首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have identified a direct physical interaction between the stress signaling p38alpha MAP kinase and the mitogen-activated protein kinases ERK1 and ERK2 by affinity chromatography and coimmunoprecipitation studies. Phosphorylation and activation of p38alpha enhanced its interaction with ERK1/2, and this correlated with inhibition of ERK1/2 phosphotransferase activity. The loss of epidermal growth factor-induced activation and phosphorylation of ERK1/2 but not of their direct activator MEK1 in HeLa cells transfected with the p38alpha activator MKK6(E) indicated that activated p38alpha may sequester ERK1/2 and sterically block their phosphorylation by MEK1.  相似文献   

2.
Early growth response gene (Egr-1) is a stress response gene activated by various forms of stress and growth factor signaling. We report that supraphysiologic concentrations of O(2) (hyperoxia) induced Egr-1 mRNA and protein expression in cultured alveolar epithelial cells, as well as in mouse lung in vivo. The contribution of the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK), p38 MAPK and PI3-kinase pathways to the activation of Egr-1 in response to hyperoxia was examined. Exposure to hyperoxia resulted in a rapid phosphorylation of ERK 1/2 kinases in mouse alveolar epithelial cells LA4. MEK inhibitor PD98059, but not inhibitors of p38 MAPK or PI3-kinase pathway, prevented Egr-1 induction by hyperoxia. The signaling cascade preceding Egr-1 activation was traced to epidermal growth factor receptor (EGFR) signaling. Hyperoxia is used as supplemental therapy in some diseases and typically results in elevated levels of reactive oxygen intermediates (ROI) in many lung cell types, the organ that receives highest O(2) exposure. Our results support a pathway for the hyperoxia response that involves EGF receptor, MEK/ERK pathway, and other unknown signaling components leading to Egr-1 induction. This forms a foundation for analysis of detailed mechanisms underlying Egr-1 activation during hyperoxia and understanding its consequences for regulating cell response to oxygen toxicity.  相似文献   

3.
Activation of the ERK mitogen-activated protein (MAP) kinase pathway has been implicated in the regulation of cell growth, differentiation and senescence. In this pathway, the MAP kinases ERK1/ERK2 are phosphorylated and activated by the dual-specificity kinases MEK1 and MEK2, which in turn are activated by serine phosphorylation by a number of MAP kinase kinase kinases. We report here the chromosomal localization of the human genes encoding the MAP kinase kinase isoforms MEK1 and MEK2. Using a combination of fluorescence in situ hybridization, somatic cell hybrid analysis, DNA sequencing and yeast artificial chromosome (YAC) clone analysis, we have mapped the MEK1 gene (MAP2K1) to chromosome 15q21. We also present evidence for the presence of a MEK1 pseudogene on chromosome 8p21. The MEK2 gene (MAP2K2) was mapped to chromosome 7q32 by fluorescence in situ hybridization and YAC clone analysis.  相似文献   

4.
Previous studies demonstrated that in vitro the protein kinase TAO2 activates MAP/ERK kinases (MEKs) 3, 4, and 6 toward their substrates p38 MAP kinase and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK). In this study, we examined the ability of TAO2 to activate stress-sensitive MAP kinase pathways in cells and the relationship between activation of TAO2 and potential downstream pathways. Over-expression of TAO2 activated endogenous JNK/SAPK and p38 but not ERK1/2. Cotransfection experiments suggested that TAO2 selectively activates MEK3 and MEK6 but not MEKs 1, 4, or 7. Coimmunoprecipitation demonstrated that endogenous TAO2 specifically associates with MEK3 and MEK6 providing one mechanism for preferential recognition of MEKs upstream of p38. Sorbitol, and to a lesser extent, sodium chloride, Taxol, and nocodazole increased TAO2 activity toward itself and kinase-dead MEKs 3 and 6. Activation of endogenous TAO2 during differentiation of C2C12 myoblasts paralleled activation of p38 but not JNK/SAPK, consistent with the idea that TAO2 is a physiological regulator of p38 under certain circumstances.  相似文献   

