首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S H Chou  D E Wemmer  D R Hare  B R Reid 《Biochemistry》1984,23(10):2257-2262
We have synthesized both strands of a DNA duplex containing the consensus Pribnow promoter sequence TATAATG , flanked by GC base pairs to stabilize the ends of the helix. The stability of this duplex has been studied by using 1H nuclear magnetic resonance. The imino protons have been assigned by using the sequential nuclear Overhauser effect approach. Exchange rates have been monitored by using selective inversion recovery measurements. The helix is relatively unstable in the center of the AT-rich region even when surrounded by GC base pairs, and there is considerable asymmetry in the melting of the helix.  相似文献   

2.
The resonances of all the non-exchangeable protons (except 5'H and 5"H) of d(CGAAAAATCGG) + d(CCGATTTTTCG), a putatively bent DNA duplex, have been assigned using 1H two-dimensional nuclear magnetic resonance methods. The nuclear Overhauser effect data indicate an overall B-form structure for this double-helical DNA undecamer. However, several features of the NMR data such as some unusually weak C8/C6 proton to C1' proton NOE cross-peaks, the presence of relatively intense C2H to C1'H NOE cross-peaks, and unusual chemical shifts of some 2", 2', and 1' protons suggest a substantial perturbation of the helix structure at the junctions and along the length of the tract of A residues. These structural deviations are considered in terms of models of DNA bending.  相似文献   

3.
Aromatic proton resonances of proteins are notoriously difficult to assign. Through-bond correlation experiments are preferable over experiments that rely on through-space interactions because they permit aromatic chemical shift assignments to be established independently of the structure determination process. Known experimental schemes involving a magnetization transfer across the Cβ–Cγ bond in aromatic side chains either suffer from low efficiency for the relay beyond the Cδ position, use sophisticated 13C mixing schemes, require probe heads suitable for application of high 13C radio-frequency fields or rely on specialized isotopic labelling patterns. Novel methods are proposed that result in sequential assignment of all aromatic protons in uniformly 13C/15N labelled proteins using standard spectrometer hardware. Pulse sequences consist of routinely used building blocks and are therefore reasonably simple to implement. Ring protons may be correlated with β-carbons and, alternatively, with amide protons (and nitrogens) or carbonyls in order to take advantage of the superior dispersion of backbone resonances. It is possible to record spectra in a non-selective manner, yielding signals of all aromatic residues, or as amino-acid type selective versions to further reduce ambiguities. The new experiments are demonstrated with four different proteins with molecular weights ranging from 11 kDa to 23 kDa. Their performance is compared with that of (Hβ)Cβ(CγCδ)Hδ and (Hβ)Cβ(CγCδCɛ)Hɛ pulse sequences [Yamazaki et al. (1993) J Am Chem Soc 115:11054–11055]. Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

4.
Using two-dimensional isotropic mixing spectroscopy all 5'/5" proton resonances of the EcoRI restriction site DNA dodecamer [d(CGCGAATTCGCG)]2 have been assigned. This completes the previous assignments of 1'H to 4'H resonances of the deoxyribose spin systems (Hare et al., 1983). With mixing times of up to 500 ms, many of these resonances showed connectivities of 5'/5" protons in the two-dimensional isotropic mixing spectrum. Relying only on through-bond connectivities makes these assignments independent of assumptions about the conformation of the DNA oligonucleotide. The assignment of the 5'H/5"H resonances will allow the interpretation of intra- and interresidue NOEs to these protons, providing information about the DNA backbone conformation.  相似文献   

