首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacterial conversion of biphenyl (BP) and chlorobiphenyls (CBPs) to benzoates and chlorobenzoates (CBAs) proceeds by introduction of molecular oxygen at the 2,3 position, followed by a 1,2-meta cleavage of the molecule. Complete mineralization of CBPs requires the presence of two sets of genes, one for the transformation fo CBPs into CBAs and a second for the degradation of CBAs. It has been shown previously that removal of the CBAs produced from the degradation of CBPs is essential for efficient degradation of CBPs. In this study we confirmed that CBAs inhibit BP and CBP transformation in Pseudomonas testosteroni B-356. Among the three monochlorobenzoates tested, 3-chlorobenzoate was the most effective inhibitor. Furthermore, we found that in strain B-356, CBA transformation is controlled by BP-induced oxygenases that are not present in benzoate-grown cells. We found that this BP-linked CBA transformation pathway transformed CBAs produced from CBPs into several metabolites, including chlorocatechols and corresponding muconic semialdehydes. These metabolites inhibited the 2,3-dihydroxybiphenyl 1,2-dioxygenase, while CBAs by themselves had no effect on this enzyme. Therefore, on the basis of this and other observations, it appears that when CBAs produced from CBPs accumulate in the growth medium, they are converted into unproductive metabolites that reduce the flux of the BP and CBP degradation pathway. The practical implications of these interactions on the microbial degradation of polychlorinated BPs are also discussed.  相似文献   

2.
Summary A biphenyl (BP) and chlorobiphenyl (CBP) metabolizingPseudomonas testosteroni, strain B-356 was also capable of utilizing 2-, 3-, and 4-hydroxybiphenyl. Data presented here suggest that utilization of biphenyl and mono-subtituted biphenyls involves the enzymes of the same pathway. Chloro-hydroxybiphenyls were also metabolized by strain B-356. The unsubstituted ring is first hydroxylated in position 2 and 3 and then cleaved in ameta 1, and 2, position to ultimately generate the benzoic acid derivatives. Since strain B-356 was capable of utilizing benzoic acid and mono-hydroxybenzoic acids, the utilization of biphenyl, 2-, 3-, and 4-hydroxybiphenyl is complete at non-toxic concentrations of the substrates. Chlorobenzoic acids and chloro-hydroxybenzoic acids were not metabolized further by this strain. Studies usingPseudomonas putida, strain KT2440 carrying cloned BP/CBP genes from strain B-356 provided further evidence for the presence of a common pathway for the metabolism of the above compounds inP. testosteroni, strain B-356. Suggestions are made on significance of the broad substrate specificity of the enzymes of biphenyl/chlorobiphenyl pathway in regard to their possible origin and in relation to PCB mixture degradation.  相似文献   

3.
Bacterial conversion of 4-chlorobiphenyl (4-CB) usually proceeds through a pathway involving an initial oxidation of the unsubstituted ring in the 2,3 position followed by a 1,2 meta-cleavage. The meta-cleavage product (MCP) is converted through a single hydrolysis step into chlorobenzoic acid. However, several other acidic metabolites that were not expected as part of this pathway have already been described. In this paper, we used strains of Pseudomonas putida carrying cloned genes from Pseudomonas testosteroni B-356 that are involved in polychlorinated biphenyl (PCB) degradation to demonstrate that several acidic metabolites found in the culture media of various bacteria grown in the presence of 4-CB result from alternative novel bioconversion pathways of MCP. The degradation products of MCP through these pathways were identified as analogues with saturated or shorter side chains or as 4'-chlorophenyl-2-picolinic acid; pathways leading to their formation are proposed.  相似文献   

4.
2,3-Dihydro-2,3-dihydroxybiphenyl-2,3-dehydrogenase (B2,3D) catalyzes the second step in the biphenyl degradation pathway. The nucleotide sequence of Comamonas testosteroni B-356 bphB, which encodes B2,3D, was determined. Structural analysis showed that the dehydrogenases involved in the bacterial degradation of aromatic compounds are related to each other and that their phylogenetic relationships are very similar to the relationships observed for dioxygenases that catalyze the initial reaction in the degradation pathway. The bphB sequence was used to produce recombinant active His-tagged B2,3D, which allowed us to describe for the first time some of the main features of a B2,3D. This enzyme requires NAD+, its optimal pH is 9.5, and its native M(r) was found to be 123,000, which makes it a tetramer. These characteristics are very similar to those reported for the related enzyme cis-toluene dihydrodiol dehydrogenase. The Km value and maximum rate of metabolism for 2,3-dihydro-2,3-dihydroxybiphenyl were 73 +/- 16 microM and 46 +/- 4 nmol min-1 microgram-1, respectively. Compared with the cis-toluene dihydrodiol dehydrogenase, B2,3D appeared to be more substrate specific since it was unable to attack cis-1,2-dihydroxy-cyclohexa-3,5-diene.  相似文献   

