首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermodynamics and energy coupling in the bacteriorhodopsin photocycle   总被引:18,自引:0,他引:18  
G Váró  J K Lanyi 《Biochemistry》1991,30(20):5016-5022
Time-resolved absorption changes of photoexcited bacteriorhodopsin were measured with a gated multichannel analyzer between 100 ns and 100 ms at six temperatures between 5 and 30 degrees C. The energetics of the chromophore reaction cycle were analyzed on the basis of a model containing a single cycle and reversible reactions. The calculated thermodynamic parameters provide insights to general principles of the active transport. They indicate that in this light-driven proton pump the free energy is retained after absorption of the photon as the enthalpy of the pKa shift in the chromophore which allows deprotonation of the Schiff base. Part of the excess free energy is dissipated at the "switch" step where the reaction and transport cycles are coupled, and the rest at the chromophore recovery step. All other reactions take place near equilibrium. The "switch" step is the M1----M2 transition in the reaction cycle [Váró, G., & Lanyi, J. K. (1991) Biochemistry (preceeding paper in this issue)]. It provides for return of the chromophore pKa to its initial value so the Schiff base will become a proton acceptor, for reordering access of the Schiff base from one side of the membrane to the other, and for unidirectionality of the proton transfer. Conformational energy of the protein, acquired during the "switch" step, drives the completion of the photocycle.  相似文献   

2.
The usage of Gibbs free energy (G) in biochemistry is examined critically. The textbook formulation of the Second Law of Thermodynamics as applied to chemically-reacting systems is reviewed. Cognizance of the established theory and terminology of chemical thermodynamics leads to the conclusion that the symbol "delta G", as used in most biochemical calculations of free-energy change (e.g. in freeze-clamp study of steady-state metabolic processes), is erroneous. The instantaneous change, symbolized by the expression (delta G/delta xi) (with xi the degree of advancement of the reaction), is seen to be the correct form for describing the thermodynamic quality of the reactions of cell metabolism. Mathematical and graphical analysis of a sample reaction demonstrates the fundamental difference between delta G and (delta G/delta xi). Some problems in the application and interpretation of free-energy change in biochemical systems are reviewed: (1) Advances in protein dynamics have revealed the free-energy linkage properties of the enzyme molecule in binding/catalytic events of catalysis, demanding that we view the thermodynamics of elementary enzyme reactions with a finer eye. (2) The reality of metabolic microenvironments in vivo leads to equivocation in the significance of free-energy changes measured under macroscopic conditions in vitro. (3) The physicochemical character of reaction dynamics in the living cell may in some cases exceed the domain of validity of such thermodynamic state functions as Gibbs free energy.  相似文献   

3.
The oxidation mechanism of V(IV)/V(V) in the presence of N-hydroxyacetamide (acetohydroxamic acid, HL) in aqueous solution has been investigated using density functional theory (DFT) calculations aiming to contribute to the understanding of this process at a molecular level. The mechanism proposed involves formation of the *OH, *OOH, H2O2 radicals and complexes formed from the interaction of these species with VOL2 complex. The Gibbs free energy of each step of the mechanism has been evaluated. The solvation energy has been estimated by means of united atoms Hartree-Fock/polarizable continuum method (UAHF/PCM). The Gibbs free energy of the global reaction of the V(IV)/V(V) oxidation has been estimated and compared with the available experimental equilibrium constant. The difference between the calculated and experimental estimates for the reaction energy of the global equation is about 1.5 kcal mol(-1). The thermodynamic profile of the reaction mechanism has been provided and discussed in terms of the possible intermediates. The influence of the ligand and the reaction rate in terms of the steady-state approximation has been briefly discussed.  相似文献   

