首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Randomly amplified polymorphic DNA (RAPD) variation in populations of the koala, Phascolarctos cinereus, was investigated, revealing significant differences in the level of diversity between southern and northern regions of eastern Australia. Of the 20 polymorphic RAPD markers identified in koalas, 4-7 were polymorphic in southern populations, while 12-17 were polymorphic in northern populations. Analysis of molecular variance revealed a significant difference in the estimated variance between koalas from northern and those from southern regions (P < 0.001), where populations from the north were greater than twice as variable as their southern cousins. The total genetic diversity observed was attributed to regional differences (30.91%), population differences within a region (11.77%), and differences among individuals within a population (57.32%). For the within-region analyses, a large proportion of the genetic diversity was attributable to individual differences within a population, 80.34% for the north and 91.23% for the south. These results demonstrate that RAPD markers are useful for determining population structure among koalas.  相似文献   

2.
Genetic variation and clonal diversity of three natural populations of the rare, highly clonal marsh herb Caldesia grandis Samuelsson were investigated using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Both of the markers worked effectively in clone identification of C. grandis. RAPD markers detected more diversity than ISSR markers in the three populations examined. Of the 60 RAPD primers screened, seven produced highly reproducible bands. Using these primers, a total of 61 DNA fragments were generated with 52 (85.25%) being polymorphic indicating considerable genetic variation at the species level. Analysis of molecular variance (AMOVA) showed that a large proportion of genetic variation (81.5%) resided within populations, while only a small proportion (18.5%) resided among populations. With the use of 52 polymorphic RAPD markers, we were able to identify 127 genets among 342 samples from three populations. The proportion of distinguishable genets (PD: mean 0.37), Simpson's diversity index (D: mean 0.91), and evenness (E: mean 0.78) exhibited high levels of clonal diversity compared to other clonal plants. These results imply that sexual reproduction has played an important role at some time during the history of these populations. Nevertheless, the high level of diversity could have been also partially generated from somatic mutations, although this is unlikely to account for the high diversity generally found among C. grandis genets.  相似文献   

3.
4.
Metal-contaminated sites can occur naturally in serpentine outcrops or as consequence of anthropogenic activities, such as mining deposits, aerial fallout from smelters and industrial processes. Serpentine outcrops are characterized by high levels of nickel, cobalt and chromium and present a typical vegetation which includes endemisms and plants which also live in uncontaminated soils. These latter metal-tolerant populations provide the opportunity to investigate the first steps in the differentiation of plant populations under severe selection pressure and to select plants to be used in the phytoremediation of industrially contaminated soils. In this report eight populations of Silene paradoxa L. (Caryophyllaceae) growing in copper mine deposits, in serpentine outcrops or in noncontaminated soil in central Italy, were analysed using random amplified polymorphic DNA (RAPD) markers to investigate the pattern of genetic variation. The genetic diversity observed in populations at copper mine deposits was found to be at least as high as that of the neighbouring serpentine populations. Analysis of molecular variance (AMOVA) of the RAPD markers gave high statistical significance to the groupings of populations according: (i) with their geographical location; and (ii) with the metals present in the soil of origin (copper vs. nickel), indicating that RAPD markers detected a polymorphism related to the soil contamination by copper. Finally, two RAPD bands exclusive to copper-tolerant populations were identified.  相似文献   

5.
Genetic variation within and between five populations of Oryza granulata from two regions of China was investigated using RAPD (random amplified polymorphic DNA) and ISSR (inter-simple sequence repeat amplification) markers. Twenty RAPD primers used in this study amplified 199 reproducible bands with 61 (30.65%) polymorphic; and 12 ISSR primers amplified 113 bands with 52 (46.02%) polymorphic. Both RAPD and ISSR analyses revealed a low level of genetic diversity in wild populations of O. granulata. Furthermore, analysis of molecular variance (AMOVA) was used to apportion the variation within and between populations both within and between regions. As the RAPD markers revealed, 73.85% of the total genetic diversity resided between the two regions, whereas only 19.45% and 6.70% were present between populations within regions and within a population respectively. Similarly, it was shown by ISSR markers that a great amount of variation (49.26%) occurred between the two regions, with only 38.07% and 12.66% between populations within regions and within a population respectively. Both the results of a UPGMA cluster, based on Jaccard coefficients, and pairwise distance analysis agree with that of the AMOVA partition. This is the first report of the partitioning of genetic variability within and among populations of O. granulata at the DNA level, which is in general agreement with a recent study on the same species in China using allozyme analysis. Our results also indicated that the percentage of polymorphic bands (PPB) detected by ISSR is higher than that detected by RAPD. It seems that ISSR is superior to RAPD in terms of the polymorphism detected and the amplification reproducibility. Received: 29 March 2000 / Accepted: 15 May 2000  相似文献   