5.
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.  相似文献   

6.
Pseudomonas putida strain G7 cis-1,2-dihydro-1, 2-dihydroxynaphthalene dehydrogenase (NahB) and Comamonas testosteroni strain B-356 cis-2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) were found to be catalytically active towards cis-2,3-dihydro-2,3-dihydroxybiphenyl (specificity factors of 501 and 5850 s-1 mM-1 respectively), cis-1,2-dihydro-1, 2-dihydroxynaphthalene (specificity factors of 204 and 193 s-1 mM-1 respectively) and 3,4-dihydro-3,4-dihydroxy-2,2',5, 5'-tetrachlorobiphenyl (specificity factors of 1.6 and 4.9 s-1 mM-1 respectively). A key finding in this work is the capacity of strain B-356 BphB as well as Burkholderia cepacia strain LB400 BphB to catalyze dehydrogenation of 3,4-dihydro-3,4-dihydroxy-2,2',5, 5'-tetrachlorobiphenyl which is the metabolite resulting from the catalytic meta-para hydroxylation of 2,2',5,5'-tetrachlorobiphenyl by LB400 biphenyl dioxygenase.  相似文献   

7.
The purpose of this investigation was to examine the capacity of the biphenyl catabolic enzymes of Comamonas testosteroni B-356 to metabolize dihydroxybiphenyls symmetrically substituted on both rings. Data show that 3,3'-dihydroxybiphenyl is by far the preferred substrate for strain B-356. However, the dihydrodiol metabolite is very unstable and readily tautomerizes to a dead-end metabolite or is dehydroxylated by elimination of water. The tautomerization route is the most prominent. Thus, a very small fraction of the substrate is converted to other hydroxylated and acidic metabolites. Although 2,2'-dihydroxybiphenyl is a poor substrate for strain B-356 biphenyl dioxygenase, metabolites were produced by the biphenyl catabolic enzymes, leading to production of 2-hydroxybenzoic acid. Data show that the major route of metabolism involves, as a first step, a direct dehydroxylation of one of the ortho-substituted carbons to yield 2,3,2'-trihydroxybiphenyl. However, other metabolites resulting from hydroxylation of carbons 5 and 6 of 2,2'-dihydroxybiphenyl were also produced, leading to dead-end metabolites.  相似文献   

8.
Three chitin-binding proteins (CBPs: CBP9, CBP15, CBP66) were identified from the larval hemolymph of sweet potato hornworm, Agrius convolvuli.Two (CBP9 and CBP15) of them have been isolated and purified by gel filtration (Superdex HR 75), cation-exchange chromatography (Mono S), and reverse-phase chromatography (μRPC PC 2.1/3). In experiments to detect CBPs in hemolymph, we examined whether ionic strength and existence of bovine serum albumin in the incubation solution influenced binding affinity of CBPs to chitin. The N-terminal sequences of three CBPs were determined by the automated Edman degradation and showed the sequence homology in basic local alignment search tool search. CBP15 and CBP66 were quite similar to lysozymes and bovine serum albumins, respectively. In contrast, CBP9 is not similar to any other known protein, as judged from databank comparisons. Therefore, we concluded that CBP9 is a novel protein with binding capacity to chitin that is a component of the fungal cell wall. CBP9 has no antibacterial activity against Escherichia coli and Micrococcus luteus, and also showed negative response in hemagglutination assay. CBP9 is confirmed as a monomer with a molecular mass of 9.14 kDa by electron spray ionization and matrix-assisted laser desorption ionization mass spectrometry.  相似文献   

9.
The purpose of this investigation was to examine the capacity of the biphenyl catabolic enzymes of Comamonas testosteroni B-356 to metabolize dihydroxybiphenyls symmetrically substituted on both rings. Data show that 3,3′-dihydroxybiphenyl is by far the preferred substrate for strain B-356. However, the dihydrodiol metabolite is very unstable and readily tautomerizes to a dead-end metabolite or is dehydroxylated by elimination of water. The tautomerization route is the most prominent. Thus, a very small fraction of the substrate is converted to other hydroxylated and acidic metabolites. Although 2,2′-dihydroxybiphenyl is a poor substrate for strain B-356 biphenyl dioxygenase, metabolites were produced by the biphenyl catabolic enzymes, leading to production of 2-hydroxybenzoic acid. Data show that the major route of metabolism involves, as a first step, a direct dehydroxylation of one of the ortho-substituted carbons to yield 2,3,2′-trihydroxybiphenyl. However, other metabolites resulting from hydroxylation of carbons 5 and 6 of 2,2′-dihydroxybiphenyl were also produced, leading to dead-end metabolites.  相似文献   