4.
The effects of Mg2+ on rat liver microsomal Ca2+ sequestration   总被引:1,自引:0,他引:1  
The effects of Mg2+ on the hepatic microsomal Ca2(+)-sequestering system was tested. Ca2(+)-ATPase activity and Ca2+ uptake were both dependent on the concentration of free Mg2+, reaching maximum levels at 2 mM. The effects of Mg-ATP were also influenced by the concentration of free Mg2+, being maximally effective at a ratio of 1:1. The results suggest that Mg2+ influences Ca2+ sequestration at various steps, namely in addition to forming the substrate of the Ca2(+)-ATPase reaction, Mg-ATP, Mg2+ stimulates the reaction at an additional step, as indicated by its stimulatory effect on the Ca2(+)-ATPase reaction and on Ca2+ uptake, even at optimal Mg-ATP levels. The stimulatory effect of Mg2+ was evident at various pH levels tested, and it was nucleotide specific. The stimulatory effect of Mg2+ might be exerted at the dephosphorylation step of the enzymatic reaction or at an other, yet undefined, site. The results demonstrate a plural effect of Mg2+ on the hepatic microsomal sequestration system. This indicates that, depending on its magnitude, changes in Mg2+ distribution might influence cytosolic Ca2+ levels.  相似文献   

5.
We have characterized ATP-dependent Ca2+ transport into highly purified plasma membrane fraction isolated from guinea pig ileum smooth muscle. The membrane fraction contained inside-out sealed vesicles and was enriched 30-40-fold in 5'-nucleotidase and phosphodiesterase I activity as compared to post nuclear supernatant. Plasma membrane vesicles showed high rate (76 nmol/mg/min) and high capacity for ATP dependent Ca2+ transport which was inhibited by addition of Ca2+ ionophore A23187. The inhibitors of mitochondrial Ca2+ transport, i.e., sodium azide, oligomycin and ruthenium red did not inhibit ATP-dependent Ca2+ uptake into plasma membrane vesicles. The energy dependent Ca2+ uptake into plasma membranes showed very high specificity for ATP as energy source and other nucleotide triphosphates were ineffective in supporting Ca2+ transport. Phosphate was significantly better as Ca2+ trapping anion to potentiate ATP-dependent Ca2+ uptake into plasma membrane fraction as compared to oxalate. Orthovanadate, an inhibitor of cell membrane (Ca2+-Mg2+)-ATPase activity, completely inhibited ATP-dependent Ca2+ transport and the Ki was approximately 0.6 microM. ATP-dependent Ca2+ transport and formation of alkali labile phosphorylated intermediate of (Ca2+-Mg2+)-ATPase increased with increasing concentrations of free Ca2+ in the incubation mixture and the Km value for Ca2+ was approximately 0.6-0.7 microM for both the reactions.  相似文献   

6.
D C Hawkinson  T C Eames  R M Pollack 《Biochemistry》1991,30(45):10849-10858
Knowledge of the partitioning of the putative dienol intermediate (2) by steroid isomerase (KSI) (Hawkinson et al. 1991), in conjunction with various steady-state kinetic parameters, allows elucidation of the detailed free energy profile for the KSI-catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3). This free energy profile shows four kinetically significant energy barriers (substrate binding, the two chemical steps, and dissociation of product) that must be traversed upon conversion of 1 to 3. Thus, no single step of the catalytic cycle is cleanly rate-limiting. The source of the catalytic power of KSI is discussed via comparison of the free energy profile for the KSI-catalyzed isomerization with those for the acetate-catalyzed isomerization and the aqueous reaction at pH 7. Similarities between the energetics of the KSI-catalyzed and triosephosphate isomerase catalyzed reactions are also noted.  相似文献   

7.
Polyclonal antibodies, raised against cyclic AMP (cAMP) by the immunization of animals with a 2'-O-succinyl cAMP/bovine albumin conjugate, have been reported to be dependent upon the presence of calcium ion (Ca2+) for antigen binding. They also exhibit a major "bridge" effect whereby 2'-O-succinyl and 2'-O-acetyl derivatives are bound more avidly than the parent nucleotide. Since cAMP and these derivatives bind Ca2+ very weakly, they do not present substantially in the chelated form over the range of Ca2+ concentrations used. Thus direct antigen modification is excluded as an explanation for the observed ion dependence of the reaction. Instead, we propose a mechanism based on reaction coupling. The actual antigens are the Ca2+ chelates of these nucleotides, whose formation in the absence of antibody is rapid but not favored (as indicated by their weak association constants). When antibody is added, the chelates act as transient intermediates whose concentration remains low but which is replenished as they are consumed by antibody. The coupled reaction is driven by the antibody-antigen step which occurs more slowly but with a substantial gain in free energy. The reaction is limited by the availability of Ca2+. It also appears that the rabbit antibody-forming cell responds preferentially to the Ca(2+)-bound form of the 2'-O-succinyl cAMP/bovine albumin conjugate which may appear to be more "foreign" than the unbound form of the hapten containing the ubiquitous nucleotide cAMP.  相似文献   