5.
The 31P chemical shifts of all 13 phosphates and the chemical shifts of nearly all of the non-exchangeable protons of a symmetrical 14 base pair lac pseudooperator DNA fragment have been assigned by regiospecific labeling with oxygen-17 and two-dimensional NMR techniques. At 22 degrees C, 8 of the 13 phosphorus resonances can distinctly be resolved while the remaining 5 resonances occur in two separate overlapping regions. The 31P chemical shifts of this particular 14 base pair oligonucleotide do not follow the general observation that the more internal the phosphate is located within the oligonucleotide sequence the more upfield the 31P resonance occurs, as shown from other 31P assignment studies. Failure of this general rule is believed to be a result of helical distortions that occur along the oligonucleotide double helix, on the basis of the analysis of Callidine [Callidine, C.R. (1982) J. Mol. Biol. 161, 343-352]. Notable exceptions to the phosphate position relationship are 5'-Py-Pu-3' dinucleotide sequences, which resonate at a lower field strength than expected in agreement with similar results as reported by Ott and Eckstein [Ott, J., & Eckstein, F. (1985) Biochemistry 24, 253]. A reasonable correlation exists between 31P chemical shifts values of the 14-mer and the helical twist sum function of Calladine. The most unusual 31P resonance occurs most upfield in the 31P spectrum, which has been assigned to the second phosphate position (5'-GpT-3') from the 5' end. This unusual chemical shift may be the result of the predicted large helical twist angle that occurs at this position in the 14-mer sequence. Further, it is believed that the large helical twist represents a unique structural feature responsible for optimum binding contact between lac repressor protein and this 14-mer lac pseudooperator segment. Assignments of proton resonances were made from two-dimensional 1H-1H nuclear Overhauser effect (NOESY) connectivities in a sequential manner applicable to right-handed B-DNA, in conjunction with two-dimensional homonuclear and heteronuclear J-correlated spectroscopies (1H-1H COSY and 31P-1H HETCOR). Most nonexchangeable base proton and deoxyribose proton (except for some unresolved H4', H5', and H5" protons) resonances were assigned.  相似文献   

6.
The ability of DNA-binding proteins to recognize their cognate sites in chromatin is restricted by the structure and dynamics of nucleosomal DNA, and by the translational and rotational positioning of the histone octamer. Here, we use six different pyrrole-imidazole polyamides as sequence-specific molecular probes for DNA accessibility in nucleosomes. We show that sites on nucleosomal DNA facing away from the histone octamer, or even partially facing the histone octamer, are fully accessible and that nucleosomes remain fully folded upon ligand binding. Polyamides only failed to bind where sites are completely blocked by interactions with the histone octamer. Removal of the amino-terminal tails of either histone H3 or histone H4 allowed these polyamides to bind. These results demonstrate that much of the DNA in the nucleosome is freely accessible for molecular recognition in the minor groove, and also support a role for the amino-terminal tails of H3 and H4 in modulating accessibility of nucleosomal DNA.  相似文献   

7.
A new program, Mapper, for semiautomatic sequence-specific NMR assignment in proteins is introduced. The program uses an input of short fragments of sequentially neighboring residues, which have been assembled based on sequential NMR connectivities and for which either the 13C and 13C chemical shifts or data on the amino acid type from other sources are known. Mapper then performs an exhaustive search for self-consistent simultaneous mappings of all these fragments onto the protein sequence. Compared to using only the individual mappings of the spectroscopically connected fragments, the global mapping adds a powerful new constraint, which results in resolving many otherwise intractable ambiguities. In an initial application, virtually complete sequence-specific assignments were obtained for a 110 kDa homooctameric protein, 7,8-dihydroneopterin aldolase from Staphylococcus aureus.  相似文献   

8.
The resonance of the C-2 proton of the distal histidine has been assigned in the 400 MHz 1H-NMR spectrum of soybean ozyleghemoglobin a. This resonance is subject to a very large ring current shift from the heme and occurs to high field of the residual HO2H peak. The pH dependence was measured from a series of nuclear Overhauser effect difference spectra over a range of pH values. The resonance moves to high field with decreasing pH and reflects titration of a one proton-dissociable group with pK 5.5. Resonances of the heme substituents and distal amino acid side-chains are also sensitive to this titration. Changes in ring-current shifts and nuclear Overhauser effects indicate that a conformational change occurs in the heme pocket upon titration of the pK 5.5 group. We propose that protonation of the distal histidine with pK 5.5 is accompanied by movement of the imidazole ring towards the heme normal. This movement would allow interaction between the ligated oxygen molecule and the protonated distal histidine at acid pH.  相似文献   

