首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sato T  Niita K 《Radiation research》2006,166(3):544-555
Estimation of cosmic-ray neutron spectra in the atmosphere has been an essential issue in the evaluation of the aircrew doses and the soft-error rates of semiconductor devices. We therefore performed Monte Carlo simulations for estimating neutron spectra using the PHITS code in adopting the nuclear data library JENDL-High-Energy file. Excellent agreements were observed between the calculated and measured spectra for a wide altitude range even at the ground level. Based on a comprehensive analysis of the simulation results, we propose analytical functions that can predict the cosmic-ray neutron spectra for any location in the atmosphere at altitudes below 20 km, considering the influences of local geometries such as ground and aircraft on the spectra. The accuracy of the analytical functions was well verified by various experimental data.  相似文献   

2.
By extending our previously established model, here we present a new model called “PHITS-based Analytical Radiation Model in the Atmosphere (PARMA) version 3.0,” which can instantaneously estimate terrestrial cosmic ray fluxes of neutrons, protons, ions with charge up to 28 (Ni), muons, electrons, positrons, and photons nearly anytime and anywhere in the Earth’s atmosphere. The model comprises numerous analytical functions with parameters whose numerical values were fitted to reproduce the results of the extensive air shower (EAS) simulation performed by Particle and Heavy Ion Transport code System (PHITS). The accuracy of the EAS simulation was well verified using various experimental data, while that of PARMA3.0 was confirmed by the high R 2 values of the fit. The models to be used for estimating radiation doses due to cosmic ray exposure, cosmic ray induced ionization rates, and count rates of neutron monitors were validated by investigating their capability to reproduce those quantities measured under various conditions. PARMA3.0 is available freely and is easy to use, as implemented in an open-access software program EXcel-based Program for Calculating Atmospheric Cosmic ray Spectrum (EXPACS). Because of these features, the new version of PARMA/EXPACS can be an important tool in various research fields such as geosciences, cosmic ray physics, and radiation research.  相似文献   

3.
This paper develops a deterministic model of frequency distributions for energy imparted (total energy deposition) in small volumes similar to DNA molecules from high-energy ions of interest for space radiation protection and cancer therapy. Frequency distributions for energy imparted are useful for considering radiation quality and for modeling biological damage produced by ionizing radiation. For high-energy ions, secondary electron (delta-ray) tracks originating from a primary ion track make dominant contributions to energy deposition events in small volumes. Our method uses the distribution of electrons produced about an ion's path and incorporates results from Monte Carlo simulation of electron tracks to predict frequency distributions for ions, including their dependence on radial distance. The contribution from primary ion events is treated using an impact parameter formalism of spatially restricted linear energy transfer (LET) and energy-transfer straggling. We validate our model by comparing it directly to results from Monte Carlo simulations for proton and alpha-particle tracks. We show for the first time frequency distributions of energy imparted in DNA structures by several high-energy ions such as cosmic-ray iron ions. Our comparison with results from Monte Carlo simulations at low energies indicates the accuracy of the method.  相似文献   

4.
A new deterministic method for calculating the dose distribution in the electron radiotherapy field is presented. The aim of this work was to validate our model by comparing it with the Monte Carlo simulation toolkit, GEANT4. A comparison of the longitudinal and transverse dose deposition profiles and electron distributions in homogeneous water phantoms showed a good accuracy of our model for electron transport, while reducing the calculation time by a factor of 50. Although the Bremsstrahlung effect is not yet implemented in our model, we propose here a method that solves the Boltzmann kinetic equation and provides a viable and efficient alternative to the expensive Monte Carlo modeling.  相似文献   