8.
Rotenone-sensitive, uncoupler-insensitive, NADH-dependent respiration was demonstrated in osmotically inactive fragments of the mitochondrial inner-membrane obtained following high amplitude (spontaneous) swelling. This NADH-dependent respiration as well as mitochondrial ATPase activity was stimulated by ligands which are known to be transported by specific transporters/mechanisms. The ligands capable of this anomalous respiratory control included several intermediates of the citric acid cycle, besides non-metabolizable ligands including lactate, cations such as K+ and Ca2+. The interaction between NADH-dependent respiration and these ligands, as manifested by stimulation of respiration, was strongly ionic strength-dependent. The thermodynamic relationship between respiratory control and stimulation of transport ATPase by the relevant transportable ligands could also be demonstrated in the conventional (rat liver) microsomes. These experimental results offer a novel experimental base for search into an intra-membranous mechanism of energy transduction.  相似文献   

9.
Microprocessor-controlled changes of [free Ca2+] at the outer surface of the sarcoplasmic reticulum (SR) wrapped around individual myofibrils of a skinned canine cardiac Purkinje cell and aequorin bioluminescence recording were used to study the mechanism of Ca2+-induced release of Ca2+ from the SR. This Ca2+ release is triggered by a rapid increase of [free Ca2+] at the outer surface of the SR of a previously quiescent skinned cell. Ca2+-induced release of Ca2+ occurred under conditions that prevented any synthesis of ATP from ADP, was affected differentially by interventions that depressed the SR Ca2+ pump about equally, and required ionic conditions incompatible with all known Ca2+-releasing, uncoupled, partial reactions of the Ca2+ pump. Increasing the [free Ca2+]trigger up to an optimum increased the amount of Ca2+ released. A supraoptimum increase of [free Ca2+] trigger inactivated Ca2+-induced release of Ca2+, but partial inactivation was also observed at [free Ca2+] below that necessary for its activation. The amplitude of the Ca2+ release induced by a given increase of [free Ca2+] decreased when the rate of this increase was diminished. These results suggest that Ca2+-induced release of Ca2+ is through a channel across the SR membrane with time- and Ca2+-dependent activation and inactivation. The inactivating binding site would have a higher affinity for Ca2+ but a lower rate constant than the activating site. Inactivation appeared to be a first-order kinetic reaction of Ca2+ binding to a single site at the outer face of the SR with a Q10 of 1.68. The removal of inactivation was the slowest step of the cycle, responsible for a highly temperature-dependent (Q10 approximately 4.00) refractory period.  相似文献   