9.
J N Breg  R Boelens  A V George  R Kaptein 《Biochemistry》1989,28(25):9826-9833
The Arc repressor of bacteriophage P22 is a DNA binding protein that does not belong to any of the known classes of such proteins. We have undertaken a 1H NMR study of the protein with the aim of elucidating its three-dimensional structure in solution and its mode of binding of operator DNA. Here we present the 1H nuclear magnetic resonance (NMR) assignments of all backbone protons and most of the side-chain protons of Arc repressor. Elements of secondary structure have been identified on the basis of networks of characteristic sequential and medium-range nuclear Overhauser enhancements (NOEs). Two alpha-helical regions have been found in the peptide regions 16-29 and 35-45. The ends of the helices could not yet be firmly established and could extend to residue 31 for the first helix and to residue 49 for the second. Immediately before the first helix, between residues 8 and 14, a region is present with beta-sheet characteristics dominated by a close proximity of the alpha-protons of residues 9 and 13. Because of the dimeric nature of the protein there are still two possible ways in which the NOEs in the beta-sheet region can be interpreted. If the NOEs are intramonomer, this requires a tight turn involving residues 10-12. Alternatively, if the NOEs are intermonomer, then and antiparallel beta-sheet would be implicated comprising two strands of different Arc monomers. While the data presently do not allow an unambiguous choice between these two possibilities, some evidence is discussed that favors the latter (beta-sheet between monomers).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
DNA methylation is an essential epigenetic mark. Three classes of mammalian proteins recognize methylated DNA: MBD proteins, SRA proteins and the zinc-finger proteins Kaiso, ZBTB4 and ZBTB38. The last three proteins can bind either methylated DNA or unmethylated consensus sequences; how this is achieved is largely unclear. Here, we report that the human zinc-finger proteins Kaiso, ZBTB4 and ZBTB38 can bind methylated DNA in a sequence-specific manner, and that they may use a mode of binding common to other zinc-finger proteins. This suggests that many other sequence-specific methyl binding proteins may exist.  相似文献   

11.
Subtilin, a 32-amino acid peptide with potent antimicrobial activity, has been isolated from Bacillus subtilis ATCC6633. The chemical structure has been confirmed by the unambiguous sequence-specific assignment of its 1H NMR spectrum. Detailed NMR analysis revealed that subtilin is a rather flexible molecule; the only observed conformational contraints were those imposed by the cyclic structures created by the lanthionine and 3-methyllanthionine residues. These results suggest that in aqueous solution subtilin and the homologous peptide nisin have similar conformations.  相似文献   

12.
Ferredoxins are proteins which contain iron and inorganic sulfide and are capable of electron transport. They are found in a wide range of organisms, from anaerobic bacteria, to plants and mammals. Although NMR spectroscopy has been used to study ferredoxins since the 1970s, little important structural or biochemical information has resulted from these investigations. The major difficulty has been the effect of the paramagnetic iron-sulfur clusters on the peptide resonances, hindering nuclear Overhauser effect (NOE) studies and causing broad line widths. These effects are most pronounced on resonances arising from the nuclei closest to the iron-sulfur center. Unfortunately, these are likely to be the most interesting nuclei, as they report the events and geometry in the vicinity of the active sites. In this paper, the first direct assignment of beta-cysteinyl 13C resonances for any iron-sulfur protein is reported for the spectrum of Pseudomonas putida ferredoxin. These resonances are of special significance, as they arise from the atoms on the protein closest to the iron centers, with the exception of the directly bound cysteinyl sulfur atoms. In addition, cysteinyl and ring system 1H NMR resonance assignments are made for the spectra of P. putida ferredoxin and Azotobacter vinelandii ferredoxin I.  相似文献   