5.
Abstract

The principle purpose of this paper is to demonstrate the use of the Inverse Monte Carlo technique for calculating pair interaction energies in monoatomic liquids from a given equilibrium property. This method is based on the mathematical relation between transition probability and pair potential given by the fundamental equation of the “importance sampling” Monte Carlo method. In order to have well defined conditions for the test of the Inverse Monte Carlo method a Metropolis Monte Carlo simulation of a Lennard Jones liquid is carried out to give the equilibrium pair correlation function determined by the assumed potential. Because an equilibrium configuration is prerequisite for an Inverse Monte Carlo simulation a model system is generated reproducing the pair correlation function, which has been calculated by the Metropolis Monte Carlo simulation and therefore representing the system in thermal equilibrium. This configuration is used to simulate virtual atom displacements. The resulting changes in atom distribution for each single simulation step are inserted in a set of non-linear equations defining the transition probability for the virtual change of configuration. The solution of the set of equations for pair interaction energies yields the Lennard Jones potential by which the equilibrium configuration has been determined.  相似文献   

6.
Parameters of light propagation in plant leaves — absorption and scattering coefficients, asymmetry of scattering — have been estimated on the basis of measured transmission and emission as well as internal fluxes. This estimation has been carried through by solving the inverse problem of the 4-flux radiative transfer — a theory considering forward and backward diffuse as well as directed components of the overall radiation in a multiple scattering sample. Using the gained parameters, light flux gradients in a two-layered model leaf have been calculated at different wavelengths. Monte Carlo simulation of absorption spectra performed with the parameters obtained with this treatment is in a good agreement with experimental spectra, thus substantiating the theory. Parallel calculations with the two-flux (Kubelka-Munk) theory provide an estimation of the accuracy and applicability of this more simple treatment. Calculations have been performed for three different plants: Catalpa bignonioides, Tilia americana and Vitis riparia.  相似文献   

7.
《Médecine Nucléaire》2007,31(4):160-164
The Monte Carlo method allows for simulating random processes by using series of pseudo-random numbers. It became an important tool in nuclear medicine to assist in the design of new medical imaging devices, optimise their use and analyse their data. Presently, the sophistication of the simulation tools allows the introduction of Monte Carlo predictions in data correction and image reconstruction processes. The availability to simulate time dependent processes opens up new horizons for Monte Carlo simulation in nuclear medicine. In a near future, these developments will allow to tackle simultaneously imaging and dosimetry issues and soon, case system Monte Carlo simulations may become part of the nuclear medicine diagnostic process. This paper describes some Monte Carlo method basics and the sampling methods that were developed for it. It gives a referenced list of different simulation software used in nuclear medicine and enumerates some of their present and prospective applications.  相似文献   

8.
IntroductionInterventional procedures are associated with potentially high radiation doses to the skin. The 2013/59/EURATOM Directive establishes that the equipment used for interventional radiology must have a device or a feature informing the practitioner of relevant parameters for assessing patient dose at the end of the procedure. Monte Carlo codes of radiation transport are considered to be one of the most reliable tools available to assess doses. However, they are usually too time consuming for use in clinical practice. This work presents the validation of the fast Monte Carlo code MC-GPU for application in interventional radiology.MethodologiesMC-GPU calculations were compared against the well-validated Monte Carlo simulation code PENELOPE/penEasy by simulating the organ dose distribution in a voxelized anthropomorphic phantom. In a second phase, the code was compared against thermoluminescent measurements performed on slab phantoms, both in a calibration laboratory and at a hospital.ResultsThe results obtained from the two simulation codes show very good agreement, differences in the output were within 1%, whereas the calculation time on the MC-GPU was 2500 times shorter. Comparison with measurements is of the order of 10%, within the associated uncertainty.ConclusionsIt has been verified that MC-GPU provides good estimates of the dose when compared to PENELOPE program. It is also shown that it presents very good performance when assessing organ doses in very short times, less than one minute, in real clinical set-ups. Future steps would be to simulate complex procedures with several projections.  相似文献   

9.
Semiparametric transformation models provide a very general framework for studying the effects of (possibly time-dependent) covariates on survival time and recurrent event times. Assessing the adequacy of these models is an important task because model misspecification affects the validity of inference and the accuracy of prediction. In this paper, we introduce appropriate time-dependent residuals for these models and consider the cumulative sums of the residuals. Under the assumed model, the cumulative sum processes converge weakly to zero-mean Gaussian processes whose distributions can be approximated through Monte Carlo simulation. These results enable one to assess, both graphically and numerically, how unusual the observed residual patterns are in reference to their null distributions. The residual patterns can also be used to determine the nature of model misspecification. Extensive simulation studies demonstrate that the proposed methods perform well in practical situations. Three medical studies are provided for illustrations.  相似文献   

