首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luque LE  Grape KP  Junker M 《Biochemistry》2002,41(46):13663-13671
The inhibitor of apoptosis (IAP) proteins are found in all animals and regulate apoptosis (programmed cell death) by binding and inhibiting caspase proteases. This inhibition is overcome by several apoptosis stimulators, including Drosophila Hid and mammalian Smac/DIABLO, which bind to 65-residue baculovirus IAP repeat (BIR) domains found in one to three copies in all IAPs. Virtually all BIRs contain three Cys and a His that bind zinc, a Gly in a tight turn, and an Arg. The functional and structural role of the Arg was investigated in isolated BIR domains from the baculovirus Orgyia pseudotsugata Op-IAP and the Drosophila DIAP1 proteins. Mutation of the Arg to either Ala or Lys abolished Hid and Smac binding to BIRs, despite the Hid/Smac binding site being located on the opposite side of the BIR domain from the Arg. The mutant BIR domains also exhibited weakened zinc binding, increased sensitivity to limited proteolysis, and altered circular dichroism spectra indicative of perturbed domain folding. Examination of known BIR structures indicates that the Arg side chain makes simultaneous bridging hydrogen bonds and a cation-pi interaction for which the Arg guanidino group is uniquely well suited. These interactions are likely critical for stabilizing the tertiary fold of BIR domains in all IAPs, explaining the conservation of this residue.  相似文献   

2.
The defining structural motif of the inhibitor of apoptosis (iap) protein family is the BIR (baculovirus iap repeat), a highly conserved zinc coordination domain of approximately 70 residues. Although the BIR is required for inhibitor-of-apoptosis (IAP) function, including caspase inhibition, its molecular role in antiapoptotic activity in vivo is unknown. To define the function of the BIRs, we investigated the activity of these structural motifs within Op-IAP, an efficient, virus-derived IAP. We report here that Op-IAP(1-216), a loss-of-function truncation which contains two BIRs but lacks the C-terminal RING motif, potently interfered with Op-IAP's capacity to block apoptosis induced by diverse stimuli. In contrast, Op-IAP(1-216) had no effect on apoptotic suppression by caspase inhibitor P35. Consistent with a mechanism of dominant inhibition that involves direct interaction between Op-IAP(1-216) and full-length Op-IAP, both proteins formed an immunoprecipitable complex in vivo. Op-IAP also self-associated. In contrast, the RING motif-containing truncation Op-IAP(183-268) failed to interact with or interfere with Op-IAP function. Substitution of conserved residues within BIR 2 caused loss of dominant inhibition by Op-IAP(1-216) and coincided with loss of interaction with Op-IAP. Thus, residues encompassing the BIRs mediate dominant inhibition and oligomerization of Op-IAP. Consistent with dominant interference by interaction with an endogenous cellular IAP, Op-IAP(1-216) also lowered the survival threshold of cultured insect cells. Taken together, these data suggest a new model wherein the antiapoptotic function of IAP requires homo-oligomerization, which in turn mediates specific interactions with cellular apoptotic effectors.  相似文献   

3.
We describe the peptide-binding specificity of the baculoviral IAP repeat (BIR) domains of the human inhibitor of apoptosis (IAP) proteins, X-linked IAP, cellular IAP1 and neuronal apoptosis inhibitory protein (NAIP). Synthetic peptide libraries were used to profile each domain, and we distinguish two types of binding specificity, which we refer to as type II and type III BIR domains. Both types have a dominant selectivity for Ala in the first position of the four N-terminal residues of the peptide ligands, which constitute a core recognition motif. Our analysis allows us to define the signature of type III BIRs that demonstrate a preference for Pro in the third residue of the ligand, resembling the classic IAP-binding motif (IBM). The signature of the type II BIRs was similar to type III, but with a striking absence of specificity for Pro in the third position, suggesting that the definition of an IBM must be modified depending on the type of BIR in question. These findings explain how subtle changes in the peptide-binding groove of IAP BIR domains can significantly alter the target protein selectivity. Our analysis allows for prediction of BIR domain protein-binding preferences, provides a context for understanding the mechanism of peptide selection and heightens our knowledge of the specificity of IAP antagonists that are being developed as cancer therapeutics.  相似文献   