6.
Red clover is an important forage legume species for temperate regions and very little is known about the genetic organization of its breeding populations. We used random amplified polymorphic DNA (RAPD) genetic markers to address the genetic diversity and the distribution of variation in 20 breeding populations and cultivars from Chile, Argentina, Uruguay, and Switzerland. Genetic distances were calculated for all possible pairwise combinations. A high level of polymorphism was found and the proportion of polymorphic loci across populations was 74.2%. A population derived from a non-certified seedlot displayed a higher proportion of polymorphic loci than its respective certified seedlot. Gene diversity values and population genetics parameters suggest that the populations analyzed are diverse. An analysis of molecular variance (AMOVA) revealed that the largest proportion of variation (80.4%) resides at the within population level. RAPD markers are a useful tool for red clover breeding programs. A dendrogram based on genetic distances divided the breeding populations analyzed into three distinct groups. The amount and partition of diversity observed can be of value in identifying the populations that parents of synthetic cultivars are derived from and to exploit the variation available in the populations analyzed.  相似文献   

7.
D Bai  J Brandle  R Reeleder 《Génome》1997,40(1):111-115
Genetic diversity within North American ginseng (Panax quinquefolius L.) grown in Ontario was investigated at the DNA level using the randomly amplified polymorphic DNA (RAPD) method via the polymerase chain reaction (PCR). A total of 420 random decamers were initially screened against DNA from four ginseng plants and 78.8% of them generated RAPD fragments. Thirty-six of the decamers that generated highly repeatable polymorphic RAPD markers were selected for further RAPD analysis of the ginseng population. With these primers, 352 discernible DNA fragments were produced from DNA of 48 ginseng plants, corresponding to an average of 9.8 fragments per primer, of which over 45% were polymorphic. The similarity coefficients among the DNA of ginseng plants analyzed were low, ranging from 0.149 to 0.605 with a mean of 0.412, indicating that a high degree of genetic diversity exists in the ginseng population. Lower levels of genetic diversity were detected among 3-year-old ginseng plants selected on the basis of greater plant height than among the plants randomly selected from the same subpopulation or over the whole population, suggesting that genetic factors at least partly contribute to morphological variation within the ginseng population and that visual selection can be effective in identifying the genetic differences. The significance of a high degree of genetic variation in the ginseng population on its potential for improvement by breeding is also discussed.  相似文献   

8.
A method for estimating and comparing population genetic variation using random amplified polymorphic DNA (RAPD) profiling is presented. An analysis of molecular variance (AMOVA) is extended to accomodate phenotypic molecular data in diploid populations in Hardy-Weinberg equilibrium or with an assumed degree of selfing. We present a two step strategy: 1) Estimate RAPD site frequencies without preliminary assumptions on the unknown population structure, then perform significance testing for population substructuring. 2) If population structure is evident from the first step, use this data to calculate better estimates for RAPD site frequencies and sub-population variance components. A nonparametric test for the homogeneity of molecular variance (HOMOVA) is also presented. This test was designed to statistically test for differences in intrapopulational molecular variances (heteroscedasticity among populations). These theoretical developments are applied to a RAPD data set in Vaccinium macrocarpon (American cranberry) using small sample sizes, where a gradient of molecular diversity is found between central and marginal populations. The AMOVA and HOMOVA methods provide flexible population analysis tools when using data from RAPD or other DNA methods that provide many polymorphic markers with or without direct allelic data.  相似文献   