5.
Protein kinase Cdelta (PKCdelta) is an important regulator of apoptosis in epidermal keratinocytes. However, little information is available regarding the downstream kinases that mediate PKCdelta-dependent keratinocyte death. This study implicates p38delta mitogen-activated protein kinase (MAPK) as a downstream carrier of the PKCdelta-dependent death signal. We show that coexpression of PKCdelta with p38delta produces profound apoptosis-like morphological changes. These morphological changes are associated with increased sub-G(1) cell population, cytochrome c release, loss of mitochondrial membrane potential, caspase activation, and PARP cleavage. This death response is specific for the combination of PKCdelta and p38delta and is not produced by replacing PKCdelta with PKCalpha or p38delta with p38alpha. A constitutively active form of MEK6, an upstream activator of p38delta, can also produce cell death when coupled with p38delta. In addition, concurrent p38delta activation and extracellular signal-regulated kinase 1/2 (ERK1/2) inactivation are required for apoptosis. Regarding this inverse regulation, we describe a p38delta-ERK1/2 complex that may coordinate these changes in activity. We further show that this p38delta-ERK1/2 complex relocates into the nucleus in response to PKCdelta expression. This regulation appears to be physiological, since H(2)O(2), a known inducer of keratinocyte apoptosis, promotes identical PKCdelta and p38delta-ERK1/2 activity changes, leading to similar morphological changes.  相似文献   

6.
A signaling cascade that includes protein kinase C (PKC), Ras, and MEKK1 regulates involucrin (hINV) gene expression in epidermal keratinocytes (Efimova, T., LaCelle, P., Welter, J. F., and Eckert, R. L. (1998) J. Biol. Chem. 273, 24387-24395 and Efimova, T., and Eckert, R. L. (2000) J. Biol. Chem. 275, 1601-1607). Because signal transfer downstream of MEKK1 may involve several MAPK kinases (MEKs), it is important to evaluate the regulatory role of each MEK isoform. In the present study we evaluate the role of MEK6 in transmitting this signal. Constitutively active MEK6 (caMEK6) increases hINV promoter activity and increases endogenous hINV levels. The caMEK6-dependent increase in gene expression is inhibited by the p38 MAPK inhibitor, SB203580, and is associated with a marked increase in p38alpha MAPK activity; JNK and ERK kinases are not activated. In addition, hINV gene expression is inhibited by dominant-negative p38alpha and increased when caMEK6 and p38alpha are co-expressed. caMEK6 also activates p38delta, but p38delta inhibits the caMEK6-dependent activation. These results suggest that MEK6 increases hINV gene expression by regulating the balance between activation of p38alpha, which increases gene expression, and p38delta, which decreases gene expression.  相似文献   

7.
8.
Spatial regulation of ERK1/2 MAP kinases is an essential yet largely unveiled mechanism for ensuring the fidelity and specificity of their signals. Mxi2 is a p38alpha isoform with the ability to bind ERK1/2. Herein we show that Mxi2 has profound effects on ERK1/2 nucleocytoplasmic distribution, promoting their accumulation in the nucleus. Downregulation of endogenous Mxi2 by RNAi causes a marked reduction of ERK1/2 in the nucleus, accompanied by a pronounced decline in cellular proliferation. We demonstrate that Mxi2 functions in nuclear shuttling of ERK1/2 by enhancing the nuclear accumulation of both phosphorylated and unphosphorylated forms in the absence of stimulation. This process requires the direct interaction of both proteins and a high-affinity binding of Mxi2 to ERK-binding sites in nucleoporins, In this respect, Mxi2 acts antagonistically to PEA15, displacing it from ERK1/2 complexes. These results point to Mxi2 as a key spatial regulator for ERK1/2 and disclose an unprecedented stimulus-independent mechanism for ERK nuclear import.  相似文献   

9.
Recently, we have shown that autocrine transforming growth factor-alpha (TGF-alpha) controls the expression of integrin alpha2, cell adhesion to collagen IV and motility in highly progressed HCT116 colon cancer cells (Sawhney, R. S., Zhou, G-H. K., Humphrey, L. E., Ghosh, P., Kreisberg, J. I., and Brattain, M. G. (2002) J. Biol. Chem. 277, 75-86). We now report that expression of basal integrin alpha2 and its biological effects are controlled by constitutive activation of the extracellular signal-regulated/mitogen-activated protein kinase (ERK/MAPK) pathway. Treatment of cells with selective mitogen-activated protein kinase kinase (MEK) inhibitors PD098059 and U0126 showed that integrin alpha2 expression, cell adhesion, and activation of ERK are inhibited in a parallel concentration-dependent fashion. Moreover, autocrine TGF-alpha-mediated epidermal growth factor receptor activation was shown to control the constitutive activation of the ERK/MAPK pathway, since neutralizing antibody to the epidermal growth factor receptor was able to block basal ERK activity. TGF-alpha antisense-transfected cells also showed attenuated activation of ERK. Using a real time electric cell impedance sensing technique, it was shown that ERK-dependent integrin alpha2-mediated cell micromotion signaling is controlled by autocrine TGF-alpha. Thus, this study implicates ERK/MAPK signaling activated by endogenous TGF-alpha as one of the mechanistic features controlling metastatic spread.  相似文献   

