首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Genomic rearrangements resulting in activating kinase fusions have been increasingly described in a number of cancers including malignant melanoma, but their frequency in specific melanoma subtypes has not been reported. We used break‐apart fluorescence in situ hybridization (FISH) to identify genomic rearrangements in tissues from 59 patients with various types of malignant melanoma including acral lentiginous, mucosal, superficial spreading, and nodular. We identified four genomic rearrangements involving the genes BRAF, RET, and ROS1. Of these, three were confirmed by Immunohistochemistry (IHC) or sequencing and one was found to be an ARMC10‐BRAF fusion that has not been previously reported in melanoma. These fusions occurred in different subtypes of melanoma but all in tumors lacking known driver mutations. Our data suggest gene fusions are more common than previously thought and should be further explored particularly in melanomas lacking known driver mutations.  相似文献   

2.
Inhibitors targeting the mitogen‐activated protein kinase (MAPK) pathway and immune checkpoint molecules have dramatically improved the survival of patients with BRAFV600‐mutant melanoma. For BRAF/RAS wild‐type (WT) melanoma patients, however, immune checkpoint inhibitors remain the only effective therapeutic option with 40% of patients responding to PD‐1 inhibition. In the present study, a large panel of 10 BRAFV600‐mutant and 13 BRAF/RAS WT melanoma cell lines was analyzed to examine MAPK dependency and explore the potential utility of MAPK inhibitors in this melanoma subtype. We now show that the majority of BRAF/RAS WT melanoma cell lines (8/13) display some degree of sensitivity to trametinib treatment and resistance to trametinib in this melanoma subtype is associated with, but not mediated by NF1 suppression. Although knockdown of NF1 stimulates RAS and CRAF activity, the activation of CRAF by NF1 knockdown is limited by ERK‐dependent feedback in BRAF‐mutant cells, but not in BRAF/RAS WT melanoma cells. Thus, NF1 is not a dominant regulator of MAPK signaling in BRAF/RAS WT melanoma, and co‐targeting multiple MAP kinase nodes provides a therapeutic opportunity for this melanoma subtype.  相似文献   

3.
BRAF is the most prevalent oncogene and an important therapeutic target in melanoma. In some cancers, BRAF is activated by rearrangements that fuse its kinase domain to 5′ partner genes. We examined 848 comparative genomic hybridization profiles of melanocytic tumors and found copy number transitions within BRAF in 10 tumors, of which six could be further characterized by sequencing. In all, the BRAF kinase domain was fused in‐frame to six N‐terminal partners. No other mutations were identified in melanoma oncogenes. One of the seven melanoma cell lines without known oncogenic mutations harbored a similar BRAF fusion, which constitutively activated the MAP kinase pathway. Sorafenib, but not vemurafenib, could block MAP kinase pathway activation and proliferation of the cell line at clinically relevant concentrations, whereas BRAFV600E mutant melanoma cell lines were significantly more sensitive to vemurafenib. The patient from whom the cell line was derived showed a durable clinical response to sorafenib.  相似文献   

4.
Resistance to treatment is the main problem of targeted treatment for cancer. We followed ten patients during treatment with vemurafenib, by three‐dimensional imaging. In all patients, only a subset of lesions progressed. Next‐generation DNA sequencing was performed on sequential biopsies in four patients to uncover mechanisms of resistance. In two patients, we identified mutations that explained resistance to vemurafenib; one of these patients had a secondary BRAF L505H mutation. This is the first observation of a secondary BRAF mutation in a vemurafenib‐resistant patient‐derived melanoma sample, which confirms the potential importance of the BRAF L505H mutation in the development of therapy resistance. Moreover, this study hints toward an important role for tumor heterogeneity in determining the outcome of targeted treatments.  相似文献   