9.
Genetic variation and structure of six natural populations of Lepidium draba L. from Eastern Anatolia were assessed using random amplified polymorphic DNA (RAPD) markers. For RAPD analysis, 12 primers generated 218 reproducible bands across the six populations analyzed, of which 73 bands (33.3%) were polymorphic. The mean Nei’s gene diversity value for all six populations was 0.1771. Shannon’s information index varied with population (0.2278–0.3082), averaging 0.2608. Analysis of molecular variance (AMOVA) showed that genetic diversity was greater within populations (58.66%) than among populations (30.68%). In addition, the variation between groups was 10.33%. The genetic differentiation among populations (G ST) was 0.3210, indicating that most genetic diversity occurs within populations. Gene flow (Nm) was low, at only 0.5288.  相似文献   

10.
The molecular variability among 10 populations of Spodoptera frugiperda (J.E. Smith), collected from maize, Zea mays L., or cotton Gossypium hirsutum L. crops located at distinctive geographical regions in Brazil, was assessed through random amplification of polymorphic DNA (RAPD)-polymerase chain reaction (PCR). In total, 208 RAPD markers were evaluated, and 98% of them were polymorphic. The mean genetic similarity was 0.6621 and 0.2499 by the Simple Matching and Jaccard matrices, respectively. In general, the unweighted pair-group method with arithmetic average dendrograms separated the populations into clusters related to the geographical origin of the samples. No branch of the dendrograms underpinning a molecular association of S. frugiperda has been identified to either of the two host plants. The molecular variance analysis showed that 18 and 82% of the genetic variation was distributed among and within the groups of populations, respectively. The principal coordinate analysis reinforced the pattern of population clustering found with the unweighted pair-group method with arithmetic average method. These results suggest the occurrence of considerable gene flow between S. frugiperda populations from maize and cotton fields located in the same region in Brazil. Therefore, for an effective management of this pest, there is an urgent need for a better understanding of the gene flow of S. frugiperda populations associated to different host plants along the distribution range of this pest over time in a specific cropping system.  相似文献   

11.
We developed a combined molecular and morphological approach to unravel complex variation at low taxonomic levels, exemplified by some arctic members of Potentilla. Twenty-one populations from Svalbard were analyzed for random amplified polymorphic DNAs (RAPDs) and 64 morphological characters to test the hypotheses that (1) the P. nivea complex (section Niveae) consists of three taxa (P. chamissonis, P. insularis, and P. nivea), (2) three "eco-morphotypes" in P. pulchella (section Multifidae) should be considered different taxa, and (3) P. insularis originated as an intersectional hybrid (Niveae × Multifidae). Twenty-two RAPD multilocus phenotypes were observed in the 136 plants analyzed based on 35 markers. Three fairly distinct groups of RAPD phenotypes were identified in the P. nivea complex based on multivariate analyses and an analysis of molecular variance (AMOVA; 77.6% among-group variation). The variation within the P. nivea complex was more or less continuous in multivariate analyses of the morphological data. We identified, however, several individual morphological characters that separated unambiguously among the three groups of RAPD phenotypes, revealing that these groups correspond to the previously hypothesized taxa. Many identical RAPD multilocus phenotypes were observed in the "eco-morphotypes" of P. pulchella, suggesting that its conspicuous morphological variation is caused by plasticity or by genetic variation at a small number of loci. The hypothesis of the hybrid origin of P. insularis was not supported by the RAPD data. Overall, very little RAPD variation was observed within populations of the four taxa (2.1-16.7% in AMOVA analyses; average genotypic diversity, D, was 0.10-0.30). We conclude that detailed, concerted analysis of molecules and morphology is a powerful tool in low-level taxonomy.  相似文献   

12.
Using randomly amplified polymorphic DNA markers (RAPD), genetic variation and differentiation in four populations of pedunculate oak Quercus robur L. were examined. The populations occupy a large part of the Quercus robur range in the European Russia (Voronezh and Novgorod oblasts; Republics of Mordovia and Bashkortostan). With each of six random primers (A02, A09, A17, B01, B08, B11), 96 DNA samples were analyzed by PCR. In all, 48 putative polymorphic RAPD loci were detected. We failed to reveal population-specific DNA fragments for any primer although the frequencies of 14 fragments were significantly different among populations. The oak populations studied exhibited high variability: 73-90% of genes were polymorphic and the effective allele number was about 1.4. The total genetic variation varied from 0.202 (Vor) to 0.245 (Nov), which corresponded to the estimates for populations of this species from Central and Western Europe. The populations examined showed low among-population differentiation (GST = 0.098); gene flow Nem was 4.61. The proportion of among-population variation of the RAPD loci studied accounted for 7% of the total variability; more than 93% of the total variability was explained by individual and within--population variation.  相似文献   