10.
L de Meis  G Inesi 《Biochemistry》1985,24(4):922-925
Sarcoplasmic reticulum ATPase is phosphorylated by ATP in the presence of calcium, with a consequent reduction of the affinity of the binding sites for calcium and dissociation of the divalent cation from the enzyme. ATPase phosphorylation with Pi, on the other hand, requires prior removal of calcium from the enzyme, indicating that the energy requirement for phosphorylation of the enzyme-calcium complex can be met by ATP but not by Pi. We find that when the energy yield of the Pi reaction with the enzyme is increased by the addition of dimethyl sulfoxide to the medium, ATPase phosphorylation with Pi occurs even in the presence of calcium, and the binding sites undergo a reduction in affinity with consequent dissociation of Ca2+ from the enzyme, in analogy to the effect of ATP. It is thereby demonstrated experimentally that an essential step in the coupling of catalytic and transport activities is an interdependence and mutual ligand exclusion of the phosphorylation and calcium sites, in which ATP does not play a direct role. An important difference between the effects of ATP and Pi is that the former produces dissociation of Ca2+ inside the vesicles as the result of advancement of the catalytic cycle in the forward direction, while Pi produces dissociation of calcium into the outer medium as a consequence of equilibration of enzyme states producing a shift in the reverse direction of the enzyme cycle. These observations demonstrate how equilibration of intermediate enzyme states determines extent and direction of overall reaction flow.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The thermodynamic change in the binding of Ca2+ to a mutant human lysozyme having an engineered Ca2+ binding site (Kuroki, R., Taniyama, Y., Seko, C., Nakamura, H., Kikuchi, M., and Ikehara, M. (1989) Proc. Natl. Acad. Sci. U. S. A. 86, 6903-6907) was analyzed by calorimetry and interpreted in terms of structural information obtained from x-ray crystallography. It was found that the enthalpic contribution for the Ca2+ binding reaction was small, driven primarily by entropy release (10 kcal/mol). This release of entropy was also observed in some organic chelators. Moreover, through the information of the tertiary structures of the apo- and holomutant lysozyme, it was confirmed that the entropy release (10 kcal/mol) upon the binding of Ca2+ arises primarily from the release of bound water molecules hydrating the free Ca2+. Previous studies of Ca2+ binding to proteins have involved significant changes in protein conformation. They can now be reevaluated to determine the contribution of conformational changes to Ca2+ binding. After removing the thermodynamic contribution of Ca2+ binding itself, it is found that upon the binding of Ca2+ the enthalpy change is negative but is almost compensated by the negative entropy change. The negative change in both enthalpy and entropy is characteristic of values seen in the thermodynamic change upon the folding of proteins.  相似文献   

12.
The independent pathway for Ca2+ efflux of rat liver mitochondria exhibits a sharp temperature and pH dependence. The Arrhenius plot displays a break at 18 degrees C, activation energy being about 117 kJ/mol below 18 degrees C and 59 kJ/mol above 18 degrees C. The pH profile is bell-shaped, with a broad optimum at pH 7.0. These properties of the efflux pathway, together with the membrane potential modulation recently described (Bernardi, P. and Azzone, G.F. (1983) Eur. J. Biochem. 134, 377-383), suggest an explanation for the phenomenon of rebounding Ca2+ transport. Addition of a Ca2+ pulse to respiring mitochondria causes (i) a phase of rapid Ca2+ uptake, leading to a decrease of extramitochondrial free Ca2+ to a lower level with respect to that maintained before Ca2+ addition, and (ii) a slower phase of net Ca2+ efflux, leading to restoration of the steady-state extramitochondrial free Ca2+ preceeding Ca2+ addition. Evidence is provided that the excess Ca2+ uptake is linked to transient inactivation of the efflux pathway due to membrane depolarization. Conversely, the efflux phase is linked to reactivation of the efflux pathway upon repolarization. The efflux component of the rebound cycle and the isolated efflux pathway exhibit similar dependence on temperature, pH and membrane potential.  相似文献   