10.
Genome sequence of Serratia proteamaculans 568 revealed the presence of three family 33 chitin binding proteins (CBPs). The three Sp CBPs (Sp CBP21, Sp CBP28 and Sp CBP50) were heterologously expressed and purified. Sp CBP21 and Sp CBP50 showed binding preference to β-chitin, while Sp CBP28 did not bind to chitin and cellulose substrates. Both Sp CBP21 and Sp CBP50 were synergistic with four chitinases from S. proteamaculans 568 (Sp ChiA, Sp ChiB, Sp ChiC and Sp ChiD) in degradation of α- and β-chitin, especially in the presence of external electron donor (reduced glutathione). Sp ChiD benefited most from Sp CBP21 or Sp CBP50 on α-chitin, while Sp ChiB and Sp ChiD had major advantage with these Sp CBPs on β-chitin. Dose responsive studies indicated that both the Sp CBPs exhibit synergism ≥ 0.2 μM. The addition of both Sp CBP21 and Sp CBP50 in different ratios to a synergistic mixture did not significantly increase the activity. Highly conserved polar residues, important in binding and activity of CBP21 from S. marcescens (Sm CBP21), were present in Sp CBP21 and Sp CBP50, while Sp CBP28 had only one such polar residue. The inability of Sp CBP28 to bind to the test substrates could be attributed to the absence of important polar residues.  相似文献   

11.
Cytokinin-binding proteins (CBPs) isolated from mature grains of oat ( Avena sativa L.) and wheat ( Triticum aestivum L.) by acid precipitation, ion-exchange and affinity chromatography had similar characteristics, although they differed somewhat in apparent molecular weight of the native protein as determined by gel filtration (109 and 133 kDa, respectively) and subunit size as estimated by SDS-polyacrylamide gel electrophoresis (47 and 55 kDa, respectively). Highly purified oat CBP showed very weak but distinct immunochemical cross-reactivity with anti-wheat CBP IgG, indicating different immunogenic properties of the two CBPs. Nevertheless, both CBPs exhibited very similar binding of different cytokinins and were characterized by high affinity for N6-benzyladenine (BA)-type and by low affinity for zeatin-type cytokinins to both wheat and oat CBPs and by somewhat higher binding activities of oat CBP compared to wheat CBP (Kds for BA: 4.6 × 10−7  M and 6.8 × 10−7  M , respectively). The potential role of CBPs in regulating free BA-type cytokinin levels during cereal grain development and germination is discussed.  相似文献   

12.
Aims:  The metabolism of phenanthrene and anthracene by a moderate thermophilic Nocardia otitidiscaviarum strain TSH1 was examined.
Methods and Results:  When strain TSH1 was grown in the presence of anthracene, four metabolites were identified as 1,2-dihydroxy-1,2-dihydroanthracene, 3-(2-carboxyvinyl)naphthalene-2-carboxylic acid, 2,3-dihydroxynaphthalene and benzoic acid using gas chromatography-mass spectrometry (GC-MS), reverse phase-high performance liquid chromatography (RP-HPLC) and thin-layer chromatography (TLC). Degradation studies with phenanthrene revealed 2,2'-diphenic acid, phthalic acid, 4-hydroxyphenylacetic acid, o -hydroxyphenylacetic acid, benzoic acid, a phenanthrene dihydrodiol, 4-[1-hydroxy(2-naphthyl)]-2-oxobut-3-enoic acid and 1-hydroxy-2-naphthoic acid (1H2NA), as detectable metabolites.
Conclusions:  Strain TSH1 initiates phenanthrene degradation via dioxygenation at the C-3 and C-4 or at C-9 and C-10 ring positions. Ortho -cleavage of the 9,10-diol leads to formation of 2,2'-diphenic acid. The 3,4-diol ring is cleaved to form 1H2NA which can subsequently be degraded through o -phthalic acid pathway. Benzoate does not fit in the previously published pathways from mesophiles. Anthracene metabolism seems to start with a dioxygenation at the 1 and 2 positions and ortho -cleavage of the resulting diol. The pathway proceeds probably through 2,3-dicarboxynaphthalene and 2,3-dihydroxynaphthalene. Degradation of 2,3-dihydroxynaphthalene to benzoate and transformation of the later to catechol is a possible route for the further degradation of anthracene.
Significance and Impact of the Study:  For the first time, metabolism of phenanthrene and anthracene in a thermophilic Nocardia strain was investigated.  相似文献   

