988) Virology 165, 13-22]. The peptide, A-D-S-Q-H-S-T-P-P, which corresponds to the amino acid sequence 118-125 of SV40 large T antigen, was synthesized together with peptides containing changes in specific amino acid residues on either side of Ser123. These peptides were used as model substrates to determine the amino acids in the SV40 large T antigen important for recognition by casein kinase I. The native peptide identified above, with aspartate at the -4 position, was a poor substrate for casein kinase I in vitro. Peptides with acidic residues added at the -2 and -3 positions, preceding Ser123, were phosphorylated by casein kinase I with apparent Km values around 2 mM and Vmax values up to 500 pmol.min-1.ml-1. When acidic residues were added at both sides of the phosphorylatable serine, the peptide had a first-order rate constant over 20-fold higher than peptides with acidic amino acid residues at the N-terminus only; the apparent Km value was 0.65 mM with a Vmax of 2900 pmol.min-1.ml-1. The effects of modifying Ser120 to phosphoserine were examined by addition of a recognition sequence for the cAMP-dependent protein kinase prior to Ser120. Prior phosphorylation of the peptide at Ser120 lowered the apparent Km to 0.061 mM and increased the Vmax to 360 pmol.min-1.ml-1, a 50-fold decrease in Km for casein kinase I and a 6-fold increase in Vmax as compared to the non-phosphorylated peptide. This indicates that Ser120, which has been shown to be phosphorylated in vivo, provides an appropriate recognition determinant for casein kinase I.  相似文献   

19.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

20.
Substrate specificity of a multifunctional calmodulin-dependent protein kinase   总被引:31,自引:0,他引:31  
The substrate specificity of the multifunctional calmodulin-dependent protein kinase from skeletal muscle has been studied using a series of synthetic peptide analogs. The enzyme phosphorylated a synthetic peptide corresponding to the NH2-terminal 10 residues of glycogen synthase, Pro-Leu-Ser-Arg-Thr-Leu-Ser-Val-Ser-Ser-NH2, stoichiometrically at Ser-7, the same residue phosphorylated in the parent protein. The synthetic peptide was phosphorylated with a Vmax of 12.5 mumol X min-1 X mg-1 and an apparent Km of 7.5 microM compared to values of 1.2 mumol X min-1 X mg-1 and 3.1 microM, respectively, for glycogen synthase. Similarly, a synthetic peptide corresponding to the NH2-terminal 23 residues of smooth muscle myosin light chain was readily phosphorylated on Ser-19 with a Km of 4 microM and a Vmax of 5.4 mumol X min-1 X mg-1. The importance of the arginine 3 residues NH2-terminal to the phosphorylated serine in each of these peptides was evident from experiments in which this arginine was substituted by either leucine or alanine, as well as from experiments in which its position in the myosin light chain sequence was varied. Positioning arginine 16 at residues 14 or 17 abolished phosphorylation, while location at residue 15 not only decreased Vmax 14-fold but switched the major site of phosphorylation from Ser-19 to Thr-18. It is concluded that the sequence Arg-X-Y-Ser(Thr) represents the minimum specificity determinant for the multifunctional calmodulin-dependent protein kinases. Studies with various synthetic peptide substrates and their analogs revealed that the specificity determinants of the multifunctional calmodulin-dependent protein kinase were distinct from several other "arginine-requiring" protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号