13.
The transport of Na+ and Ca2+ ions in the cardiac Na(+)-Ca2+ exchanger can be described as separate events (Khananshvili, D. (1990) Biochemistry 29, 2437-2442). Thus, the Na(+)-Na+ and Ca(2+)-Ca2+ exchange reactions reflect reversible partial reactions of the transport cycle. The effect of diffusion potentials (K(+)-valinomycin) on different modes of the Na(+)-Ca2+ exchanger (Na(+)-Ca2+, Ca(2+)-Ca2+, and Na(+)-Na+ exchanges) were tested in reconstituted proteoliposomes, obtained from the Triton X-100 extracts of the cardiac sarcolemmal membranes. The initial rates of the Nai-dependent 45Ca-uptake (t = 1 s) were measured in EGTA-entrapped proteoliposomes at different voltages. At the fixed values of voltage [45 Ca]o was varied from 4 to 122 microM, and [Na]i was saturating (150 mM). Upon varying delta psi from -94 to +91 mV, the Vmax values were increased from 9.5 +/- 0.5 to 26.5 +/- 1.5 nmol.mg-1.s-1 and the Km from 17.8 +/- 2.5 to 39.1 +/- 5.2 microM, while the Vmax/Km values ranged from only 0.53 +/- 0.08 to 0.73 +/- 0.17 nmol.mg-1.s-1.microM-1. The equilibrium Ca(2+)-Ca2+ exchange was voltage sensitive at very low [Ca]o = [Ca]i = 2 microM, while at saturating [Ca]o = [Ca]i = 200 microM the Ca(2+)-Ca2+ exchange became voltage-insensitive. The rates of the equilibrium Na(+)-Na+ exchange appears to be voltage insensitive at saturating [Na]o = [Na]i = 160 mM. Under the saturating ionic conditions, the rates of the Na(+)-Na+ exchange were at least 2-3-fold slower than the Ca(2+)-Ca2+ exchange. The following conclusions can be drawn. (a) The near constancy of the Vmax/Km for Na(+)-Ca2+ exchange at different voltages is compatible with the ping-pong model proposed previously. (b) The effects of voltage on Vmax of Na(+)-Ca2+ exchange are consistent with the existence of a single charge carrying transport step. (c) It is not yet possible to clearly assign this step to the Na+ or Ca2+ transport half of the cycle although it is more likely that 3Na(+)-transport is a charge carrying step. Thus, the unloaded ion-binding domain contains either -2 or -3 charges (presumably carboxyl groups). (d) The binding of Na+ and Ca2+ appears to be weakly voltage-sensitive. The Ca(2+)-binding site may form a small ion-well (less than 2-3 A).  相似文献   

14.
Regulation of citric acid cycle by calcium   总被引:2,自引:0,他引:2  
The relationship of extramitochondrial Ca2+ to intramitochondrial Ca2+ and the influence of intramitochondrial free Ca2+ concentrations on various steps of the citric acid cycle were evaluated. Ca2+ was measured using the Ca2+ sensitive fluorescent dye fura-2 trapped inside the rat heart mitochondria. The rate of utilization of specific substrates and the rate of accumulation of citric acid cycle intermediates were measured at matrix free Ca2+ ranging from 0 to 1.2 microM. A change in matrix free Ca2+ from 0 to 0.3 microM caused a 135% increase in ADP stimulated oxidation of 0.6 mM alpha-ketoglutarate (K0.5 = 0.15 microM). In the absence of ADP and the presence of 0.6 mM alpha-ketoglutarate, Ca2+ (0.3 microM) increased NAD(H) reduction from 0 to 40%. On the other hand, when pyruvate (10 microM to 5 mM) was substrate, pyruvate dehydrogenase flux was insensitive to Ca2+ and isocitrate dehydrogenase was sensitive to Ca2+ only in the presence of added ADP. In separate experiments pyruvate dehydrogenase activation (dephosphorylation) was measured. Under the conditions of the present study, pyruvate dehydrogenase was found to be almost 100% activated at all levels of Ca2+, thus explaining the Ca2+ insensitivity of the flux measurements. However, if the mitochondria were incubated in the absence of pyruvate, with excess alpha-ketoglutarate and excess ATP, the pyruvate dehydrogenase complex was only 20% active in the absence of added Ca2+ and activity increased to 100% at 2 microM Ca2+. Activation by Ca2+ required more Ca2+ (K0.5 = 1 microM) than for alpha-ketoglutarate dehydrogenase. The data suggest that in heart mitochondria alpha-ketoglutarate dehydrogenase may be a more physiologically relevant target of Ca2+ action than pyruvate dehydrogenase.  相似文献   

15.
Some thermodynamic aspects of steady systems are considered. The time rates of changes, “flux”, of various thermodynamic quantities are formulated. In particular the free energy flux in the steady state, the difference between the free energy flux in the steady and time dependent states and the change in free energy flux upon transition between steady states are discussed. Equations are derived which exhibit the formal similarities and differences between the free energy flux and the conventional free energy change. The temperature dependence of the steady state rate is examined and conditions for “mastery” by a single step discussed. A brief discussion of the role ofrate in the coupling of exergonic and endergonic reactions is given.  相似文献   