13.
Biphenyl dehydrogenase, a member of short-chain dehydrogenase/reductase enzymes, catalyzes the second step of the biphenyl/polychlorinated biphenyls catabolic pathway in bacteria. To understand the molecular basis for the broad substrate specificity of Pandoraea pnomenusa strain B-356 biphenyl dehydrogenase (BphBB-356), the crystal structures of the apo-enzyme, the binary complex with NAD+, and the ternary complexes with NAD+-2,3-dihydroxybiphenyl and NAD+-4,4′-dihydroxybiphenyl were determined at 2.2-, 2.5-, 2.4-, and 2.1-Å resolutions, respectively. A crystal structure representing an intermediate state of the enzyme was also obtained in which the substrate binding loop was ordered as compared with the apo and binary forms but it was displaced significantly with respect to the ternary structures. These five structures reveal that the substrate binding loop is highly mobile and that its conformation changes during ligand binding, starting from a disorganized loop in the apo state to a well organized loop structure in the ligand-bound form. Conformational changes are induced during ligand binding; forming a well defined cavity to accommodate a wide variety of substrates. This explains the biochemical data that shows BphBB-356 converts the dihydrodiol metabolites of 3,3′-dichlorobiphenyl, 2,4,4′-trichlorobiphenyl, and 2,6-dichlorobiphenyl to their respective dihydroxy metabolites. For the first time, a combination of structural, biochemical, and molecular docking studies of BphBB-356 elucidate the unique ability of the enzyme to transform the cis-dihydrodiols of double meta-, para-, and ortho-substituted chlorobiphenyls.  相似文献   

14.
Lee SE  Seo JS  Keum YS  Lee KJ  Li QX 《Proteomics》2007,7(12):2059-2069
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.  相似文献   

15.
The aerobic cometabolism of chlorobenzoic acids (CBAs) by Rhodococcus sp. R04 was accomplished by augmenting the medium with organic carbon sources. In mineral medium supplemented with glucose (MMG), 0.5 mM 2-CBA was incompletely metabolized after the 5-day incubation, while the near-complete disappearance of 0.5 mM 4-CBA was monitored. Over the 5-day incubation period, the concentration of chloride increased to 0.17 mM in bottles containing 4-CBA, glucose and strain R04; whereas in cultivation with 2-CBA the chloride content was about 0.1 mM. After 5-day incubation, 28.5% 4-CBA was remained in mineral medium supplemented with ethanol (MME), and the relatively low values of chloride were released. To our knowledge, it is first report that the feasibility of using ethanol as an added substrate for cometabolic degradation of CBA by aerobic polychlorinated biphenyl (PCB)-degrading bacteria. The specific activities of (chloro)benzoate 1,2-dioxygenase and (chloro)catechol 1,2-dioxygenase activities were detected in cell-free extracts (CFEs) of strain R04. These results suggest that the initial degradation of CBAs occurred most likely prior to chloride release.  相似文献   

16.
In this report, we describe some of the characteristics of the Comamonas testosteroni B-356 biphenyl (BPH)-chlorobiphenyl dioxygenase system, which includes the terminal oxygenase, an iron-sulfur protein (ISPBPH) made up of an alpha subunit (51 kDa) and a beta subunit (22 kDa) encoded by bphA and bphE, respectively; a ferredoxin (FERBPH; 12 kDa) encoded by bphF; and a ferredoxin reductase (REDBPH; 43 kDa) encoded by bphG. ISPBPH subunits were purified from B-356 cells grown on BPH. Since highly purified FERBPH and REDBPH were difficult to obtain from strain B-356, these two components were purified from recombinant Escherichia coli strains by using the His tag purification system. These His-tagged fusion proteins were shown to support BPH 2,3-dioxygenase activity in vitro when added to preparations of ISPBPH in the presence of NADH. FERBPH and REDBPH are thought to pass electrons from NADH to ISPBPH, which then activates molecular oxygen for insertion into the aromatic substrate. The reductase was found to contain approximately 1 mol of flavin adenine dinucleotide per mol of protein and was specific for NADH as an electron donor. The ferredoxin was found to contain a Rieske-type [2Fe-2S] center (epsilon 460, 7,455 M-1 cm-1) which was readily lost from the protein during purification and storage. In the presence of REDBPH and FERBPH, ISPBPH was able to convert BPH into both 2,3-dihydro-2,3-dihydroxybiphenyl and 3,4-dihydro-3,4-dihydroxybiphenyl. The significance of this observation is discussed.  相似文献   

