首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Centromeric (CEN) chromatin is placed under mechanical tension and stretches as kinetochores biorient on the mitotic spindle. This deformation could conceivably provide a readout of biorientation to error correction mechanisms that monitor kinetochore–spindle interactions, but whether CEN chromatin acts in a tensiometer capacity is unresolved. Here, we report observations linking yeast Topoisomerase II (Top2) to both CEN mechanics and assessment of interkinetochore tension. First, in top2-4 and sumoylation-resistant top2-SNM mutants CEN chromatin stretches extensively during biorientation, resulting in increased sister kinetochore separation and preanaphase spindle extension. Our data indicate increased CEN stretching corresponds with alterations to CEN topology induced in response to tension. Second, Top2 potentiates aspects of the tension checkpoint. Mutations affecting the Mtw1 kinetochore protein activate Ipl1 kinase to detach kinetochores and induce spindle checkpoint arrest. In mtw1top2-4 and mtw1top2-SNM mutants, however, kinetochores are resistant to detachment and checkpoint arrest is attenuated. For top2-SNM cells, CEN stretching and checkpoint attenuation occur even in the absence of catenation linking sister chromatids. In sum, Top2 seems to play a novel role in CEN compaction that is distinct from decatenation. Perturbations to this function may allow weakened kinetochores to stretch CENs in a manner that mimics tension or evades Ipl1 surveillance.  相似文献   

2.
The centromere regions (CEN) of all eight chromosomes in Candida albicans have been characterized in terms of nucleotide sequence and size. The boundaries of each of the eight CEN DNA regions were mapped by chromatin immunoprecipitation-PCR using polyclonal rabbit antibodies generated against C. albicans centromere-specific protein CaCse4p (CENP-A homolog). A single 3–4.5 kb unique DNA sequence on each chromosome was found to be bound to CaCse4p. Sequence analysis revealed that the eight CEN regions in C. albicans lack any conserved DNA sequence motifs common to the group; all are quite different in overall DNA sequence. In contrast to centromeres in many organisms, the C. albicans centromeres are generally free of repeated DNA elements and transposons. However, a few small inverted repeats and long terminal repeats do occur in the centromeric and pericentric regions on a few chromosomes. We also characterized the CEN DNAs in four groups of phylogenetically divergent C. albicans strains, estimated to be separated from each other by 1–3 million years. The same eight different and unique 3–4.5 kb DNA sequences are utilized as centromeres in all of these strains. The chromosomal locations and the sizes of CEN DNAs have remained conserved, in agreement with the idea that CEN function in C. albicans is templated by heritable epigenetic mechanisms. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Nucleotide sequence data reported are available in the GenBank database under the accession numbers EF062821–EF062835 and EF620874–EF620896.  相似文献   

3.
Evolutionarily conserved histone H3 variant Cse4 and its homologues are essential components of specialized centromere (CEN)-specific nucleosomes and serve as an epigenetic mark for CEN identity and propagation. Cse4 is a critical determinant for the structure and function of the kinetochore and is required to ensure faithful chromosome segregation. The kinetochore protein Pat1 regulates the levels and spatial distribution of Cse4 at centromeres. Deletion of PAT1 results in altered structure of CEN chromatin and chromosome segregation errors. In this study, we show that Pat1 protects CEN-associated Cse4 from ubiquitination in order to maintain proper structure and function of the kinetochore in budding yeast. PAT1-deletion strains exhibit increased ubiquitination of Cse4 and faster turnover of Cse4 at kinetochores. Psh1, a Cse4-specific E3-ubiquitin ligase, interacts with Pat1 in vivo and contributes to the increased ubiquitination of Cse4 in pat1∆ strains. Consistent with a role of Psh1 in ubiquitination of Cse4, transient induction of PSH1 in a wild-type strain resulted in phenotypes similar to a pat1∆ strain, including a reduction in CEN-associated Cse4, increased Cse4 ubiquitination, defects in spatial distribution of Cse4 at kinetochores, and altered structure of CEN chromatin. Pat1 interacts with Scm3 and is required for its maintenance at kinetochores. In conclusion, our studies provide novel insights into mechanisms by which Pat1 affects the structure of CEN chromatin and protects Cse4 from Psh1-mediated ubiquitination for faithful chromosome segregation.  相似文献   

