首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gamma-D-glutamyl-(L)meso-diaminopimelate endopeptidase, or endopeptidase I, from Bacillus sphaericus 9602 was purified to apparent protein homogeneity. The purification was achieved by a six-step procedure: ammonium sulfate fractionation, phenyl-Sepharose chromatography, two consecutive DEAE-Trisacryl chromatographies, chromatofocusing and Sephacryl S-200 permeation chromatography. The enzyme was purified 5000-fold with a 38% recovery of lytic activity. It is an acidic protein (pI 5.4) of hydrophobic nature. Kinetic studies have shown a Km value of 0.57 mM and an apparent Vmax of 8.3 mumol min-1 (mg enzyme)-1 with N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-(L)meso-diaminopimelyl (L)-D-[14C]alanine as substrate. The enzyme was inhibited by o-phenanthroline and EDTA and was reactivated by zinc, cobalt and manganese ions; thus endopeptidase I is a metallo enzyme, probably a zinc enzyme. Moreover it is a heat-stable protein with an apparent inactivation temperature of 80 degrees C.  相似文献   

2.
S M Sebti  J S Lazo 《Biochemistry》1987,26(2):432-437
Bleomycin (BLM) hydrolase inactivates the BLM class of antitumor antibiotics and protects against BLM-induced pulmonary fibrosis. This enzyme is poorly characterized but believed to be an aminopeptidase B. In the present report, both BLM hydrolase and aminopeptidase B from rabbit pulmonary cytosol were retained by arginyl-Sepharose and BLM-Sepharose affinity columns, further suggesting that these two enzymes are similar. When, however, BLM hydrolase was purified over 1800-fold by using our newly developed high-speed liquid chromatography assay for BLM hydrolase coupled with fast protein liquid chromatography, we found that this partially purified BLM hydrolase preparation lacked aminopeptidase B activity. Furthermore, BLM hydrolase was completely separated, by using anion-exchange Mono Q chromatography, from all the aminopeptidases identified in rabbit pulmonary cytosol: one aminopeptidase B, two aminopeptidases N, and one aminopeptidase with both aminopeptidase B and aminopeptidase N activities. Pulmonary BLM hydrolase also had a higher molecular weight than pulmonary aminopeptidase B. In contrast to aminopeptidase B, BLM hydrolase was not activated by NaCl and was much less stable at 4 degrees C. In addition, bestatin was a potent inhibitor of aminopeptidase B but had little effect on BLM hydrolase, while leupeptin was a potent inhibitor of BLM hydrolase but was less effective against aminopeptidase B. Thus, pulmonary BLM hydrolase and aminopeptidase B have affinity for each other's substrate, but they are clearly distinct enzymes on the basis of charge characteristics, molecular weight, stability, and sensitivity to inhibitors and activators.  相似文献   

3.
Carboxylesterase [EC 3.1.1.1] was purified from rabbit liver lysosomes by means of detergent solubilization, and by hydroxyapatite, phenyl-Sepharose and chromatofocusing column chromatographies. The purified enzyme appeared to be homogeneous on SDS-polyacrylamide gel electrophoresis and its molecular weight was estimated to be 58,000. This enzyme was eluted at an isoelectric point of approximately 5.8 by chromatofocusing, and exhibited a broad pH optimum of between 6.0 and 9.0. The enzyme hydrolyzed 4-methylumbelliferyl esters of saturated fatty acids (C2-C12), and it also hydrolyzed p-nitrophenylacetate, methyl butyrate, and tributyrin, but not acetanilide. Its activity was completely inhibited by diisopropyl-fluorophosphate (DFP) and phenylmethylsulfonyl fluoride (PMSF) at 10(-4) M, but was not affected by eserine, or by alpha- or beta-naphthyl acetate at 10(-3) M. Various metal ions (Mg2+, Mn2+, Ca2+, Co2+, Cu2+, Zn2+, Ni2+) at 10(-3) M also had no effect on the enzyme activity.  相似文献   

