首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Myelin basic proteins (MBPs) are phosphoproteins of central and peripheral nervous system myelin. We studied the phosphorylation of mouse MBPs in vivo at three different stages of development (12, 30, and 50 days) and found age-related differences in the incorporation of 32P into MBPs. At all ages studied, significant amounts of 32P were found in the MBPs as early as 1 min after intracranial injection of isotope. Incorporation of radioactive phosphate into MBPs proceeded rapidly and the resultant specific radioactivity (SA) of 32P-labeled MBPs appeared to be related to the SA of the acid-soluble phosphate pool of myelin. Changes in the SA of the myelin acid-soluble phosphate pool were observed in a 30 min time course of labeling in vivo in 50-day mice. Coincident changes were observed in the SA of the MBPs. Similar but less pronounced changes were seen in the SA of the polyphosphoinositides (PPIs) indicating that the turnover of the PPI phosphate groups is slower than the MBP phosphates or that the PPI phosphates are drawn from additional or different pools than the MBP phosphates. The phosphorylation of MBPs in developmentally related myelin fractions is investigated in a comparison paper (J. B. Ulmer and P. E. Braun (1986) Dev. Biol. 117, 502-510).  相似文献   

2.
Examination of 15-day-old rabbit brain myelin proteins by sodium dodecyl sulfate-slab gel electrophoresis revealed the presence of a basic protein with a molecular weight of 21,000 (21K protein) which was not previously reported in this species. This protein exhibited characteristic bluish green color with amido black and gave an amino acid composition strikingly similar to large basic protein (LBP). It formed a line of identity with LBP when diffused against antiserum to chicken brain basic protein. The concentration of LBP (18.9 micrograms/mg of dry myelin) is 6-fold greater than that of the 21K protein(3.31 micrograms/mg of dry myelin) in rabbit brain myelin. After the intracerebral injection of [32P]orthophosphoric acid, both LBP and 21K protein were found to be phosphorylated. [32P]Phosphate in the purified preparations of these proteins was covalently linked by phosphoester bonds to serine and threonine residues. The specific radioactivity of the 21K protein (84,693 cpm/mg of protein) was not significantly higher than LBP (69,797 cpm/mg of protein).  相似文献   

3.
We have investigated the effect of chloroform on the phosphorylation of myelin basic proteins because tumor-promoting agents such as phorbol esters and chloroform are known to enhance the activity of protein kinase C. We report that the presence of chloroform, at a concentration known to enhance protein kinase C activity, stimulated the phosphorylation of myelin basic proteins 15-17 fold over control conditions. The phosphorylation of a 50 kiloDalton myelin protein was also stimulated but to a lesser extent. The concentration of chloroform required for the maximal phosphorylation of myelin basic proteins and the 50 kiloDalton protein was approximately 2% (v/v).  相似文献   

4.
—Purified myelin incorporated l -[14C]leucine and l -[14C]lysine into myelin proteins in an enzymatic process similar to that of renal brush border membranes. The system was not inhibited by cycloheximide or puromycin or by pretreatment with ribonuclease; the reaction was inhibited by cetophenicol. ATP was an effector, shifting the optimal pH from 7.2 to 8.3. In the presence of ATP, myelin was less dense in a sucrose gradient. Ammonia was released from the membrane during the incorporation of amino acids. Myelin preloaded with cold leucine did not incorporate [14C]leucine but did incorporate [14C]lysine; there was no cross inhibition between the two amino acids. The incorporation was into or onto proteins of the Wolfgram proteolipid fraction of myelin. The incorporation was of the high affinity type with a Km of 10?7m and was restricted to the natural amino acids.  相似文献   