13.
The genetic variation and population structure of three populations of Anopheles darlingi from Colombia were studied using random amplified polymorphic markers (RAPDs) and amplified fragment length polymorphism markers (AFLPs). Six RAPD primers produced 46 polymorphic fragments, while two AFLP primer combinations produced 197 polymorphic fragments from 71 DNA samples. Both of the evaluated genetic markers showed the presence of gene flow, suggesting that Colombian An. darlingi populations are in panmixia. Average genetic diversity, estimated from observed heterozygosity, was 0.374 (RAPD) and 0.309 (AFLP). RAPD and AFLP markers showed little evidence of geographic separation between eastern and western populations; however, the F ST values showed high gene flow between the two western populations (RAPD: F ST = 0.029; Nm: 8.5; AFLP: F ST = 0.051; Nm: 4.7). According to molecular variance analysis (AMOVA), the genetic distance between populations was significant (RAPD:phiST = 0.084; AFLP:phiST = 0.229, P < 0.001). The F ST distances and AMOVAs using AFLP loci support the differentiation of the Guyana biogeographic province population from those of the Chocó-Magdalena. In this last region, Chocó and Córdoba populations showed the highest genetic flow.  相似文献   

14.
M Lakshmi  M Parani  N Ram  A Parida 《Génome》2000,43(1):110-115
Genomic DNA from 84 individuals of Excoecaria agallocha from seven mangrove populations were analysed for random amplified polymorphic DNAs (RAPDs) using 16 random 10-mer primers. Polymorphism within populations varied from 20% to 31%. At the interpopulation level, 111/149 (74%) of RAPDs were polymorphic. Restriction fragment length polymorphism (RFLP) analysis of 21 individuals (3 individuals randomly selected from the 7 populations) using 30 probe-enzyme combinations revealed a high level of interpopulation polymorphism (62.2%) indicating interpopulation genetic divergence. The polymorphic RAPDs and RFLPs were pooled, and clustering was carried out based on mean similarity for individual populations. The dendrogram showed groupings of populations from the West and East Coasts of India into separate clusters, at 60% similarity level. Further, RAPD and RFLP analysis of male and female plants showed approximately the same level of variation in both sexes, and no sex-linked markers were found. These results demonstrate that considerable intrapopulation and interpopulation genetic variations exist in E. agallocha, and that lack of genetic variation is not the reason for the morphological uniformity observed across the range of the species.  相似文献   

15.
Random amplified polymorphic DNA (RAPD) markers were used to examine population genetic structure in populations of native grape phylloxera. This research asked: (i) do RAPD markers distinguish two groups corresponding to the two host plant species; and (ii) do RAPD markers distinguish groups according to spatial location, independent of host plant association? Forty‐nine phylloxera clones were collected from five pairs of adjacent individuals of two sympatric grape species in five sites along a 145 km transect in Missouri, USA. A high level of polymorphism was observed, with some evidence for structuring between host plant species and no evidence for spatial structuring. An analysis of molecular variance (amova ) found that 6.52% of the variance in RAPD banding patterns was attributable to host species and 7.96% of the variance was attributable to spatial location. A cluster analysis did not result in two groups corresponding to the two hosts, or to five groups corresponding to the geographical sites sampled. A Mantel test showed a low correlation between genetic similarity and spatial location. Two of the 93 RAPD markers were nonrandomly associated between the hosts. It is suggested that there may be a small host‐mediated effect on genetic variation but stochastic dispersal and a highly heterogeneous environment may be the primary influences on the observed polymorphism.  相似文献   

16.
A combination of directed amplification of minisatellite DNA (DAMD) and random amplification of polymorphic DNA (RAPD) primes were used to assess the genetic variation within and between three isolated populations of Indian sandalwood (Santalum album). Eleven primers used in this study amplified 65.99 % polymorphic bands. Analysis of molecular variance revealed a high genetic variation among these populations (ϕST = 0.549). There are indications of clonality within the existing Indian sandalwood populations which can be attributed to habitat fragmentation, isolation and vegetative reproduction.  相似文献   