4.
We established a hybridoma clone that produced anti-bleomycin hydrolase antibody. The subclass of the monoclonal antibody was immunoglobulin M. The antibody significantly reacted with bleomycin hydrolase from rabbit tissues, mouse livers, sarcoma 180, and adenocarcinoma 755 but not significantly with that from MH 134 and Ehrlich carcinoma. The enzyme from L5178Y cells showed an intermediate reactivity. Bleomycin hydrolase was purified from rabbit liver by immunoaffinity with the monoclonal antibody and DEAE gel chromatography. Approximately 1300-fold-purified bleomycin hydrolase was obtained. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing on a polyacrylamide slab gel of purified bleomycin hydrolase showed a single band with an apparent Mr of 48K and an isoelectric pH of 5.2. The molecular weight of bleomycin hydrolase determined on gel filtration high-performance liquid chromatography was ca. 300K, suggesting a hexameric enzyme. The enzyme showed an optimum pH of 6.8-7.8 and gave a Vmax value of 6.72 mg min-1 mg-1 for peplomycin and 9.24 mg min-1 mg-1 for bleomycin B2 and a Km value of 0.79 mM for both substrates. The enzyme was inhibited by E-64, leupeptin, p-tosyl-L-lysine chloromethyl ketone, N-ethylmaleimide, Fe2+, Cu2+, and Zn2+ but was enhanced by dithiothreitol. The results suggest that bleomycin hydrolase is a thiol enzyme.  相似文献   

5.
An extracellular beta-glucosidase (EC 3.2.1.21) was purified from culture filtrate of the anaerobic rumen fungus Orpinomyces sp. strain PC-2 grown on 0.3% (wt vol-1) Avicel by using Q Sepharose anion-exchange chromatography, ammonium sulfate precipitation, chromatofocusing ion-exchange chromatography, and Superose 12 gel filtration. The enzyme is monomeric with a M(r) of 85,400, as estimated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, has a pI of 3.95, and contains about 8.5% (wt vol-1) carbohydrate. The N terminus appears to be blocked. The enzyme catalyzes the hydrolysis of cellobiose and p-nitrophenyl-beta-D-glucoside (PNPG). The Km and Vmax values with cellobiose as the substrate at pH 6.0 and 40 degrees C are 0.25 mM and 27.1 mumol.min-1 x mg-1, respectively; with PNPG as the substrate, the corresponding values are of 0.35 mM and 27.7 mumol.min-1 x mg-1. Glucose (Ki = 8.75 mM, with PNPG as the substrate) and gluconolactone (Ki = 1.68 x 10(-2) and 2.57 mM, with PNPG and cellobiose as the substrates, respectively) are competitive inhibitors. Optimal activity with PNPG and cellobiose as the substrates is at pH 6.2 and 50 degrees C. The enzyme has high activity against sophorose (beta-1,2-glucobiose) and laminaribiose (beta-1,3-glucobiose) but has no activity against gentiobiose (beta-1,6-glucobiose). The activity of the beta-glucosidase is stimulated by Mg2+, Mn2+, Co2+, and Ni2+ and inhibited by Ag+, Fe2+, Cu2+, Hg2+, SDS, and p-chloromercuribenzoate.  相似文献   

6.
1. Alkaline phosphatase (EC 3.1.3.1.) from harp seal (Phagophilus groenlandicus) has been purified by concanavalin A-Sepharose chromatography to homogeneity with a specific activity of 1200-1500 units/mg of protein. 2. The mol. wt of the enzyme and its subunits were estimated as 260,000 and 70,000, respectively. By chromatofocusing the isoelectric point of this enzyme is 5.5. 3. With p-nitrophenylphosphate, pH-optimum and KM for the enzyme are 9.8 and 0.9 mM, respectively. 4. The enzyme was strongly inhibited by Sn4+, Fe3+ and Zn2+, whereas Mg2+ and Mn2+ were effective activators of the enzyme. Seal alkaline phosphatase was slightly inhibited by high concentrations of Ca2+ and Cr3+. 5. The enzyme activity reached a maximum at 55-60 degrees C. It was shown that the heat stability of seal and calf intestinal alkaline phosphatases were equal at 37 and 56 degrees C.  相似文献   