5.
Myelin basic protein of rabbit brain (Mr = 18,200) was initially freed of the bulk of the nonphosphorylated species (mainly component 1) by Cm-cellulose chromatography at high pH. The remainder of the protein was subjected to peptic digestion at pH 6.00, which resulted in specific, essentially complete cleavage at several bonds (Phe-44--Phe-45, Phe-87--Phe-88, Leu-109--Ser-110, and Leu-151--Phe-152) and partial cleavage at the Tyr-14--Leu-15 bond. Gel filtration of the digest through Sephadex G-25 (fine) yielded three fractions, the first containing primarily peptides 1-44 and 45-87, the second peptides 15-44, 88-109, and 110-151, and the third peptides 1-14 and 152-168. Each fraction was chromatographed on Cm-cellulose at pH 8.2, and the resulting subfractions and partially purified peptides were analyzed for phosphoserine and phosphothreonine. Materials containing significant amounts of the phosphoamino acids were subsequently chromatographed on Cm-cellulose at pH 4.65, and the analyses for phosphoserine and phosphothreonine were repeated. The resulting purified peptic phosphopeptides were identified by amino acid analysis and tryptic peptide mapping. Comparison of the maps with those of the unphosphorylated counterparts located the tryptic phosphopeptides. These were recovered and their identities were established by amino acid analysis. In those cases where the phosphopeptide contained 2 Ser residues, the position of the phosphoserine was established by aminopeptidase M digestion. Five phosphorylation sites were found: Ser-7, Ser-56, Thr-96, Ser-113, and Ser-163. Only a small fraction of these sites was phosphorylated in the total basic protein, with values ranging from about 2 (ser-113) to 6% (Thr-96). With the possible exception of Ser-56, these sites are not the ones that have been reported to be phosphorylated in vitro by cyclic AMP-dependent protein kinase.  相似文献   

6.
Phosphorylation in vivo of four basic proteins of rat brain myelin   总被引:12,自引:3,他引:12       下载免费PDF全文
When rat brain myelin was examined by sodium dodecyl sulphate/polyacrylamideslab-gel electrophoresis followed by fluorography of the stained gel, it was found that a host of proteins of rat brain myelin were labelled 2, 4 and 24h after the intracerebral injection of H332PO4. Among those labelled were proteins migrating to the positions of myelin-associated glycoprotein, Wolfgram proteins, proteolipid protein, DM-20 and basic proteins. The four basic proteins with mol.wts. 21000, 18000 (large basic protein), 17000 and 14000 (small basic protein) were shown to be phosphorylated after electrophoresis in both acid-urea- and sodium dodecyl sulphate-containing gel systems followed by fluorography. The four basic proteins imparted bluish-green colour, after staining with Amido Black, which is characteristic of myelin basic proteins. The four basic proteins were purified to homogeneity. Fluorography of the purified basic proteins after re-electrophoresis revealed the presence of phosphorylated high-molecular-weight `polymers' associated with each basic protein. The amino acid compositions of the phosphorylated large basic protein and small basic proteins are compatible with the amino acid sequences. Proteins with mol.wts. 21000 and 17000 gave the expected amino acid composition of myelin basic proteins. Radiolabelled phosphoserine and phosphothreonine were identified after partial acid hydrolysis of the four purified basic proteins. The [32P]phosphate–protein bond in the basic protein was stable at an acidic pH but was readily hydrolysed at alkaline pH, as would be expected of phosphoester bonds involving both serine and threonine residues. Double-immunodiffusion analysis demonstrated that the four phosphorylated proteins showed complete homology when diffused against antiserum to a mixture of small and large basic proteins. Since the four basic proteins of rat brain myelin were phosphorylated both in vivo and in vitro it is postulated that the same protein kinase is responsible for their phosphorylation in both conditions.  相似文献   

7.
Abstract Cell contents of Clostridium sphenoides , labeled with [32P]orthophosphate under strict anaerobic conditions, were analyzed by two-dimensional gel electrophoresis. Autoradiography of these gels demonstrated the presence of at least 15 32P-labeled protein species, of which M r and iso-electric point were determined. Treatment of the radioactively labeled cell contents with alkaline phosphatase and acid phosphatase showed that all these proteins were modified by phosphorylation. These findings demonstrate for the first time the presence of phosphorproteins in a strictly anaerobic bacterium.  相似文献   

8.
9.
Phosphoprotein phosphatase (phosphoprotein phosphohydrolase EC 3.1.3.16) activity for myelin basic protein was found to be present in the myelin fraction of rat brain. The enzyme activity was in a latent form and solubilized by 0.2% Triton X-100 treatment with about 50% increase of activity. The cytosol fraction from bovine brain also had phosphoprotein phosphatase activity for myelin basic protein, which was resolved into at least two peaks of activity on DEAE-cellulose column chromatography. Myelin basic protein was the best substrate for both the solubilized myelin fraction and the cytosol enzymes among the substrate proteins tested. The Km values of the solubilized myelin fraction were 4.2 muM for myelin basic protein, 7.4 muM for arginine-rich histone, 8.0 muM for histone mixture and 14.3 muM for protamine, respectively.  相似文献   