10.
Extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2) are essential components of pathways through which signals received at membrane receptors are converted into specific changes in protein function and gene expression. As with other members of the mitogen-activated protein (MAP) kinase family, ERK1 and ERK2 are activated by phosphorylations catalyzed by dual-specificity protein kinases known as MAP/ERK kinases (MEKs). MEKs exhibit stringent specificity for individual MAP kinases. Indeed, MEK1 and MEK2 are the only known activators of ERK1 and ERK2. ERK2 small middle dotMEK1/2 complexes can be detected in vitro and in vivo. The biochemical nature of such complexes and their role in MAP kinase signaling are under investigation. This report describes the use of a yeast two-hybrid screen to identify point mutations in ERK2 that impair its interaction with MEK1/2, yet do not alter its interactions with other proteins. ERK2 residues identified in this screen are on the surface of the C-terminal domain of the kinase, either within or immediately preceding alpha-helix G, or within the MAP kinase insert. Some mutations identified in this manner impaired the two-hybrid interaction of ERK2 with both MEK1 and MEK2, whereas others had a predominant effect on the interaction with either MEK1 or MEK2. Mutant ERK2 proteins displayed reduced activation in HEK293 cells following epidermal growth factor treatment, consistent with their impaired interaction with MEK1/2. However, ERK2 proteins containing MEK-specific mutations retained kinase activity, and were similar to wild type ERK2 in their activation following overexpression of constitutively active MEK1. Unlike wild type ERK2, proteins containing MEK-specific point mutations were constitutively localized in the nucleus, even in the presence of overexpressed MEK1. These data suggest an essential role for the MAP kinase insert and residues within or just preceding alpha-helix G in the interaction of ERK2 with MEK1/2.  相似文献   

11.
12.
13.
ERK1/2 (extracellular-signal-regulated kinase 1/2) MAPKs (mitogen-activated protein kinases) are tightly regulated by the cellular microenvironment in which they operate. Mxi2 is a p38α splice isoform capable of binding to ERK1/2 and ensuring their translocation to the nucleus. Therein Mxi2 sustains ERK1/2 phosphorylation levels and, as a consequence, ERK1/2 nuclear signals are enhanced. However, the molecular mechanisms underlying this process are still unclear. In the present study, we show that Mxi2 prevents nuclear but not cytoplasmic phosphatases from binding to and dephosphorylating ERK1/2, disclosing an unprecedented mechanism for the spatial regulation of ERK1/2 activation. We also demonstrate that the kinetics of ERK1/2 extranuclear signals can be significantly altered by artificially tethering Mxi2 to the cytoplasm. In this case, Mxi2 abolishes ERK1/2 inactivation by cytoplasmic phosphatases and potentiates ERK1/2 functions at this compartment. These results highlight Mxi2 as a key spatial regulator of ERK1/2 functions, playing a pivotal role in the balance between ERK1/2 nuclear and cytoplasmic signals.  相似文献   

14.
15.
Activation of the mitogen-activated protein kinase pathway represented by extracellular signal-regulated kinases (ERK1/2) and activation of the upstream kinase (MEK1) are critical events for growth factor signal transduction. c-Src has been proposed as a common mediator for these signals in response to both G protein-coupled receptors (GPCRs) and tyrosine kinase-coupled receptors (TKRs). Here we show that the GPCR kinase-interacting protein 1 (GIT1) is a substrate for c-Src that associates with MEK1 in vascular smooth-muscle cells and human embryonic kidney 293 cells. GIT1 binding via coiled-coil domains and a Spa2 homology domain is required for sustained activation of MEK1-ERK1/2 after stimulation with angiotensin II and epidermal growth factor. We propose that GIT1 serves as a scaffold protein to facilitate c-Src-dependent activation of MEK1-ERK1/2 in response to both GPCRs and TKRs.  相似文献   