7.
Angiotensin-converting enzyme from the human lung was purified to apparent homogeneity, using high-performance liquid chromatography following trypsin treatment of the detergent-extract. A 1,750-fold purification was achieved with a 26% yield. The specific activity of the enzyme was 105 units per mg protein with the substrate hippuryl-L-histidyl-L-leucine (HHL) at 37 degrees C, and the Km value for HHL was 1.9 mM. The molecular weight was estimated to be 170,000 by sodium dodecyl sulfate gel electrophoresis, and the isoelectric point was about 4.8, by chromatofocusing. The N-terminal amino acid sequence was (NH2)-X-X-Pro-Gly-Leu-Glu-Pro-Gly-X-Phe-Ser-Ala-Arg-Glu-Ala-Gly-Ala. This is highly homologous to the corresponding sequences of the enzymes from bovine and rabbit lung and from pig, bovine, and mouse kidney, but significantly different from that of the human kidney enzyme.  相似文献   

8.
J Moss  S C Tsai  R Adamik  H C Chen  S J Stanley 《Biochemistry》1988,27(15):5819-5823
ADP-ribosylation of arginine appears to be a reversible modification of proteins with NAD: arginine ADP-ribosyltransferases and ADP-ribosylarginine hydrolases catalyzing the opposing arms of the ADP-ribosylation cycle. ADP-ribosylarginine hydrolases have been purified extensively (greater than 90%) (150,000-250,000-fold) from the soluble fraction of turkey erythrocytes by DE-52, phenyl-Sepharose, hydroxylapatite, Ultrogel AcA 54, and Mono Q chromatography. Mobilities of the hydrolase on gel permeation columns and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions are consistent with an active monomeric species of approximately 39 kDa. Insertion of an organomercurial agarose chromatographic step prior to Ultrogel AcA 54 resulted in the isolation of a hydrolase exhibiting approximately 35-fold greater sensitivity to dithiothreitol (Ka,sensitive = 41 +/- 16.7 microM, n = 4; Ka,resistant = 1.44 +/- 0.12 mM, n = 3). A similar dithiothreitol-sensitive hydrolase was generated by exposure of the purified resistant enzyme to HgCl2. At 30 degrees C, both thiol-sensitive (HS) and thiol-resistant (HR) hydrolases were relatively resistant to N-ethylmaleimide (NEM); incubation with dithiothreitol prior to NEM resulted in complete inactivation. Both HS and HR required Mg2+ and thiol for enzymatic activity. Mg2+ stabilized both HS and HR against thermal inactivation in the absence and presence of thiol. A purified NAD:arginine ADP-ribosyltransferase, in the presence of NAD, inactivated both HS and HR; Mg2+ and to a greater extent Mg2+ plus dithiothreitol protected both HS and HR from NAD- and transferase-dependent inactivation. Thus, activation of the hydrolase enhanced its resistance to inactivation by transferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The modes of binding of heat shock protein 90 with phenyl-Sepharose, myristoylated AE-cellulose, and monomyristoylated lysozyme were studied to characterize a hydrophobic region(s) on the surface of the heat shock protein 90 molecule and the following results were obtained. (1) The binding of heat shock protein 90 with phenyl-Sepharose was inhibited by the addition of 30% ethylene glycol. This indicates that the binding involves a hydrophobic interaction. (2) The binding was strengthened by the addition of 10 mM Mg2+, Ca2+, Sr2+, and Ba2+ ions, but not by K+ or Na+ ions. (3) The binding of hsp 90 with phenyl-Sepharose decreased initially and then increased as the temperature was increased from 0 to 50 degrees C, with a minimum at around 35 degrees C. (4) Lowering the pH stimulated the binding of hsp 90 with phenyl-Sepharose. (5) Heat shock protein 90 bound to myristoylated AE-cellulose, which has aliphatic hydrophobic residues, but not to acetylated AE-cellulose. (6) Heat shock protein 90 bound to monomyristoylated lysozyme, but not to control unmodified lysozyme. Based on these results, the possible function of the hydrophobic region(s) of heat shock protein 90 in the interaction with hydrophobic proteins is discussed.  相似文献   

10.
K Sakai  K Oshima    M Moriguchi 《Applied microbiology》1991,57(9):2540-2543
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