13.
14.
The ionization characteristics of the hydrogen-bonded His 12 N1 proton observed to titrate between 11 to 13 ppm in the nmr spectrum of ribonuclease A in H2O solution are compared with the ionization characteristics of the four histidine C2 protons in the enzyme. Comparison of the pKa's of the enzyme in H2O and D2O in the absence and presence of cytidine monophosphate (?5′, ?3′, and ?2′) inhibitors, line widths in the presence of Cu II at pH 3.6 and 5.6, and chemical shifts in the presence of AgNO3 permit a correlation of the exchangeable His 12 N1 proton with the active site histidine C2 proton exhibiting the lower ionization pKa. The histidines with pKa of 5.1 and 5.6 in ribonuclease A in the absence of salt are assigned in this study to His 12 and His 119, respectively.  相似文献   

15.
A consensus sequence has been derived for vertebrate topoisomerase II cleavage of DNA (Spitzner, J. R. and Muller, M. T. (1988) Nucleic Acid. Res. 16, 5533-5556). An independent sample of 65 topoisomerase II sites (obtained in the absence of topoisomerase II inhibitors) was analyzed and found to match the consensus sequence as well as enzyme sites determined in the presence of the anti-tumor drug 4'-(9-acridinyl-amino)-methanesulfon-m-anisidide (m-AMSA). As originally described, conventional application of the consensus sequence afforded accuracy in the prediction of the locations but not the frequencies of topoisomerase II cleavages. In the present report, we describe a new method which quantitatively discriminates sites from nonsites, called the 'matrix mean' method (the mean match of a site to the matrix of base proportions from the original consensus sequence derivation). Furthermore, we derived a second method, called the 'unique score' model, which predicts frequency of topoisomerase II activity at a cleavage site. In the unique score method both DNA strands of a site are examined to determine the total number of the consensus positions that match on at least one strand of a potential site. From the new data base of 65 topoisomerase II sites, cleavages were scored for relative cleavage strength. Linear regression analysis showed a significant (p less than 0.01) correlation between the unique score and cleavage strength. The study was extended to show that the unique score model accurately and quantitatively predicts topoisomerase II sites either in the absence or presence of m-AMSA using the same consensus sequence.  相似文献   

16.
Two-dimensional isotropic mixing spectroscopy has been used to confirm assignments of the deoxyribose sugar protons in the H NMR spectrum of the DNA oligonucleotides d(CGCGTTTTCGCG) and [d(GCCGTGGCCACGGC)]2. The broad-band decoupling sequence MLEV-16 was applied during the mixing period to induce isotropic coupling within the spin systems, resulting in net transfer of coherence throughout the coupled spin networks. Nearly all 1', 2', 2', 3', and 4' protons of a given nucleotide could be identified on the basis of through-bond scalar connectivities. In addition, in the hairpin, a number of connectivities to 5'/5' protons were found. The dependence of cross-peak intensity on the length of radio-frequency irradiation for several different coherence transfer orders is presented, and implications for optimization are discussed.  相似文献   