10.
Previous work has suggested that myelin basic proteins are phosphorylated prior to their appearance in the myelin sheath (Ulmer, J. B. and Braun, P. E. (1984) Dev. Neurosci. 6, 345-355). In order to corroborate this finding we have examined the phosphorylation of myelin basic proteins in rat brain cell cultures containing 14-17% oligodendrocytes. Incorporation of 32P into the 14-, 17-, 18.5-, and 21.5-kDa myelin basic proteins was observed in cells incubated with 32P at 7, 14, and 21 days in culture. Myelin basic proteins in 14-day cells incorporated 32P linearly until at least 120 min after the addition of isotope. The apparent half-life of myelin basic protein phosphate groups was determined to be approximately 80 min in pulse-chase experiments. However, this value may be an overestimation due to the presence of significant levels of acid-soluble radioactivity in the cells throughout the chase period. The presence of dibutyryl cAMP or 8-bromo-cAMP in the incubation medium substantially inhibited the incorporation of 32P into the myelin basic proteins at all time points studied. The presence of dibutyryl cAMP in the chase medium in pulse-chase experiments resulted in an increase in the turnover rate of [32P] phosphate in the myelin basic proteins. These results indicate that cAMP decreases the phosphorylation state of myelin basic proteins in oligodendrocytes by inhibiting the phosphorylation and/or stimulating the dephosphorylation of myelin basic proteins.  相似文献   

11.
Using a genetic selection we identified mutants of the M. janaschii tyrosyl-tRNA synthetase that selectively charge an amber suppressor tRNA with para-propargyloxyphenylalanine in Escherichia coli. These evolved tRNA-synthetase pairs were used to site-specifically incorporate an alkynyl group into a protein, which was subsequently conjugated with fluorescent dyes by a [3+2]-cycloaddition reaction under mild reaction conditions.  相似文献   

12.
We have previously reported that the covalent attachment of phosphoinositides to myelin basic protein (MBP) occurs both in vivo and in vitro [Smith, R. A. et al. (1986) Biochemistry 25:2677-2681; Biochemistry 25:2682-2686; and Biochem. Biophys. Res. Comm. 316:426-432]. Phosphoinositidation of MBP was also detected when [32P] phosphoinositides were incubated with myelin pretreated with Triton X-100 and EGTA. Less than 10% of this covalent linkage of phosphoinositides to MBP survived after acidic treatment (0.1 N HCl at 37 degrees C for 10 min). MBP is predicted to lack sufficient hydrophobicity to bind to membranes as shown by analysis of its amino acid sequence for hydrophobic regions and thus its phosphoinositidation may provide an anchor for this purpose.  相似文献   

13.
We have studied the in vivo phosphorylation of clathrin-coated vesicle proteins from rat reticulocytes. The major 32P-labeled polypeptides of clathrin-coated vesicles isolated from metabolically labeled cells were the the 165-, 100-110-, and 50-kDa polypeptides of the assembly protein, the clathrin beta-light chain, and to a lesser extent the clathrin alpha-light chain. The phosphorylation of the assembled (particulate) and unassembled (soluble) pools of clathrin and assembly protein was compared by immunoprecipitating the respective protein complexes from particulate and soluble cell fractions. Although all the phosphorylated polypeptides were present in both fractions, the extent of labeling was protein and fraction specific: the apparent specific activities of the assembly protein 50-kDa polypeptide and clathrin light chain were higher in the unassembled pool, whereas those of the 100-110-kDa polypeptides were higher in the assembled pool. The amino acids and polypeptide fragments labeled in vivo appeared similar to those labeled in vitro.  相似文献   