11.
N-Acyl-D-glutamate amidohydrolase from Pseudomonas sp. strain 5f-1 was inducibly produced by D isomers of N-acetylglutamate, glutamate, aspartate, and asparagine. The enzyme has been purified to homogeneity by DEAE-cellulose, (NH4)2SO4 fractionation, and chromatofocusing followed by gel filtration on a Sephadex G-100 column. The enzyme was a monomer with molecular weight of 55,000. The enzyme activity was optimal at pH 6.5 to 7.5 and 45 degrees C. The isoelectric point and the pH stability were 8.8 and 9.0, respectively. N-Formyl, N-acetyl, N-butyryl, N-propionyl, N-chloroacetyl derivatives of D-glutamate and glycyl-D-glutamate were substrates for the enzyme. At pH 6.5 in 100 mM N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES) buffer at 30 degrees C, a Km of 6.67 mM and a Vmax of 662 mumol/min/mg of protein for N-acetyl-D-glutamate were obtained. None of the metal ions stimulated the enzyme activity. Na+, K+, Mg2+, and Ba2+ acted as stabilizers. Hg2+, Cu2+, Zn2+, Fe3+, and EDTA were strongly inhibitory.  相似文献   

12.
Heparinase (EC 4.2.2.7) isolated from Flavobacterium heparinum was purified to homogeneity by a combination of hydroxylapatite chromatography, repeated gel filtration chromatography, and chromatofocusing. Homogeneity was established by the presence of a single band on both sodium dodecyl sulfate and acid-urea gel electrophoretic systems. Amino acid analysis shows that the enzyme contains relatively high amounts of lysine residues (9%) consistent with its cationic nature (pI 8.5) but contains only 4 cysteine residues/polypeptide. The molecular weight of heparinase was estimated to be 42,900 +/- 1,000 daltons by gel filtration and 42,700 +/- 1,200 daltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme is very specific, acting only on heparin and heparan monosulfate out of 12 similar polysaccharide substrates tested. It has an activity maximum at pH 6.5 and 0.1 M NaCl and a stability maximum at pH 7.0 and 0.15 M NaCl. The Arrhenius activation energy was found to be 6.3 kcal/mol. However, the enzyme is very sensitive to thermal denaturation and loses activity very rapidly at temperatures over 40 degrees C. Kinetic studies of the heparinase reaction at 37 degrees C gave a Km of 8.04 X 10(-6) M and a Vm of 9.85 X 10(-5) M/min at a protein concentration of 0.5 microgram/ml. By adapting batch procedures of hydroxylapatite and QAE (quaternary aminoethyl)-Sephadex chromatography, gram quantities of heparinase that is nearly free of catalytic enzyme contaminants can be purified in 4-5 h.  相似文献   

13.
The properties of acetylcholinesterase solubilized from bovine erythrocyte membrane by phosphatidylinositol (PI)-specific phospholipase C of Bacillus thuringiensis or with a detergent, Lubrol-PX, were studied. The activity of Lubrol-PX-solubilized acetylcholinesterase was broadly distributed in the fractions having Ve/Vo = 1.0-2.0 in gel filtration on a Sepharose 6B column. The intermediary fractions (Ve/Vo = 1.3-1.7) were collected as "the middle active Sepharose 6B eluate" and characterized on the basis of enzymology and protein chemistry. When this eluate was treated with PI-specific phospholipase C, the major activity peak was obtained in the later fractions with Ve/Vo = 1.75-2.0 on the same column chromatography. Lubrol-solubilized and phospholipase C-treated acetylcholinesterase preparations were different in the thermostability, the elution profiles of chromatography on Mono Q, butyl-Toyopearl and phenyl-Sepharose columns, and the affinity to phospholipid micelles. On treatment with PI-specific phospholipase C, Lubrol-solubilized acetylcholinesterase became more thermostable. The phospholipase C-treated enzyme was eluted at lower NaCl concentration from the Mono Q column than the Lubrol-solubilized enzyme. The most important difference was observed in the hydrophobicity of these two enzyme preparations. The Lubrol-solubilized enzyme shows high affinity to phospholipid micelles and hydrophobic adsorbents such as butyl-Toyopearl and phenyl-Sepharose. However, this hydrophobicity was lost when acetylcholinesterase was solubilized from bovine erythrocyte membrane by PI-specific phospholipase C. The presence of myo-inositol was confirmed in the purified preparation of acetylcholinesterase by gas chromatography (GC)-mass spectrometry (MS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
G W Chen  C F Hung  S H Chang  J G Lin  J G Chung 《Microbios》1999,98(391):159-174
N-acetyltransferase from Lactobacillus acidophilus was purified by ultrafiltration, DEAE-Sephacel, gel filtration chromatography on Sephadex G-100, and DEAE-5pw on high performance liquid chromatography, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% (w/v) slab gel. The purified enzyme was thermostable at 37 degrees C for 1 h with a half-life of 32 min at 37 degrees C, and displayed optimum activity at 37 degrees C and pH 7.0. The K(m) and Vmax values for 2-aminofluorene were 0.842 mM and 2.406 nmol/min/mg protein, respectively. Among a series of divalent cations and salts, Zn2+, Ca2+, Fe2+, Mg2+, and Cu2+ were demonstrated to be the most potent inhibitors. The enzyme had a molecular mass of 44.9 kD. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited dose-, time-, and temperature-dependent inhibition effects. Preincubation of purified N-acetyltransferase with acetyl coenzyme A (AcCoA) provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial activity, and the first two are likely to reside on the AcCoA binding site, but the arginine residue may be located close to the AcCoA binding site. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase in L. acidophilus.  相似文献   