16.
Indian hedgehog (Ihh) is produced by growth plate pre-hypertrophic chondrocytes, and is an important regulator of endochondral ossification. However, little is known about the regulation of Ihh in chondrocytes. We have examined the role of integrins and mitogen-activated protein (MAP) kinases in Ihh mRNA regulation in CFK-2 chondrocytic cells. Cells incubated with the beta1-integrin blocking antibody had decreased Ihh mRNA levels, which was accompanied by decreases of activated extracellular signal-regulated kinases (ERK1/2) and activated p38 MAPK. Ihh mRNA levels were also inhibited by U0126, a specific MEK1/2 inhibitor, or SB203580, a specific p38 MAPK inhibitor. Cells transfected with constitutively active MEK1 or MKK3 had increased Ihh mRNA levels, which were diminished by dominant-negative MEK1, p38alpha or p38beta. Stimulation of the PTH1R with 10(-8) M rPTH (1-34) resulted in dephosphorylation of ERK1/2 that was evident within 15 min and sustained for 1 h, as well as transient dephosphorylation of p38 MAPK that was maximal after 25 min. PTH stimulation decreased Ihh mRNA levels, and this effect was blocked by transfecting the cells with constitutively active MEK1 but not by MKK3. These studies demonstrated that activation of ERK1/2 or p38 MAPK increased Ihh mRNA levels. Stimulation of the PTH1R or blocking of beta1-integrin resulted in inhibition of ERK1/2 and p38 MAPK and decreased levels of Ihh mRNA. Our data demonstrate the central role of MAPK in the regulation of Ihh in CFK-2 cells.  相似文献   

17.
18.
19.
Inflammatory bowel diseases (IBD)--Crohn's disease and ulcerative colitis--are relapsing chronic inflammatory disorders which involve genetic, immunological, and environmental factors. The regulation of TNF-alpha, a key mediator in the inflammatory process in IBD, is interconnected with mitogen-activated protein kinase pathways. The aim of this study was to characterize the activity and expression of the four p38 subtypes (p38alpha-delta), c-Jun N-terminal kinases (JNKs), and the extracellular signal-regulated kinases (ERK)1/2 in the inflamed intestinal mucosa. Western blot analysis revealed that p38alpha, JNKs, and ERK1/2 were significantly activated in IBD, with p38alpha showing the most pronounced increase in kinase activity. Protein expression of p38 and JNK was only moderately altered in IBD patients compared with normal controls, whereas ERK1/2 protein was significantly down-regulated. Immunohistochemical analysis of inflamed mucosal biopsies localized the main expression of p38alpha to lamina propria macrophages and neutrophils. ELISA screening of the supernatants of Crohn's disease mucosal biopsy cultures showed that incubation with the p38 inhibitor SB 203580 significantly reduced secretion of TNF-alpha. In vivo inhibition of TNF-alpha by a single infusion of anti-TNF-alpha Ab (infliximab) resulted in a highly significant transient increase of p38alpha activity during the first 48 h after infusion. A significant infliximab-dependent p38alpha activation was also observed in THP-1 myelomonocytic cells. In human monocytes, infliximab enhanced TNF-alpha gene expression, which could be inhibited by SB 203580. In conclusion, p38alpha signaling is involved in the pathophysiology of IBD.  相似文献   

20.
Cell adhesion and spreading depend on activation of mitogen-activated kinase, which in turn is regulated both by growth factor and integrin signaling. Growth factors, such as epidermal growth factor, are capable of activating Ras and Raf, but integrin signaling is required to couple Raf to MEK and MEK to extracellular signal-regulated protein kinase (ERK). It was previously shown that Rac-p21-activated kinase (PAK) signaling regulated the physical association of MEK1 with ERK2 through phosphorylation sites in the proline-rich sequence (PRS) of MEK1. It was also shown that activation of MEK1 and ERK by integrins depends on PAK phosphorylation of S298 in the PRS. Here we report a novel MEK1-specific regulatory feedback mechanism that provides a means by which activated ERK can terminate continued PAK phosphorylation of MEK1. Activated ERK can phosphorylate T292 in the PRS, and this blocks the ability of PAK to phosphorylate S298 and of Rac-PAK signaling to enhance MEK1-ERK complex formation. Preventing ERK feedback phosphorylation on T292 during cellular adhesion prolonged phosphorylation of S298 by PAK and phosphorylation of S218 and S222, the MEK1 activating sites. We propose that activation of ERK during adhesion creates a feedback system in which ERK phosphorylates MEK1 on T292, and this in turn blocks additional S298 phosphorylation in response to integrin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号