4.
Fuerst PG  Voytas DF 《Chromosoma》2003,112(2):58-65
The yeast retrotransposon Ty5 integrates preferentially into heterochromatin at the telomeres and HM loci. Target specificity is mediated by a six amino acid sequence motif (the targeting domain, TD) of integrase that interacts with Sir4p, a structural component of heterochromatin. When tethered to CEN plasmids as part of a Gal4p DNA binding domain (GBD) fusion protein, TD destabilizes plasmid segregation in a manner similar to that observed for CEN + HM or CEN +TEL antagonism. This instability is caused by the ability of TD to nucleate components of heterochromatin on the CEN plasmid, because CEN +TD antagonism is abrogated by sir2, sir3 and sir4 mutations and by TD mutations that prevent interaction with Sir4p. In strains that acquire resistance to CEN +TD antagonism, the CEN plasmid has either recombined with a 2 plasmid or sustained deletions in sequences required to bind GBD-TD. CEN +TD and CEN + HM antagonism is exacerbated by mutations in components of the Ku-mediated non-homologous end-joining pathway. These observations suggest that CEN antagonism is caused by DNA breaks that result from competition between CEN - and Sir-specific segregation pathways. Edited by: V.A. Zakian  相似文献   

5.
Accurate chromosome segregation requires centromeres (CENs), the DNA sequences where kinetochores form, to attach chromosomes to microtubules. In contrast to most eukaryotes, which have broad centromeres, Saccharomyces cerevisiae possesses sequence-defined point CENs. Chromatin immunoprecipitation followed by sequencing (ChIP–Seq) reveals colocalization of four kinetochore proteins at novel, discrete, non-centromeric regions, especially when levels of the centromeric histone H3 variant, Cse4 (a.k.a. CENP-A or CenH3), are elevated. These regions of overlapping protein binding enhance the segregation of plasmids and chromosomes and have thus been termed Centromere-Like Regions (CLRs). CLRs form in close proximity to S. cerevisiae CENs and share characteristics typical of both point and regional CENs. CLR sequences are conserved among related budding yeasts. Many genomic features characteristic of CLRs are also associated with these conserved homologous sequences from closely related budding yeasts. These studies provide general and important insights into the origin and evolution of centromeres.  相似文献   

6.

Background

Kinetochores attach sister chromatids to microtubules of the mitotic spindle and orchestrate chromosome disjunction at anaphase. Although S. cerevisiae has the simplest known kinetochores, they nonetheless contain ∼70 subunits that assemble on centromeric DNA in a hierarchical manner. Developing an accurate picture of the DNA-binding, linker and microtubule-binding layers of kinetochores, including the functions of individual proteins in these layers, is a key challenge in the field of yeast chromosome segregation. Moreover, comparison of orthologous proteins in yeast and humans promises to extend insight obtained from the study of simple fungal kinetochores to complex animal cell kinetochores.

Principal Findings

We show that S. cerevisiae Spc105p forms a heterotrimeric complex with Kre28p, the likely orthologue of the metazoan kinetochore protein Zwint-1. Through systematic analysis of interdependencies among kinetochore complexes, focused on Spc105p/Kre28p, we develop a comprehensive picture of the assembly hierarchy of budding yeast kinetochores. We find Spc105p/Kre28p to comprise the third linker complex that, along with the Ndc80 and MIND linker complexes, is responsible for bridging between centromeric heterochromatin and kinetochore MAPs and motors. Like the Ndc80 complex, Spc105p/Kre28p is also essential for kinetochore binding by components of the spindle assembly checkpoint. Moreover, these functions are conserved in human cells.