15.
alpha-Galactosidase has been purified from Klebsiella Sp. No. PG-2, a bacterium isolated from rat small intestine, using calcium phosphate gel, DEAE-cellulose column chromatography and gel filtration technique. About 130-fold increase in specific activity was observed, the pH optimum of 6.5-7.0 characterizes the enzyme as neutral alpha-galactosidase. The optimum temperature was 37 degrees C and the energy of activation was 11,856 cal/mole. Km values obtained for raffinose, mellibose, stachyose and p-nitrophenyl-alpha-D-galactopyranoside were 20.0, 6.6 33.3 and 4.0 mM respectively. The activity was inhibited by p-CMB; iodoacetate, Ag2+, Hg2+, Cu2+, Pb2+ and galactose. Examination of the enzyme activity indicated that the enzyme is cytosolic and is inducible in nature.  相似文献   

16.
Modification of the purification procedures for rabbit bone marrow DNA polymerase [Byrnes, J.J., & Black, V.L. (1978) Biochemistry 17, 4226-4231] has increased the yield and stability of the enzyme thus allowing further purification. In particular, the higher molecular weight form, alpha 1, has been more abundant. Additional purification has been obtained upon phosphocellulose and chromatofocusing column chromatography. SDS slab gel electrophoretic analyses of the eluates demonstrate a 135,000 molecular weight polypeptide in nearly pure form which correlates with DNA polymerase activity. Approximately 200,000 nmol of thymidine monophosphate is incorporated into DNA (mg of protein) -1h -1 at 37 degrees C. Similar to DNA polymerase alpha from other sources this enzyme is an acidic protein, is very sensitive to aphidicolin, and has no detectable 3' to 5' nuculease activity.  相似文献   

17.
Phytase from Klebsiella Sp. No. PG-2: purification and properties   总被引:1,自引:0,他引:1  
A phytase (EC 3.1.3.8) was extracted from rat intestinal bacterium, Klebsiella Sp. No. PG.-2, and purified 50-fold by ammonium sulphate fractionation, ion-exchange chromatography and gel filtration. The enzyme is inducible in nature. The pH optimum was at 6.0 for all the inositol phosphates studied and this characterized the enzyme as an acid phosphohydrolase. Of a range of potential substrates tested, only p-nitrophenyl phosphate alongwith the inositol phosphates was hydrolyzed. It exhibits a Km of 2.0 mM; temperature optimum of 37 degrees C and energy of activation 9,120 cal/mole for all the inositol phosphates studied. The activity was inhibited by Ag2+, Hg2+, Cu2+, fluoride and high substrate concentration.  相似文献   