17.
We have identified a rice gene encoding a DNA-binding protein that specifically recognizes the telomeric repeat sequence TTTAGGG found in plants. This gene, which we refer to as RTBP1 (rice telomere-binding protein 1), encodes a polypeptide with a predicted molecular mass of 70 kDa. RTBP1 is ubiquitously expressed in various organs and binds DNA with two or more duplex TTTAGGG repeats. The predicted protein sequence includes a single domain at the C terminus with extensive homology to Myb-like DNA binding motif. The Myb-like domain of RTBP1 is very closely related to that of other telomere-binding proteins, including TRF1, TRF2, Taz1p, and Tbf1p, indicating that DNA-binding domains of telomere-binding proteins are well conserved among evolutionarily distant species. To obtain precise information on the sequence of the DNA binding site recognized by RTBP1, we analyzed the sequence-specific binding properties of the isolated Myb-like domain of RTBP1. The isolated Myb-like domain was capable of sequence-specific DNA binding as a homodimer. Gel retardation analysis with a series of mutated telomere probes revealed that the internal GGGTTT sequence in the two-telomere repeats is critical for binding of Myb-like domain of RTBP1, which is consistent with the model of the TRF1.DNA complex showing that base-specific contacts are made within the sequence GGGTTA. To the best of our knowledge, RTBP1 is the first cloned gene in which the product is able to bind double-stranded telomeric DNA in plants. Because the Myb-like domain appears to be a significant motif for a large class of proteins that bind the duplex telomeric DNA, RTBP1 may play important roles in plant telomere function in vivo.  相似文献   

18.
The use of new 1H-detected heteronuclear 1H-31P shift correlation experiments is demonstrated for oligonucleotides of 12 and 40 base pairs. The methods give unambiguous assignments of the 31P resonances and also permit identification of the C4' and C5' sugar protons. Use of the new methods enables one to make sequence-specific resonance assignments without reference to a known or assumed conformation of the DNA fragment.  相似文献   

19.
Summary We present ALPS (Assignment for Labelled Protein Spectra), a flexible computer program for the automatic assignment of backbone NMR resonances of 15N/13C-labelled proteins. The program constructs pseudoresidues from peak-picking lists of a set of two-dimensional triple resonance experiments and uses either a systematic search or a simulated annealing-based optimization to perform the assignment. This method has been successfully tested on two-dimensional triple resonance spectra of Rhodobacter capsulatus ferrocytochrome c 2 (116 amino acids).  相似文献   

20.
D J Patel  L Shapiro 《Biochimie》1985,67(7-8):887-915
We have investigated intermolecular interactions and conformational features of the netropsin complexes with d(G1-G2-A3-A4-T5-T6-C7-C8) duplex (AATT 8-mer) and the d(G1-G2-T3-A4-T5-A6-C7-C8) duplex (TATA 8-mer) by one and two-dimensional NMR studies in solution. We have assigned the amide, pyrrole and methylene protons of netropsin and the base and sugar H1' protons of the nucleic acid from an analysis of the nuclear Overhauser effect (NOESY) and correlated (COSY) spectra of the complex at 25 degrees C. The directionality of the observed distance-dependent NOEs demonstrates that the 8-mer helices remain right-handed and that the arrangement of concave and convex face protons of netropsin are retained in the complexes. The observed changes in NOE patterns and chemical shift changes on complex formation suggest small conformational changes in the nucleic acid at the AATT and TATA antibiotic binding sites and possibly the flanking G.C base pairs. We observe intermolecular NOEs between all three amide and both pyrrole protons on the concave face of the antibiotic and the minor groove adenosine H2 proton of the two central A4.T5 base pairs of the AATT 8-mer and TATA 8-mer duplexes. The concave face pyrrole protons of the antibiotic also exhibit NOEs to the sugar H1' protons of residues 5 and 6 in the AATT and TATA 8-mer complexes. We also detect intermolecular NOEs between the guanidino and propioamidino methylene protons at either end of netropsin and the adenosine H2 proton of the two flanking A3.T6 base pairs in the AATT 8-mer and T3.A6 base pairs in the TATA 8-mer duplexes. These studies establish a set of nine contacts between the concave face of the antibiotic and the minor groove AATT segment and TATA segment of the 8-mer duplexes in solution. The observed magnitude of the NOEs require that there be no intervening water molecules sandwiched between the concave face of the antibiotic and the minor groove of the DNA so that release of the minor groove spine of hydration is a prerequisite for netropsin complex formation. The observed differences in the netropsin amide proton chemical shifts in the AATT 8-mer and TATA 8-mer complexes suggest differences in the strength and/or type of intermolecular hydrogen bonds at the AATT and TATA binding sites.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号