4.
Huang Y  Park YC  Rich RL  Segal D  Myszka DG  Wu H 《Cell》2001,104(5):781-790
The inhibitor of apoptosis proteins (IAPs) represent the only endogenous caspase inhibitors and are characterized by the presence of baculoviral IAP repeats (BIRs). Here, we report the crystal structure of the complex between human caspase-7 and XIAP (BIR2 and the proceeding linker). The structure surprisingly reveals that the linker is the only contacting element for the caspase, while the BIR2 domain is invisible in the crystal. The linker interacts with and blocks the substrate groove of the caspase in a backward fashion, distinct from substrate recognition. Structural analyses suggest that the linker is the energetic and specificity determinant of the interaction. Further biochemical characterizations clearly establish that the linker harbors the major energetic determinant, while the BIR2 domain serves as a regulatory element for caspase binding and Smac neutralization.  相似文献   

5.
The inhibitor of apoptosis proteins (IAP) plays an important role in cell apoptosis. We cloned two novel IAP family members, Ap-iap1 and Ap-iap2, from Antheraea pernyi nucleopolyhedrovirus (ApNPV) genome. Ap-IAP1 contains two baculoviral IAP repeat (BIR) domains followed by a RING domain, but Ap-IAP2 has only one BIR domain and RING. The result of transient expression in Spodoptera frugiperda (Sf21) showed that Ap-iap1 blocked cell apoptosis induced by actinomycin D treatment and also rescued the p35 deficient Autographa californica nucleopolyhedrovirus (AcNPV) to replicate in Sf9 cells, while Ap-iap2 does not have this function. Several Ap-IAP1 truncations were constructed to test the activity of BIRs or RING motif to inhibit cell apoptosis. The results indicated that BIRs or RING of Ap-IAP1 had equally function to inhibit cell apoptosis. Therefore deletion of above both of the above domains could not block apoptosis induced by actinomycin D or rescue the replication of AcMNPVΔp35. We also screened two phage-display peptides that might interact with Ap-IAP1.  相似文献   

6.
An exegesis of IAPs: salvation and surprises from BIR motifs.   总被引:37,自引:0,他引:37  
The BIR (baculovirus IAP repeat) motif is a conserved sequence of approximately 70 amino acids that was identified originally in the 'inhibitor of apoptosis' (IAP) family of proteins. BIR-containing proteins (BIRPs) are found in viruses, yeast and metazoans. Recent genetic analysis of a nematode BIRP demonstrated an essential role in cytokinesis instead of apoptosis. It is likely that BIRs originated in eukaryotes to serve a role in cytokinesis and/or mitotic spindle function during cell division and that, with gene duplication, the more recent adaptation of some BIRPs to the regulation of apoptosis was possible. IAPs interact with a variety of proteins, including members of the caspase protease family. This article discusses current research on the structure and function of the BIR motifs and how it could provide insight into the function of BIRPs in cell division.  相似文献   

7.
cIAPs (cellular inhibitor of apoptosis proteins) 1 and 2 are able to regulate apoptosis when ectopically expressed in recipient cells and probably also in vivo. Previous work suggested that this is at least partially due to direct caspase inhibition, mediated by two of the three baculovirus IAP repeat (BIR) domains that are contained in these proteins. In support of this we show that the BIR domains 2 and 3 of the two cIAPs are able to bind caspases-7 and -9. However, we demonstrate that neither of these BIR domains is able to inhibit caspases because of critical substitutions in the regions that target caspase inhibition in the X-linked IAP, a tight binding caspase inhibitor. The cIAP BIR domains can be converted to tight binding caspase inhibitors by substituting these critical residues with XIAP residues. Thus, cIAPs maintain protein scaffolds suitable for direct caspase inhibition but have lost or never acquired specific caspase inhibitory interaction sites. Consequently, although the binding function of the cIAP BIRs may be important for their physiologic function, caspase inhibition is not.  相似文献   

8.
Sweeney MC  Wang X  Park J  Liu Y  Pei D 《Biochemistry》2006,45(49):14740-14748
Inhibitor of apoptosis (IAP) proteins regulate programmed cell death by inhibiting members of the caspase family of proteases. The X-chromosome-linked IAP (XIAP) contains three baculovirus IAP repeat (BIR) domains, which bind directly to the N-termini of target proteins including those of caspases-3, -7, and -9. In the present study, we defined the consensus sequences of the motifs that interact with the three BIR domains in an unbiased manner. A combinatorial peptide library containing four random residues at the N-terminus was constructed and screened using BIR domains as probes. We found that the BIR3 domain binds a highly specific motif containing an alanine or valine at the N-terminus (P1 position), an arginine or proline at the P3 position, and a hydrophobic residue (Phe, Ile, and Tyr) at the P4 position. The BIR2-binding motif is less stringent. Although it still requires an N-terminal alanine, it tolerates a wide variety of amino acids at P2-P4 positions. The BIR1 failed to bind to any peptides in the library. SPR analysis of individually synthesized peptides confirmed the library screening results. Database searches with the BIR2- and BIR3-binding consensus sequences revealed a large number of potential target proteins. The combinatorial library method should be readily applicable to other BIR domains or other types of protein modular domains.  相似文献   