16.
The molecular environment of Ca2+ translocating sites of skeletal muscle sarcoplasmic reticulum (SR) (Ca2+ + Mg2+)-ATPase has been studied by pulsed-laser excited luminescence of Eu3+ used as a Ca2+ analogue. Interaction of Eu3+ with SR was characterized by investigating its effect on partial reactions of the Ca2+ transport cycle. In native SR vesicles, Eu3+ was found to inhibit Ca2+ binding, phosphoenzyme formation, ATP hydrolysis activity and Ca2+ uptake in parallel fashion. The non-specific binding of Eu3+ to acidic phospholipids associated with the enzyme was prevented by purifying (Ca2+ + Mg2+)-ATPase and exchanging the endogenous lipids with a neutral phospholipid, dioleoylglycerophosphocholine. The results demonstrate that the observed inhibition of Ca2+ transport by Eu3+ is due to its binding to Ca2+ translocating sites. The 7F0----5D0 transition of Eu3+ bound to these sites was monitored. The non-Lorentzian nature of the excitation profile and a double-exponential fluorescence decay revealed the heterogeneity of the two sites. Measurement of fluorescence decay rates in H2O/D2O mixture buffers further distinguished the sites. The number of water molecules in the first co-ordination sphere of Eu3+ bound at transport sites were found to be 4 and 1.5. Addition of ATP reduced these numbers to zero and 0.6. These data show that the calcium ions in translocating sites are well enclosed by protein ligands and are further occluded down to zero or one water molecule of solvation during the transport process.  相似文献   

17.
Microcalorimetry and high performance liquid chromatography have been used to conduct a thermodynamic investigation of reactions catalyzed by anthranilate synthase, the enzyme located at the first step in the biosynthetic pathway leading from chorismate to tryptophan. One of the overall biochemical reactions catalyzed by anthranilate synthase is: chorismate(aq) + ammonia(aq) = anthranilate(aq) + pyruvate(aq) + H2O(l). This reaction can be divided into two partial reactions involving the intermediate 2-amino-4-deoxyisochorismate (ADIC): chorismate(aq) + ammonia(aq) = ADIC(aq) + H2O(l) and ADIC(aq) = anthranilate(aq) + pyruvate(aq). The native anthranilate synthase and a mutant form of it that is deficient in ADIC lyase activity but has ADIC synthase activity were used to study the overall ammonia-dependent reaction and the first of the above two partial reactions, respectively. Microcalorimetric measurements were performed on the overall reaction at a temperature of 298.15 K and pH 7.79. Equilibrium measurements were performed on the first partial (ADIC synthase) reaction at temperatures ranging from 288.15 to 302.65 K, and at pH values from 7.76 to 8.08. The results of the equilibrium and calorimetric measurements were analyzed in terms of a chemical equilibrium model that accounts for the multiplicity of ionic states of the reactants and products. These calculations gave thermodynamic quantities at the temperature 298.15 K and an ionic strength of zero for chemical reference reactions involving specific ionic forms. For the reaction: chorismate2-(aq) + NH4+(aq) = anthranilate-(aq) + pyruvate-(aq) + H+(aq) + H2O(l), delta rHmo = -(116.3 +/- 5.4) kJ mol-1. For the reaction: chorismate2-(aq) + NH4+(aq) = ADIC-(aq) + H2O(l), K = (20.3 +/- 4.5) and delta rHmo = (7.5 +/- 0.6) kJ mol-1. Thermodynamic cycle calculations were used to calculate thermodynamic quantities for three additional reactions that are pertinent to this branch point of the chorismate pathway. The quantities obtained in this study permit the calculation of the position of equilibrium of these reactions as a function of temperature, pH, and ionic strength. Values of the apparent equilibrium constants and the standard transformed Gibbs energy changes delta rG'mo under approximately physiological conditions are given.  相似文献   