10.
Errors in the estimation of exposures or doses are a major source of uncertainty in epidemiological studies of cancer among nuclear workers. This paper presents a Monte Carlo maximum likelihood method that can be used for estimating a confidence interval that reflects both statistical sampling error and uncertainty in the measurement of exposures. The method is illustrated by application to an analysis of all cancer (excluding leukemia) mortality in a study of nuclear workers at the Oak Ridge National Laboratory (ORNL). Monte Carlo methods were used to generate 10,000 data sets with a simulated corrected dose estimate for each member of the cohort based on the estimated distribution of errors in doses. A Cox proportional hazards model was applied to each of these simulated data sets. A partial likelihood, averaged over all of the simulations, was generated; the central risk estimate and confidence interval were estimated from this partial likelihood. The conventional unsimulated analysis of the ORNL study yielded an excess relative risk (ERR) of 5.38 per Sv (90% confidence interval 0.54-12.58). The Monte Carlo maximum likelihood method yielded a slightly lower ERR (4.82 per Sv) and wider confidence interval (0.41-13.31).  相似文献   

11.
BackgroundMonte Carlo simulation is generally appreciated as an extraordinary technique to investigate particle physics processes and interactions in nuclear medicine and Radiation Therapy. The present task validates a new methodology of Monte Carlo simulation based on the Multithreading technique to reduce CPU time to simulate a 6 MV photon beam provided by the Elekta Synergy MLCi2 platform medical linear accelerator treatment head utilizing TOpas version 3.6 Monte Carlo software and the Slurm Marwan cluster.Materials and methodsThe simulation includes the linear accelerator (LINAC) major components. Calculations are performed for the photon beam with several treatment field sizes varying from 3 × 3 to 10 × 10 cm2 at a 100 cm of distance from the source to the surface of the IBA dosimetry water box. The simulation was wholly approved by comparison with experimental distributions. To evaluate simulation accuracy, gamma index formalism for (2%/2mm) and (3%/2mm) criteria, Distance To Agreement DTA, and the estimator standard error ɛ and ɛmax are used.ResultsGood agreement between simulations and measurements was observed for depth doses and lateral dose profiles, respectively. The gamma index comparisons also highlighted this agreement; more than 97% of the points for all simulations satisfy the quality assurance criteria of (2%/2mm). Regarding calculation performance, the event processing speed is faster using Gate-[mp] compared to TOpas-[mt] mode when running the identical simulation code for both.ConclusionsConsequently, according to the achieved results, the proposed methodology shows the first validation of TOpas in radiotherapy linacs simulations and a reduction in calculation time, capping simulation accuracy as much as possible. For this reason, this software is recommended to be serviceable for Treatment Planning Systems (TPS) purposes.  相似文献   

12.
MOTIVATION: Monte Carlo methods are the most effective means of exploring the energy landscapes of protein folding. The rugged topography of folding energy landscapes causes sampling inefficiencies however, particularly at low, physiological temperatures. RESULTS: A hybrid Monte Carlo method, termed density guided importance sampling (DGIS), is presented that overcomes these sampling inefficiencies. The method is shown to be highly accurate and efficient in determining Boltzmann weighted structural metrics of a discrete off-lattice protein model. In comparison to the Metropolis Monte Carlo method, and the hybrid Monte Carlo methods, jump-walking, smart-walking and replica-exchange, the DGIS method is shown to be more efficient, requiring no parameter optimization. The method guides the simulation towards under-sampled regions of the energy spectrum and recognizes when equilibrium has been reached, avoiding arbitrary and excessively long simulation times. AVAILABILITY: Fortran code available from authors upon request. CONTACT: m.j.parker@leeds.ac.uk.  相似文献   