17.
It has been suggested that many arctic-alpine plant species have limited dispersal ability and cannot have arrived in Scandinavia and the arctic archipelago of Svalbard by long-distance dispersal after a total glaciation. It has therefore been proposed that such species must have survived the entire glaciation(s) in ice-free refugia in southern Norway, northern Norway and Svalbard. We investigated random amplified polymorphic DNA (RAPD) variation among 28 populations from Norway and Svalbard of one of these arctic-alpine 'short-distance dispersers', the selfing polyploid Saxifraga cespitosa . In an analysis of molecular variance ( AMOVA ), more variation was found among populations within the three postulated refugia regions (45%) than among these regions (25%). Spatial autocorrelation (Mantel) analyses showed that the genetic distance monotonously increased with increasing geographical distance. In UPGMA and PCO analyses, the populations from Norway and Svalbard formed a south–north cline that continued across the Barents Sea barrier. The results suggest that there has been recent dispersal among the three postulated refugia regions and thus that postglacial dispersal into these refugia regions from other distant areas also must represent a possibility. The observed geographical pattern of the genetic variation may have been established after expansion from different source areas outside the North European ice sheet and/or from different refugia areas 'within' the ice sheet, but it is probably not possible to distinguish among these alternatives. The results for S. cespitosa are consistent with a dynamic late- and postglacial scenario with extensive plant dispersal, and support the conclusion from our previous study of the outbreeding Saxifraga oppositifolia ; the hypothesis of glacial survival in Norway and/or Svalbard is superfluous.  相似文献   

18.
Random amplified polymorphic DNA (RAPD) markers were used to assess genetic variation within and among Hawaiian populations of an apomictic grass, Heterogopon contortus (pili grass). From among 56 individuals sampled from six populations on O'Ahu and Hawai'i, 55 unique genotypes were detected using 33 polymorphic markers. This lack of uniformity among individuals may indicate frequent sexual reproduction in these populations. Analysis of molecular variance (AMOVA) revealed significant variation among populations (30.2%), but higher levels of variation within populations (68.1%). Cluster analysis revealed a high degree of clustering for most populations, but populations from different islands did not cluster together. The presence of among-population differentiation but lack of between-island differentiation may suggest that H. contortus was an early Polynesian introduction to the Hawaiian Islands.  相似文献   

19.
An understanding of the patterns of variation within and among populations of tropical trees is essential for devising optimum genetic management strategies for their conservation and sustainable utilization. Here, random amplified polymorphic DNA (RAPD) analysis was used to partition variation within and among 10 populations of the endangered Afromontane medicinal tree, Prunus africana, sampled from five countries across the geographical range of the species (Cameroon, Ethiopia, Kenya, Madagascar and Uganda). Analysis of molecular variance ( AMOVA ) employed 48 RAPD markers and revealed most variation among countries (66%, P < 0.001). However, variation among individuals within populations and among populations within Cameroon and Madagascar was also highly significant. Analysis of population product frequency data indicated Ugandan material to be more similar to populations from Cameroon than populations from Kenya and Ethiopia, while Malagash populations were most distinct. The implications of these findings for determining appropriate approaches for conservation of the species, particularly in Cameroon and Madagascar, are discussed.  相似文献   

20.
Randomly amplified polymorphic DNA (RAPD) markers were used to assign individual adult sockeye salmon to their spawning sites using a genotype assignment test. Six primers were selected for use by screening bulked DNA samples for markers missing in fish from one or more of 5 sites in British Columbia or Alaska. Of 73 markers scored, 54 showed variation between or within sites among the sampled fish. Thirty-seven of the variable markers were not detected in any fish from one or more sites; 18 variable markers were detected in all fish from one or more other sites. Thus 25% of markers scored were found in all fish of some sites and in no fish of some other sites. An assignment test placed all 70 fish tested into their correct populations. Principal coordinate analysis of genetic variation produced clusters of fish corresponding to each sampling site. No sex-specific RAPD markers were detected among more than 1300 screened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号