18.
Klebsiella aerogenes urease was purified 1,070-fold with a 25% yield by a simple procedure involving DEAE-Sepharose, phenyl-Sepharose, Mono Q, and Superose 6 chromatographies. The enzyme preparation was comprised of three polypeptides with estimated Mr = 72,000, 11,000, and 9,000 in a alpha 2 beta 4 gamma 4 quaternary structure. The three components remained associated during native gel electrophoresis, Mono Q chromatography, and Superose 6 chromatography despite the presence of thiols, glycols, detergents, and varied buffer conditions. The apparent compositional complexity of K. aerogenes urease contrasts with the simple well-characterized homohexameric structure for jack bean urease (Dixon, N. E., Hinds, J. A., Fihelly, A. K., Gazzola, C., Winzor, D. J., Blakeley, R. L., and Zerner, B. (1980) Can. J. Biochem. 58, 1323-1334); however, heteromeric subunit compositions were also observed for the enzymes from Proteus mirabilis, Sporosarcina ureae, and Selemonomas ruminantium. K. aerogenes urease exhibited a Km for urea of 2.8 +/- 0.6 mM and a Vmax of 2,800 +/- 200 mumol of urea min-1 mg-1 at 37 degrees C in 25 mM N-2-hydroxyethylpiperazineN'-2-ethanesulfonic acid, 5.0 mM EDTA buffer, pH 7.75. The enzyme activity was stable in 1% sodium dodecyl sulfate, 5% Triton X-100, 1 M KCl, and over a pH range from 5 to 10.5, with maximum activity observed at pH 7.75. Two active site groups were defined by their pKa values of 6.55 and 8.85. The amino acid composition of K. aerogenes urease more closely resembled that for the enzyme from Brevibacter ammoniagenes (Nakano, H., Takenishi, S., and Watanabe, Y. (1984) Agric. Biol. Chem. 48, 1495-1502) than those for plant ureases. Atomic absorption analysis was used to establish the presence of 2.1 +/- 0.3 mol of nickel per mol of 72,000-dalton subunit in K. aerogenes urease.  相似文献   

19.
The glycoprotein nature of renin isolated from either rabbit or human kidney has been demonstrated by affinity chromatography on concanavalin A-Sepharose. The bulk of rabbit renin activity bound to concanavalin A is released by 20 to 50 mM alpha-methyl-D-mannoside. Adsorption of renin is prevented by periodate oxidation prior to chromatography. Mild acid treatment (pH 2.5) prior to chromatography does not alter the concanavalin A binding profile although the pI values of native rabbit renin (5.1-5.6) are shifted into a broader distribution (4.7-6.4). The molecular weight values of rabbit renin obtained by gel filtration and those from zone centrifugation are identical (37000 +/- 1000), consistent with a low percent of carbohydrate in the glycoprotein. A hydrophobic contribution to the binding of renin by concanavalin A is evident since, in the presence of mM Ca2+ and Mn2+, higher concentrations of alpha-methyl-D-mannoside are required to affect the same release of renin at 23 degrees C compared to that at 4 degrees C. Furthermore, 25% ethylene glycol releases renin in the absence of alpha-methyl-D-mannoside. It is concluded that renin contains a small number of carbohydrate residues in relatively close proximity to a hydrophobic surface which enhances the interaction with concanavalin A.  相似文献   

20.
Purification to homogeneity of human placental acid sphingomyelinase   总被引:1,自引:0,他引:1  
Acid sphingomyelinase was purified to homogeneity from human placenta in the presence of a dialyzable detergent, n-octyl-beta-D-glucopyranoside. The major steps in the procedure included column chromatographies with Con A-Sepharose, sphingosylphosphorylcholine-Sepharose 4B, hexyl-agarose, and Mono P. The purified enzyme with pI 7.4 had a specific activity of approx 170,000 units/mg protein with a yield of 3.6%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a single protein band of Mr 62,000. Gel filtration with a Superose 12 column gave a single peak, and the enzyme in the presence 50 mM n-octyl-beta-D-glucopyranoside was of Mr 123,000, indicating that the native enzyme occurs in a dimeric form. The optimal pH was 5.5 with both sphingomyelin and an artificial substrate, 2-N-hexadecanoylamino-4-nitrophenylphosphorylcholine. The Km values were 55 microM with sphingomyelin and 340 microM with the artificial substrate. The enzyme activity was not affected by Mg2+ (1-5 mM), confirming that the enzyme is acid sphingomyelinase. The enzyme was stable at -80 degrees C for more than 4 months. In addition to the enzyme with pI 7.4, the Mono P chromatofocusing gave two peaks (pI 7.0 and 6.7) possessing the enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号