Conclusions/Significance

Spc105p/Kre28p is the last of the core linker complexes to be analyzed in yeast and we show it to be required for kinetochore binding by a discrete subset of kMAPs (Bim1p, Bik1p, Slk19p) and motors (Cin8p, Kar3p), all of which are nonessential. Strikingly, dissociation of these proteins from kinetochores prevents bipolar attachment, even though the Ndc80 and DASH complexes, the two best-studied kMAPs, are still present. The failure of Spc105 deficient kinetochores to bind correctly to spindle microtubules and to recruit checkpoint proteins in yeast and human cells explains the observed severity of missegregation phenotypes.  相似文献   

7.
8.

Background  

The agriculturally important pasture grass tall fescue (Festuca arundinacea Schreb. syn. Lolium arundinaceum (Schreb.) Darbysh.) is an outbreeding allohexaploid, that may be more accurately described as a species complex consisting of three major (Continental, Mediterranean and rhizomatous) morphotypes. Observation of hybrid infertility in some crossing combinations between morphotypes suggests the possibility of independent origins from different diploid progenitors. This study aims to clarify the evolutionary relationships between each tall fescue morphotype through phylogenetic analysis using two low-copy nuclear genes (encoding plastid acetyl-CoA carboxylase [Acc1] and centroradialis [CEN]), the nuclear ribosomal DNA internal transcribed spacer (rDNA ITS) and the chloroplast DNA (cpDNA) genome-located matK gene. Other taxa within the closely related Lolium-Festuca species complex were also included in the study, to increase understanding of evolutionary processes in a taxonomic group characterised by multiple inter-specific hybridisation events.  相似文献   

9.
Shugoshin is an evolutionarily conserved protein, which is involved in tension sensing on mitotic chromosomes, kinetochore biorientation, and protection of centromeric (CEN) cohesin for faithful chromosome segregation. Interaction of the C-terminus of Sgo1 with phosphorylated histone H2A regulates its association with CEN and pericentromeric (peri-CEN) chromatin, whereas mutations in histone H3 selectively compromise the association of Sgo1 with peri-CEN but not CEN chromatin. Given that histone H3 is absent from CEN and is replaced by a histone H3 variant CENP-ACse4, we investigated if CENP-ACse4 interacts with Sgo1 and promotes its association with the CEN chromatin. In this study, we found that Sgo1 interacts with CENP-ACse4 in vivo and in vitro. The N-terminus coiled-coil domain of Sgo1 without the C-terminus (sgo1-NT) is sufficient for its interaction with CENP-ACse4, association with CEN but not the peri-CEN, and this CEN association is cell cycle dependent with maximum enrichment in mitosis. In agreement with the role of CENP-ACse4 in CEN maintenance of Sgo1, depletion of CENP-ACse4 results in the loss of Sgo1 and sgo1-NT from the CEN chromatin. The N-terminus of Sgo1 is required for genome stability as a mutant lacking the N-terminus (sgo1-CT) exhibits increased chromosome missegregation when compared to a sgo1-NT mutant. In summary, our results define a novel role for the N-terminus of Sgo1 in CENP-ACse4 mediated recruitment of Sgo1 to CEN chromatin for faithful chromosome segregation.  相似文献   

10.

Background  

In Saccharomyces cerevisiae, nutrient limitation stimulates diploid cells to undergo DNA replication and meiosis, followed by the formation of four haploid spores. Septins are a family of proteins that assemble a ring structure at the mother-daughter neck during vegetative growth, where they control cytokinesis. In sporulating cells, the septin ring disassembles and septins relocalize to the prospore membrane.  相似文献   