13.
This work provides an improvement of the approach using Monte Carlo simulation for the Amersham Model 6711 125I brachytherapy seed source, which is well known by many theoretical and experimental studies. The source which has simple geometry was researched with respect to criteria of AAPM Tg-43 Report. The approach offered by this study involves determination of differential dose contributions that come from virtual partitions of a massive radioactive element of the studied source to a total dose at analytical calculation point. Some brachytherapy seeds contain multi-radioactive elements so the dose at any point is a total of separate doses from each element. It is momentous to know well the angular and radial dose distributions around the source that is located in cancerous tissue for clinical treatments. Interior geometry of a source is effective on dose characteristics of a distribution. Dose information of inner geometrical structure of a brachytherapy source cannot be acquired by experimental methods because of limits of physical material and geometry in the healthy tissue, so Monte Carlo simulation is a required approach of the study. EGSnrc Monte Carlo simulation software was used. In the design of a simulation, the radioactive source was divided into 10 rings, partitioned but not separate from each other. All differential sources were simulated for dose calculation, and the shape of dose distribution was determined comparatively distribution of a single-complete source. In this work anisotropy function was examined also mathematically.  相似文献   

14.
Conversion factors used to estimate effective (E) and organ doses (HT) from air Kerma area product (KAP) are required to estimate population doses in percutaneous transhepatic biliary drainage (PTBD) and trans arterial chemoembolization (TACE) interventional procedures.In this study, E and HT for ten critical organs/tissues, were derived in 64 PTBD and 48 TACE procedures and in 14,540 irradiation events from dosimetric, technical and geometrical information included in the radiation dose structured report using the PCXMC Monte Carlo model, and the ICRP 103 organ weighting factors. Conversion factors of: 0.13; 0.19; 0.26 and 0.32 mSv Gy−1 cm−2 were established for irradiation events characterized by a Cu filtration of 0.0; 0.1; 0.4 and 0.9 mm, respectively. While a single coefficient of conversion is not able to provide estimates of E with enough accuracy, a high agreement is obtained between E estimated through Monte Carlo methods and E estimated through E/KAP conversion factors accounting separately for the different modes of fluoroscopy and the fluorography component of the procedures.An algorithm for the estimation of effective and organ doses from KAP has been established in biliary procedures which considers the Cu filtration in the X-ray irradiation events. A similar algorithm could be easily extended to other interventional procedures and incorporated in radiation dose monitoring systems to provide dosimetric estimates automatically with enough accuracy to assess population doses.  相似文献   

15.
PurposeTo assess out-of-field doses in radiotherapy treatments of paediatric patients, using Monte Carlo methods to implement a new model of the linear accelerator validated against measurements and developing a voxelized anthropomorphic paediatric phantom.MethodsCT images of a physical anthropomorphic paediatric phantom were acquired and a dosimetric planning using a TPS was obtained. The CT images were used to perform the voxelization of the physical phantom using the ImageJ software and later implemented in MCNP. In order to validate the Monte Carlo model, dose measurements of the 6 MV beam and Linac with 120 MLC were made in a clinical setting, using ionization chambers and a water phantom. Afterwards TLD measurements in the physical anthropomorphic phantom were performed in order to assess the out-of-field doses in the eyes, thyroid, c-spine, heart and lungs.ResultsThe Monte Carlo model was validated for in-field and out-of-field doses with average relative differences below 3%. The average relative differences between TLD measurements and Monte Carlo is 14,3% whilst the average relative differences between TLD and TPS is 55,8%. Moreover, organs up to 22.5 cm from PTV center show TLD and MCNP6 relative differences and TLD and TPS relative differences up to 21.2% and 92.0%, respectively.ConclusionsOur study provides a novel model that could be used in clinical research, namely in dose evaluation outside the treatment fields. This is particularly relevant, especially in pediatric patients, for studying new radiotherapy treatment techniques, since it can be used to estimate the development of secondary tumours.  相似文献   