9.
Verhagen AM  Coulson EJ  Vaux DL 《Genome biology》2001,2(7):reviews3009.1-reviews300910
Apoptosis is a physiological cell death process important for development, homeostasis and the immune defence of multicellular animals. The key effectors of apoptosis are caspases, cysteine proteases that cleave after aspartate residues. The inhibitor of apoptosis (IAP) family of proteins prevent cell death by binding to and inhibiting active caspases and are negatively regulated by IAP-binding proteins, such as the mammalian protein DIABLO/Smac. IAPs are characterized by the presence of one to three domains known as baculoviral IAP repeat (BIR) domains and many also have a RING-finger domain at their carboxyl terminus. More recently, a second group of BIR-domain-containing proteins (BIRPs) have been identified that includes the mammalian proteins Bruce and Survivin as well as BIR-containing proteins in yeasts and Caenorhabditis elegans. These Survivin-like BIRPs regulate cytokinesis and mitotic spindle formation. In this review, we describe the IAPs and other BIRPs, their evolutionary relationships and their subcellular and tissue localizations.  相似文献   

10.
BACKGROUND: Inhibitors of apoptosis (IAPs) are a family of cell death inhibitors found in viruses and metazoans. All IAPs have at least one baculovirus IAP repeat (BIR) motif that is essential for their anti-apoptotic activity. IAPs physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. This allows them to function as sensors and inhibitors of death signals that emanate from a variety of pathways. RESULTS: Here we report the characterization of ML-IAP, a novel human IAP that contains a single BIR and RING finger motif. ML-IAP is a powerful inhibitor of apoptosis induced by death receptors and chemotherapeutic agents, probably functioning as a direct inhibitor of downstream effector caspases. Modeling studies of the structure of the BIR domain revealed it to closely resemble the fold determined for the BIR2 domain of X-IAP. Deletion and mutational analysis demonstrated that integrity of the BIR domain was required for anti-apoptotic function. Tissue survey analysis showed expression in a number of embryonic tissues and tumor cell lines. In particular, the majority of melanoma cell lines expressed high levels of ML-IAP in contrast to primary melanocytes, which expressed undetectable levels. These melanoma cells were significantly more resistant to drug-induced apoptosis. CONCLUSIONS: ML-IAP, a novel human IAP, inhibits apoptosis induced by death receptors and chemotherapeutic agents. The BIR of ML-IAP possesses an evolutionarily conserved fold that is necessary for anti-apoptotic activity. Elevated expression of ML-IAP renders melanoma cells resistant to apoptotic stimuli and thereby potentially contributes to the pathogenesis of this malignancy.  相似文献   

11.
The inhibitor of apoptosis (IAP) gene family comprises molecules that block the activity of pro-apoptotic caspase proteases. Paradoxically, yeasts contain IAP proteins but no caspases and no apoptotic program. To determine the function of these proteins in vivo, we disrupted the BIR1 gene, encoding the only known IAP in yeast Saccharomyces cerevisiae. Sporulation of heterozygous diploids yielded no viable mutant haploids, indicating that BIR1 is an essential gene. By flow cytometry, some heterozygous mutants were polyploid accumulating >4 N DNA content. These cells exhibited a 20-40% reduction in growth rate, which was rescued by plasmid-borne over-expression of BIR1 but not by its human counterpart, survivin. Deletion analysis revealed that the N-terminal domain of Bir1, containing the conserved baculovirus IAP repeat, was able to partially complement the cell growth defect caused by BIR1 deletion. Moreover, the full-length and truncated forms of Bir1 accelerated cell division in wild-type cells. Finally, BIR1 heterozygous mutants exhibited grossly altered cell morphology with misshapen or abnormally long buds connected to an unusually large mother cell. These findings identify a novel function of IAP proteins in the pleiotropic control of cell division, in addition to their role in the suppression of apoptosis.  相似文献   