11.
R-loops, the byproduct of DNA–RNA hybridization and the displaced single-stranded DNA (ssDNA), have been identified in bacteria, yeasts, and other eukaryotic organisms. The persistent presence of R-loops contributes to defects in DNA replication and repair, gene expression, and genomic integrity. R-loops have not been detected at centromeric (CEN) chromatin in wild-type budding yeast. Here we used an hpr1∆ strain that accumulates R-loops to investigate the consequences of R-loops at CEN chromatin and chromosome segregation. We show that Hpr1 interacts with the CEN-histone H3 variant, Cse4, and prevents the accumulation of R-loops at CEN chromatin for chromosomal stability. DNA–RNA immunoprecipitation (DRIP) analysis showed an accumulation of R-loops at CEN chromatin that was reduced by overexpression of RNH1 in hpr1∆ strains. Increased levels of ssDNA, reduced levels of Cse4 and its assembly factor Scm3, and mislocalization of histone H3 at CEN chromatin were observed in hpr1∆ strains. We determined that accumulation of R-loops at CEN chromatin contributes to defects in kinetochore biorientation and chromosomal instability (CIN) and these phenotypes are suppressed by RNH1 overexpression in hpr1∆ strains. In summary, our studies provide mechanistic insights into how accumulation of R-loops at CEN contributes to defects in kinetochore integrity and CIN.  相似文献   

12.
Kerry S. Bloom  John Carbon 《Cell》1982,29(2):305-317
We have examined the chromatin structure of the centromere regions of chromosomes III and XI in yeast by using cloned functional centromere DNAs (CEN3 and CEN11) as labeled probes. When chromatin from isolated nuclei is digested with micrococcal nuclease and the resulting DNA fragments separated electrophoretically and blotted to nitrocellulose filters, the centromeric nucleosomal sub-units are resolved into significantly more distinct ladders than are those from the bulk of the chromatin. A discrete protected region of 220–250 bp of CEN sequence flanked by highly nuclease-sensitive sites was revealed by mapping the exact nuclease cleavage sites within the centromeric chromatin. On both sides of this protected region, highly phased and specific nuclease cutting sites exist at nucleosomal intervals (160 bp) for a total length of 12–15 nucleosomal subunits. The central protected region in the chromatin of both centromeres spans the 130 bp segment that exhibits the highest degree of sequence homology (71%) between functional CEN3 and CEN11 DNAs. This unique chromatin structure is maintained on CEN sequences introduced into yeast on autonomously replicating plasmids, but is not propagated through foreign DNA sequences flanking the inserted yeast DNA.  相似文献   

13.
Centromeres are specialized chromatin domains where kinetochores assemble. Centromeres contain as a conserved feature nucleosomes that are composed of the canonical histones H2A, H2B and H4 and a centromere-specific histone H3 variant, known as CENP-A in humans and Cse4 in budding yeast. The incorporation of CENP-A homologs into centromeric chromatin is cell cycle regulated and is assisted by related assembly factors named Scm3 in yeast and HJURP in human cells. Here, we describe that the budding yeast Scm3 binds weakly to centromeres during interphase including S phase when Cse4 assembles into centromeres. In anaphase Scm3 then becomes 2.5-fold enriched at kinetochores where it is dynamic with a half recovery time t½ of 36 sec. In contrast, Cse4 is stably integrated into kinetochores. In addition, ten Scm3 molecules bind to a cluster of 16 kinetochores with 32 Cse4 molecules suggesting a 1:3 ratio at kinetochores between the two proteins. Analysis of conditional lethal scm3–1 mutant cells indicated that Scm3 participates in maintaining Cse4 at centromeres in anaphase. Thus, Scm3 interacts transiently with kinetochores in anaphase where it safeguards Cse4 even after its S phase incorporation into centromeres.  相似文献   

14.
High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p’s involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

Recent experiments regarding Ndc80/Hec1 in force generation at kinetochores for chromosome motions have prompted speculation about possible models for interactions between positively charged molecules at kinetochores and negative charge at and near the plus ends of microtubules.

Discussion

A clear picture of how kinetochores and centrosomes establish and maintain a dynamic coupling to microtubules for force generation during the complex motions of mitosis remains elusive. The current paradigm of molecular cell biology requires that specific molecules, or molecular geometries, for force generation be identified. However, it is possible to explain several different mitotic motions—including poleward force production at kinetochores—within a classical electrostatics approach in terms of experimentally known charge distributions, modeled as surface and volume bound charges interacting over nanometer distances.