17.
Collagen-binding proteins (CBPs) play important roles in various physiological events. Some CBPs are regarded as targets for drug development; for example, platelet glycoprotein VI (GPVI) and heat shock protein 47 (HSP47) are promising targets for the development of novel antiplatelet and antifibrotic drugs, respectively. However, no systematic screening method to search compounds that inhibit collagen–CBP interactions have been developed, and only a few CBP inhibitors have been reported to date. In this study, a facile turbidimetric multiwell plate assay was developed to evaluate inhibitors of CBPs. The assay is based on the finding that CBPs retard spontaneous collagen fibril formation in vitro and that fibril formation is restored in the presence of compounds that interfere with the collagen–CBP interactions. Using the same platform, the assay was performed in various combinations of fibril-forming collagen types and CBPs. This homogeneous assay is simple, convenient, and suitable as an automated high-throughput screening system.  相似文献   

18.
Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of themeta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, andmeta-cleavage of protocatechuate. ThepcbC gene responsible for themeta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that ofPseudomonas sp. CBS3, yet only a 50% homology with that ofArthrobacter spp. However, thefcb genes for the hydrolytic dechlorination of 4CBA inPseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBP completely viameta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.  相似文献   

19.
Extracts of cultured 3T3 fibroblasts, obtained by homogenization and Triton X-100 solubilization, were fractionated on Sepharose columns covalently derivatized with asialofetuin. Three distinct carbohydrate-binding proteins (CBPs) were purified from the material bound to the affinity column: CBP35 (Mr = 35,000), CBP16 (Mr = 16,000), and CBP13.5 (Mr = 13,500). These CBPs were similar in several key properties. (a) They showed agglutination activity when assayed with rabbit erythrocytes; (b) they all appear to specifically recognize galactose-containing glycoconjugates; (c) they have low isoelectric points, pI 4.5-4.7; (d) their binding activities are rapidly lost in the absence of beta-mercaptoethanol; (e) the CBPs do not interact with each other, and the fractionated proteins can bind to asialofetuin independent of associated polypeptides; and (f) none of the proteins tend to self-associate to form oligomers of identical subunits. Comparisons of these and other properties of the CBPs suggest that CBP16 and CBP13.5 may be the murine counterparts of lactose-specific lectins previously identified in electric eel and in several bovine and avian tissues. In contrast, it appears that CBP35 represents a newly identified protein capable of binding to galactose-containing carbohydrates.  相似文献   

20.
Chlorobenzoates (CBA) arise as intermediates during the degradation of polychlorinated biphenyls (PCBs) and some chlorinated herbicides. Since PCBs were produced as complex mixtures, a range of mono-, di-, and possibly trichloro-substituted benzoates would be formed. Chlorobenzoate degradation has been proposed to be one of the rate-limiting steps in the overall PCB-degradation process. Three hybrid bacteria constructed to have the ability to completely mineralise 2-, 3-, or 4-monochlorobiphenyl respectively, have been studied to establish the range of mono- and diCBAs that can be utilised. The three strains were able to mineralise one or more of the following CBAs: 2-, 3-, and 4-monochlorobenzoate and 3,5-dichlorobenzoate. No utilisation of 2,3-, 2,5-, 2,6-, or 3,4-diCBA was observed, and only a low concentration (0.11 mM) of 2,4-diCBA was mineralised. When the strain with the widest substrate range (Burkholderia cepacia JHR22) was simultaneously supplied with two CBAs, one that it could utilise plus one that it was unable to utilise, inhibitory effects were observed. The utilisation of 2-CBA (2.5 mM) by this strain was inhibited by 2,3-CBA (200 M) and 3,4-CBA (50 M). Although 2,5-CBA and 2,6-CBA were not utilised as carbon sources by strain JHR22, they did not inhibit 2-CBA utilisation at the concentrations studied, whereas 2,4-CBA was co-metabolised with 2-CBA. The utilisation of 2-, 3-, and 4-chlorobiphenyl by strain JHR22 was also inhibited by the presence of 2,3- or 3,4-diCBA. We conclude that the effect of the formation of toxic intermediates is an important consideration when designing remediation strategies.Abbreviations PCB Polychlorinated biphenyl - CBA Chlorobenzoate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号