18.
J R Petithory  W P Jencks 《Biochemistry》1986,25(16):4493-4497
The calcium adenosinetriphosphatase of sarcoplasmic reticulum, preincubated with Ca2+ on the vesicle exterior (cE X Ca2), reacts with 0.3-0.5 mM Mg X ATP to form covalent phosphoenzyme (E approximately P X Ca2) with an observed rate constant of 220 s-1 (pH 7.0, 25 degrees C, 100 mM KCl, 5 mM MgSO4, 23 microM free external Ca2+, intact SR vesicles passively loaded with 20 mM Ca2+). If the phosphoryl-transfer step were rate-limiting, with kf = 220 s-1, the approach to equilibrium in the presence of ADP, to give 50% EP and kf = kr, would follow kobsd = kf + kr = 440 s-1. The reaction of cE X Ca2 with 0.8-1.2 mM ATP plus 0.25 mM ADP proceeds to 50% completion with kobsd = 270 s-1. This result shows that phosphoryl transfer from bound ATP to the enzyme is not the rate-limiting step for phosphoenzyme formation from cE X Ca2. The result is consistent with a rate-limiting conformational change of the cE X Ca2 X ATP intermediate followed by rapid (greater than or equal to 1000 s-1) phosphoryl transfer. Calcium dissociates from cE X Ca2 X ATP with kobsd = 80 s-1 and ATP dissociates with kobsd = 120 s-1 when cE X Ca2 X ATP is formed by the addition of ATP to cE X Ca2. However, when E X Ca2 X ATP is formed in the reverse direction, from the reaction of E approximately P X Ca2 and ADP, Ca2+ dissociates with kobsd = 45 s-1 and ATP dissociates with kobsd = 35 s-1. This shows that different E X Ca2 X ATP intermediates are generated in the forward and reverse directions, which are interconverted by a conformational change.  相似文献   

19.
Zhan CG  Gao D 《Biophysical journal》2005,89(6):3863-3872
The geometries of the transition states, intermediates, and prereactive enzyme-substrate complex and the corresponding energy barriers have been determined by performing hybrid quantum mechanical/molecular mechanical (QM/MM) calculations on butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)- and (+)-cocaine. The energy barriers were evaluated by performing QM/MM calculations with the QM method at the MP2/6-31+G* level and the MM method using the AMBER force field. These calculations allow us to account for the protein environmental effects on the transition states and energy barriers of these enzymatic reactions, showing remarkable effects of the protein environment on intermolecular hydrogen bonding (with an oxyanion hole), which is crucial for the transition state stabilization and, therefore, on the energy barriers. The calculated energy barriers are consistent with available experimental kinetic data. The highest barrier calculated for BChE-catalyzed hydrolysis of (-)- and (+)-cocaine is associated with the third reaction step, but the energy barrier calculated for the first step is close to the highest and is so sensitive to the protein environment that the first reaction step can be rate determining for (-)-cocaine hydrolysis catalyzed by a BChE mutant. The computational results provide valuable insights into future design of BChE mutants with a higher catalytic activity for (-)-cocaine.  相似文献   

20.
The conformations of the transitory intermediates of the myosin ATPase occurring during the hydrolytic cycle, enzyme without ligand, enzyme-substrate complex and two different forms of enzyme-product complex, have been characterized in terms of numbers and classes of reactive thiol groups based on incorporation of radioactively labeled alkylation reagent. The techniques employed allowed this to be done under steady-state conditions in the presence of high ligand concentrations on intact myosin from rabbit fast skeletal muscles at low ionic strength where the protein is in the gel state as it is in muscle. The binding of a divalent cation (Mg2+ or Ca2+) nucleotide complex exposes thiol-1 as well as thiol-2 groups. The long-lived ATPase intermediate occurring at temperatures above 10 degrees C adopts the same conformation with Mg2+ and Ca2+ ions. This intermediate does not protect the thiol-1 and thiol-2 groups but exposes a number of thiol-3 groups which seem to be located distant from the active site. The conformation of the intermediate prevailing in the presence of ATP changes with lowering temperature below 10 degrees C and is identical with that found in the presence of ADP at 0 degree C indicating a change in the rate-limiting step of the hydrolytic cycle. In the absence of divalent cations no such temperature-dependent change in conformation was observed. Evaluation of the activation entropies shows that the structure of the long-lived intermediate occurring above 10 degrees C in the presence of Mg2+ ions goes through a transformation from low to high order at around 20 degrees C. In the case of the monovalent-cation-stimulated ATPase a constant activation energy of around 70 kJ/mol, typical of many enzyme reactions, was found over the entire temperature range from 0--35 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号