Conclusion

We propose here that implicating Ndc80/Hec1 as a bound volume positive charge distribution in electrostatic generation of poleward force at kinetochores is most consistent with a wide range of experimental observations on mitotic motions, including polar production of poleward force and chromosome congression.
  相似文献   

16.
A mutation in theCENTRORADIALIS (CEN) gene ofAntirrhinum and in theTERMINAL FLOWER 1 (TFL1) gene ofArabidopsis causes their indeterminate inflorescence to determinate. We clonedCEN/TFL1 homologs fromNicotiana tabacum, the wild-type of which has a determinate inflorescence. TheCEN gene was expressed in the inflorescnece meristem and kept its inflorescence meristem identity, whereas the tobacco homolog (NCH) was expressed at a low level throughout the plant’s development. AlthoughCEN andNCH are highly homologous genes, they may have been recruited to different developmental functions during their evolution. TwoNCH genes are derived from amphidiploidN. tabacum, but both of them hybridized with its diploid parents,N. sylvestris andN. tomentosiformis. Southern blotting, and the genomic organization ofTFL1 inArabidopsis revealed that anotherCEN homolog exists in the genome ofArabidopsis. These results suggest that there are two copies of theCEN homolog per diploid plant. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology” These two authors contributed to this work equally.  相似文献   

17.
The location of satellite DNA sequences in metaphase chromosomes has been studied in the kangaroo rat by the in situ hybridization technique, staining techniques and phase contrast microscopy. The HS- satellite DNA is located at the kinetochores of all but three chromosome pairs. The HD satellite is located predominantly in the short arms of the chromosomes containing HS- and in the kinetochores of chromosome pairs that lack HS-. The regions that contain the satellite DNA sequences can also be identified by the Giemsa staining technique, and can be visualized with phase contrast microscopy or following Feulgen staining of fixed chromosome preparations.  相似文献   

18.

Background  

Although much is known about molecular mechanisms that prevent re-initiation of DNA replication on newly replicated DNA during a single cell cycle, knowledge is sparse regarding the regions that are most susceptible to re-replication when those mechanisms are bypassed and regarding the extents to which checkpoint pathways modulate re-replication. We used microarrays to learn more about these issues in wild-type and checkpoint-mutant cells of the fission yeast, Schizosaccharomyces pombe.  相似文献   

19.

Background  

The interfacial molecular mechanisms that regulate mammalian cell growth and differentiation have important implications for biotechnology (production of cells and cell products) and medicine (tissue engineering, prosthetic implants, cancer and developmental biology). We demonstrate here that engineered protein motifs can be robustly displayed to mammalian cells in vitro in a highly controlled manner using a soluble protein scaffold designed to self assemble on a gold surface.  相似文献   

20.
Kinetochore attachment to the ends of dynamic microtubules is a conserved feature of mitotic spindle organization that is thought to be critical for proper chromosome segregation. Although kinetochores have been described to transition from lateral to end-on attachments, the phase of lateral attachment has been difficult to study in yeast due to its transient nature. We have previously described a kinetochore mutant, DAM1-765, which exhibits lateral attachments and misregulation of microtubule length. Here we show that the misregulation of microtubule length in DAM1-765 cells occurs despite localization of microtubule associated proteins Bik1, Stu2, Cin8, and Kip3 to microtubules. DAM1-765 kinetochores recruit the spindle checkpoint protein Bub1, however Bub1 localization to DAM1-765 kinetochores is not sufficient to cause a cell cycle arrest. Interestingly, the DAM1-765 mutation rescues the temperature sensitivity of a biorientation-deficient ipl1-321 mutant, and DAM1-765 chromosome loss rates are similar to wild-type cells. The spindle checkpoint in DAM1-765 cells responds properly to unattached kinetochores created by nocodazole treatment and loss of tension caused by a cohesin mutant. Progression of DAM1-765 cells through mitosis therefore suggests that satisfaction of the checkpoint depends more highly on biorientation of sister kinetochores than on achievement of a specific interaction between kinetochores and microtubule plus ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号