12.
13.
The inhibitor of apoptosis proteins (IAP) are endogenous caspase inhibitors in the metazoan and characterized by the presence of baculoviral IAP repeats (BIR). X-linked IAP (XIAP) contains three BIR domains and directly inhibits effector caspases such as caspase-7 via a linker_BIR2 fragment and initiator caspases such as caspase-9 via the BIR3 domain. A mitochondrial protein Smac/DIABLO, which is released during apoptosis, antagonizes XIAP-mediated caspase inhibition by interacting directly with XIAP. Here, using glutathione S-transferase pulldown and caspase activity assay, we show that Smac is ineffective in relieving either caspase-7 or caspase-9 inhibition by XIAP domain fragments. In addition, Smac forms a ternary complex with caspase-7 and linker_BIR2, suggesting that Smac/linker_BIR2 interaction does not sterically exclude linker_BIR2/caspase-7 interaction. However, Smac is effective in removing caspase-7 and caspase-9 inhibition by XIAP fragments containing both the BIR2 and BIR3 domains. Surface plasmon resonance measurements show that Smac interacts with the BIR2 or BIR3 domain in micromolar dissociation constants. On the other hand, Smac interacts with an XIAP construct containing both BIR2 and BIR3 domains in a subnanomolar dissociation constant by the simultaneous interaction of the Smac dimer with the BIR2 and BIR3 domains of a single XIAP molecule. This 2:1 Smac/XIAP interaction not only possesses enhanced affinity but also sterically excludes XIAP/caspase-7 interaction, demonstrating the requirement of both BIR2 and BIR3 domains for Smac to relieve XIAP-mediated caspase inhibition.  相似文献   

14.
Three anti-apoptosis genes, Ls-iap2, iap3 and p49 were found in Leucania separata multiple nuclear polyhedrovirus. Amino acid sequence homology of Ls-IAP2 and Ls-IAP3 with Op-IAP2 and Op-IAP3 from Orgyia pseddotsugata MNPV were 20% and 42%, while that of Ls-P49 is 28% with Sl-P49 from Spodoptera littorolis MNPV. Ls-IAP2 contains one baculoviral IAP repeat (BIR) domain followed by a RING domain, while Ls-IAP3 contains two BIRs and a RING. Ls-P49 contains a reactive site loop, predicted cleavage site (KKLD(74) downward arrow G) that is different from Sl-P49 (TVID(94) downward arrow G). Expressed Ls-iap3 or Ls-p49 under presence of actinomycin D in SF9 cells, DNA ladder assay revealed that Ls- IAP3 or Ls-P49 could block the apoptosis of SF9 cells induced by actinomycin D. Replication of p35 deficient-mutant Autographa californica MNPV in SF9 cells was also rescued when Ls-iap3 or Ls-p49 was expressed transiently. No anti-apoptotic activity was observed for Ls-IAP2. The results showed that both of Ls-IAP3 and Ls-P49 were functional apoptotic suppressors in SF9 cells.  相似文献   

15.
Direct IAP binding protein with low pI/second mitochondrial activator of caspases, HtrA2/Omi and GstPT/eRF3 are mammalian proteins that bind via N-terminal inhibitor of apoptosis protein (IAP) binding motifs (IBMs) to the baculoviral IAP repeat (BIR) domains of IAPs. These interactions can prevent IAPs from inhibiting caspases, or displace active caspases, thereby promoting cell death. We have identified several additional potential IAP antagonists, including glutamate dehydrogenase (GdH), Nipsnap 3 and 4, CLPX, leucine-rich pentatricopeptide repeat motif-containing protein and 3-hydroxyisobutyrate dehydrogenase. All are mitochondrial proteins from which N-terminal import sequences are removed generating N-terminal IBMs. Whereas most of these proteins have alanine at the N-terminal position, as observed for previously described antagonists, GdH has an N-terminal serine residue that is essential for X-linked IAP (XIAP) interaction. These newly described IAP binding proteins interact with XIAP mainly via BIR2, with binding eliminated or significantly reduced by a single point mutation (D214S) within this domain. Through this interaction, many are able to antagonise XIAP inhibition of caspase 3 in vitro.  相似文献   