14.
The two most basic charge isomers of myelin basic protein (BP), components 1 and 2 (C1 and C2), which presumably differ in the degree of deamidation, were purified from bovine BP by cation-exchange chromatography. Two additional specific types of posttranslational modifications were introduced into the purified isomers: (1) C-terminal arginine deficient derivatives of C1 and C2 were prepared by incubating the isomers with a carboxypeptidase, and (2) phosphorylated derivatives of C1 (1.6 and 1.7 mol of phosphate/mol of protein) were prepared by incubating C1 with the protein kinase from rabbit muscle. The ability of these charge isomers to increase the permeability of multilamellar vesicles composed of phosphatidylserine/phosphatidylcholine (1:11.5 w/w) and sphingomyelin/cholesterol/phosphatidic acid (1:1:0.2 w/w/w) was measured by monitoring the release of a water-soluble spin-label (tempocholine chloride) from the vesicles. The increase in vesicle permeability caused by BP was taken as a measure of the degree of perturbation of the bilayer by the protein, most likely by penetration partly into the bilayer. All classes of charge isomers (naturally occurring or generated in vitro) were more effective at increasing vesicle permeability than was poly(L-lysine), a polycation that only interacts electrostatically with the bilayer. Although C1 and C2 and their C-terminal-deficient derivatives did not differ in the amount of marker released, the phosphorylated derivative of C1 caused a smaller increase in vesicle permeability than did the other isomers, suggesting that phosphorylation had altered the ability of the protein to perturb the bilayer.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
A study was conducted on the in vivo incorporation of l -[14C]-serine into the lipids and proteins of the various subcellular fractions of the developing rat brain before and during the stage of active myelination. The total radioactivity in the various fractions at 12 days of age was higher than that at 3 days, while the radioactive specific activity was reversed. The specific activities of the proteins and lipids were higher at 3 days of age with the exception of the subcellular fraction containing myelin. At both ages the lipids of the various cellular fractions had similar specific activities, a finding that suggests a common source for lipid biosynthesis. Incorporation of radioactivity into the various phospholipids was in the following order: phosphatidyl serine > phosphatidyl ethanolamine > phosphatidal serine > sphingomyelin and phosphatidyl choline. Of all the phospholipids, the plasmalogens increased most in total radioactivity during the period when meylination was most active. Serine-containing phospholipids appear to be most tightly bound to proteins. The brain mitochrondrial fraction contained most of the phosphatidyl serine decarboxylase activity with some activity in the nuclei. Biosynthesis of phosphatdyil ethanolamine through decarboxylation of phosphatidyl serine could take place in rat brain. Four unidentified radioactive metabolites were found in the acid-soluble fraction in addition to l -[14C]serine.  相似文献   

17.
The existence of an endogenous protein kinase activity and protein phosphatase activity in myelin membrane from mammalian brain has now been well established. We found that under all conditions tested the myelin basic protein is almost the only substrate of the endogenous protein kinase in myelin of bovine brain. The protein kinase activity is stimulated by Ca2+ in the micromolar range. Optimal activity is reached at a free Ca2+ concentration of about 2 microM. Myelin membrane vesicles were prepared and then shown to be sealed by a light-scattering technique. After preloading with 45Ca2+, 86Rb+, or 22Na+, the self-diffusion (passive outflux) of these ions from myelin membrane vesicles was measured. Ionophores induced a rapid, concentration-dependent outflux of 80--90% of the cations, indicating that only a small fraction of the trapped ions was membrane bound. There was no difference in the diffusion rates of the three cations whether phosphorylated (about 1 mol phosphate per myelin basic protein) or non-phosphorylated vesicles were tested. In contrast, a small but significant decrease in permeability for Rb+ and Na+ was measured, when the vesicles were pretreated with ATP and Mg2+.  相似文献   

18.
A deoxyribonucleoprotein (DNP) complex has been isolated from Escherichia coli cells by chromatography on Sephadex G-200. The DNP complex contains phosphoproteins and the content of phosphorus bound to the DNP protein is 3 times higher than in cytoplasmic proteins not bound to DNA. These results have been confirmed by in vivo (32-P-KH2PO4) and in vitro (32-P-ATP) phosphorylation of E. coli DNA-binding proteins isolated by chromatography on DNA--cellulose.  相似文献   

19.
20.
Phosphorylation of polypeptides in membrane fractions from barley (Hordeum vulgare L. cv CM 72) roots was compared in in vitro and in vivo assays to assess the potential role of protein kinases in modification of membrane transport. Membrane fractions enriched in endoplasmic reticulum, tonoplast, and plasma membrane were isolated using sucrose gradients and the membrane polypeptides separated using sodium dodecyl sulfate polyacrylamide gel electrophoresis. When the membrane fractions were incubated with γ-[32P]ATP, phosphorylation occurred almost exclusively in the plasma membrane fraction. Phosphorylation of a band at 38 kilodaltons increased as the concentration of Mg2+ was decreased from millimolar to micromolar levels. Phosphorylation of bands at 125, 86, 58, 46, and 28 kilodaltons required millimolar Mg2+ concentrations and was greatly enhanced by Ca2+. When roots of intact plants were labeled with [32P]orthophosphate, polypeptides at approximately 135, 116, 90, 46 to 53, 32, 28, and 19 kilodaltons were labeled in the plasma membrane fraction and polypeptides at approximately 73, 66, and 48 kilodaltons were labeled in the tonoplast fraction. Treatment of the roots of intact plants with 150 millimolar NaCl resulted in increased phosphorylation of some polypeptides while treatment with 100 mm NaCl had no effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号