16.
The Monte Carlo technique is considered gold standard when it comes to patient-specific dosimetry. Any newly developed Monte Carlo simulation framework, however, has to be carefully calibrated and validated prior to its use. For many researchers this is a tedious work. We propose a two-step validation procedure for our newly built Monte Carlo framework and provide all input data to make it feasible for future related application by the wider community. The validation was at first performed by benchmarking against simulation data available in literature. The American Association of Physicists in Medicine (AAPM) report of task group 195 (case 2) was considered most appropriate for our application. Secondly, the framework was calibrated and validated against experimental measurements for trunk X-ray imaging protocols using a water phantom. The dose results obtained from all simulations and measurements were compared. Our Monte Carlo framework proved to agree with literature data, by showing a maximal difference below 4% to the AAPM report. The mean difference with the water phantom measurements was around 7%. The statistical uncertainty for clinical applications of the dosimetry model is expected to be within 10%. This makes it reliable for clinical dose calculations in general radiology. Input data and the described procedure allow for the validation of other Monte Carlo frameworks.  相似文献   

17.
放射治疗的质量保证是保证放射治疗成功的有力方法。对于放疗计划的验证和评估有CT模拟机、仿体等方法,这些方法各有优缺点。文章提出了一种用人体图像数据构造仿真模型的方法,并用蒙特卡罗软件和美国“可视人项目”的数据集计算该模型在接受放射治疗时体内剂量的三维分布。由于采用人体的真实图像数据,以及蒙特卡罗方法计算粒子输运时的准确性,该方法能够得到真实的三维剂量分布。  相似文献   

18.
We describe a Monte Carlo simulation of the within-host dynamics of human immunodeficiency virus 1 (HIV-1). The simulation proceeds at the level of individual T-cells and virions in a small volume of plasma, thus capturing the inherent stochasticity in viral replication, mutation and T-cell infection. When cell lifetimes are distributed exponentially in the Monte Carlo approach, our simulation results are in perfect agreement with the predictions of the corresponding systems of differential equations from the literature. The Monte Carlo model, however, uniquely allows us to estimate the natural variability in important parameters such as the T-cell count, viral load, and the basic reproductive ratio, in both the presence and absence of drug therapy. The simulation also yields the probability that an infection will not become established after exposure to a viral inoculum of a given size. Finally, we extend the Monte Carlo approach to include distributions of cell lifetimes that are less-dispersed than exponential.  相似文献   

19.
A physically based model was built to predict the transient body temperature of lizards in a thermally heterogeneous environment. Six heat transfer terms were taken into account in this model: solar radiation, convective heat flow, longwave radiation, conductive heat flow, metabolic heat gain and respiratory energy loss. In order to enhance the model predictive power, a Monte Carlo simulation was employed to calibrate the bio-physical parameters of the target animal. Animal experiments were conducted to evaluate the calibrated body temperature model in a terrarium under a controlled thermal environment. To avoid disturbances of the animal, thermal infrared imagers were used to measure the land surface temperature and the body temperature. The results showed that the prediction accuracy of lizard's transient temperature was substantially increased by the use of Monte Carlo techniques (RMSE=0.59 °C) compared to standard model parameterization (RMSE=1.35 °C). Because the model calibration technique presented here is based on physical principles, it should be also useful in more complex, field situations.  相似文献   

20.
A multiscale modeling approach is applied for simulations of lipids and lipid assemblies on mesoscale. First, molecular dynamics simulation of initially disordered system of lipid molecules in water within all-atomic model was carried out. On the next stage, structural data obtained from the molecular dynamics (MD) simulation were used to build a coarse-grained (ten sites) lipid model, with effective interaction potentials computed by the inverse Monte Carlo method. Finally, several simulations of the coarse-grained model on longer length- and time-scale were performed, both within Monte Carlo and molecular dynamics simulations: a periodical sample of lipid molecules ordered in bilayer, a free sheet of such bilayer without periodic boundary conditions, formation of vesicle from a plain membrane, process of self-assembly of lipids randomly dispersed in volume. It was shown that the coarse-grained model, developed exclusively from all-atomic simulation data, reproduces well all the basic features of lipids in water solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号