16.
Inhibitors of apoptosis (IAPs) physically interact with a variety of pro-apoptotic proteins and inhibit apoptosis induced by diverse stimuli. X-linked IAP (X-IAP) is a prototype IAP family member that inhibits several caspases, the effector proteases of apoptosis. The inhibitory activity of X-IAP is regulated by SMAC, a protein that is processed to its active form upon receipt of a death stimulus. Cleaved SMAC binds X-IAP and antagonizes its anti-apoptotic activity. Here we show that melanoma IAP (ML-IAP), a potent anti-cell death protein and caspase inhibitor, physically interacts with SMAC through its BIR (baculovirus IAP repeat) domain. In addition to binding full-length SMAC, ML-IAP BIR associates with SMAC peptides that are derived from the amino terminus of active, processed SMAC. This high affinity interaction is very specific and can be completely abolished by single amino acid mutations either in the amino terminus of active SMAC or in the BIR domain of ML-IAP. In cells expressing ML-IAP and X-IAP, SMAC coexpression or addition of SMAC peptides abrogates the ability of the IAPs to inhibit cell death. These results demonstrate the feasibility of using SMAC peptides as a way to sensitize IAP-expressing cells to pro-apoptotic stimuli such as chemotherapeutic agents.  相似文献   

17.
Inhibitor of apoptosis (IAPs) proteins are characterized by the presence of evolutionarily conserved baculoviral inhibitor of apoptosis repeat (BIR) domains, predominantly known for their role in inhibiting caspases and, thereby, apoptosis. We have shown previously that multi-BIR domain-containing IAPs, cellular IAPs, and X-linked IAP can control tumor cell migration by directly regulating the protein stability of C-RAF kinase. Here, we extend our observations to a single BIR domain containing IAP family member melanoma-IAP (ML-IAP). We show that ML-IAP can directly bind to C-RAF and that ML-IAP depletion leads to an increase in C-RAF protein levels, MAPK activation, and cell migration in melanoma cells. Thus, our results unveil a thus far unknown role for ML-IAP in controlling C-RAF stability and cell migration.  相似文献   

18.
NMR studies of the antiapoptotic protein survivin have been used to determine the homodimer interface of the protein in solution and to identify residues of the protein that interact with Smac/Diablo. In solution, survivin(1-120) forms a bow-tie-shaped dimer whose interface is composed of its N-terminal residues as well as residues connecting its BIR domain to the C-terminal alpha helix. The solution structure resolves the controversy regarding the two possible dimer interfaces for survivin observed in X-ray crystal structures. The structural basis for the interaction between survivin and Smac/Diablo was also investigated. When Smac/Diablo or N-terminal Smac/Diablo peptide analogues are added to a solution of survivin, specific residues near alpha4 and beta3 are perturbed. NMR experiments indicate that the peptides bind across the third beta-strand of survivin in a manner similar to the way Smac/Diablo peptides bind to the BIR3 domain of X-linked IAP (XIAP).  相似文献   

19.
20.
Genetic alterations enhancing cell survival and suppressing apoptosis are hallmarks of cancer that significantly reduce the efficacy of chemotherapy or radiotherapy. The Inhibitor of Apoptosis Protein (IAP) family hosts conserved proteins in the apoptotic pathway whose over-expression, frequently found in tumours, potentiates survival and resistance to anticancer agents. In humans, IAPs comprise eight members hosting one or more structural Baculoviral IAP Repeat (BIR) domains. Cellular IAPs (cIAP1 and 2) indirectly inhibit caspase-8 activation, and regulate both the canonical and the non-canonical NF-κB signaling pathways. In contrast to cIAPs, XIAP (X chromosome-linked Inhibitor of Apoptosis Protein) inhibits directly the effector caspases-3 and -7 through its BIR2 domain, and initiator caspase-9 through its BIR3 domain; molecular docking studies suggested that Smac/DIABLO antagonizes XIAP by simultaneously targeting both BIR2 and BIR3 domains. Here we report analytical gel filtration, crystallographic and SAXS experiments on cIAP1-BIR3, XIAP-BIR3 and XIAP-BIR2BIR3 domains, alone and in the presence of compound 9a, a divalent homodimeric Smac mimetic. 9a is shown to bind two BIR domains inter- (in the case of two BIR3) and intra-molecularly (in the case of XIAP-BIR2BIR3), with higher affinity for cIAP1-BIR3, relative to XIAP-BIR3. Despite the different crystal lattice packing, 9a maintains a right handed helical conformation in both cIAP1-BIR3 and XIAP-BIR3 crystals, that is likely conserved in solution as shown by SAXS data. Our structural results demonstrate that the 9a linker length, its conformational degrees of freedom and its hydrophobicity, warrant an overall compact structure with optimal solvent exposure of its two active moieties for IAPs binding. Our results show that 9a is a good candidate for pre-clinical and clinical studies, worth of further investigations in the field of cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号