5.
BRAF inhibitors have revolutionized treatment of mutant BRAF metastatic melanomas. However, resistance develops rapidly following BRAF inhibitor treatment. We have found that BRAF‐mutant melanoma cell lines are more sensitive than wild‐type BRAF cells to the small molecule tyrosine kinase inhibitor dovitinib. Sensitivity is associated with inhibition of a series of known dovitinib targets. Dovitinib in combination with several agents inhibits growth more effectively than either agent alone. These combinations inhibit BRAF‐mutant melanoma and colorectal carcinoma cell lines, including cell lines with intrinsic or selected BRAF inhibitor resistance. Hence, combinations of dovitinib with second agents are potentially effective therapies for BRAF‐mutant melanomas, regardless of their sensitivity to BRAF inhibitors.  相似文献   

6.
BRAF inhibitors improve melanoma patient survival, but resistance invariably develops. Here we report the discovery of a novel BRAF mutation that confers resistance to PLX4032 employing whole‐exome sequencing of drug‐resistant BRAFV600K melanoma cells. We further describe a new screening approach, a genome‐wide piggyBac mutagenesis screen that revealed clinically relevant aberrations (N‐terminal BRAF truncations and CRAF overexpression). The novel BRAF mutation, a Leu505 to His substitution (BRAFL505H), is the first resistance‐conferring second‐site mutation identified in BRAF mutant cells. The mutation replaces a small nonpolar amino acid at the BRAF‐PLX4032 interface with a larger polar residue. Moreover, we show that BRAFL505H, found in human prostate cancer, is itself a MAPK‐activating, PLX4032‐resistant oncogenic mutation. Lastly, we demonstrate that the PLX4032‐resistant melanoma cells are sensitive to novel, next‐generation BRAF inhibitors, especially the ‘paradox‐blocker’ PLX8394, supporting its use in clinical trials for treatment of melanoma patients with BRAF‐mutations.  相似文献   

7.
Chronic sun‐damaged (CSD) melanoma represents 10%–20% of cutaneous melanomas and is characterized by infrequent BRAF V600E mutations and high mutational load. However, the order of genetic events or the extent of intra‐tumor heterogeneity (ITH) in CSDhigh melanoma is still unknown. Ultra‐deep targeted sequencing of 40 cancer‐associated genes was performed in 72 in situ or invasive CMM, including 23 CSDhigh cases. In addition, we performed whole exome and RNA sequencing on multiple regions of primary tumor and multiple in‐transit metastases from one CSDhigh melanoma patient. We found no significant difference in mutation frequency in melanoma‐related genes or in mutational load between in situ and invasive CSDhigh lesions, while this difference was observed in CSDlow lesions. In addition, increased frequency of BRAF V600K, NF1, and TP53 mutations (p < .01, Fisher's exact test) was found in CSDhigh melanomas. Sequencing of multiple specimens from one CSDhigh patient revealed strikingly limited ITH with >95% shared mutations. Our results provide evidence that CSDhigh and CSDlow melanomas are distinct molecular entities that progress via different genetic routes.  相似文献   

8.
This study investigates the mechanism of action behind the long‐term responses (12–16 months) of two BRAF WT melanoma patients to the AKT inhibitor MK‐2206 in combination with paclitaxel and carboplatin. Although single agent MK‐2206 inhibited phospho‐AKT signaling, it did not impact in vitro melanoma growth or survival. The combination of MK‐2206 with paclitaxel and carboplatin was cytotoxic in long‐term colony formation and 3D spheroid assays, and induced autophagy. Autophagy was initially protective with autophagy inhibitors and deletion of ATG5 found to enhance cytotoxicity. Although prolonged autophagy induction (>6 days) led to caspase‐dependent apoptosis, drug resistant clones still emerged. Autophagy inhibition enhanced the cell death response through reactive oxygen species and could be reversed by anti‐oxidants. We demonstrate for the first time that AKT inhibition in combination with chemotherapy may have clinical activity in BRAF WT melanoma and show that an autophagy inhibitor may prevent resistance to these drugs.  相似文献   

9.
Drug resistance is a major obstacle in the targeted therapy of melanoma using BRAF/MEK inhibitors. This study was to identify BRAF V600E-associated oncogenic pathways that predict resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors. We took in silico approaches to analyze the activities of 24 cancer-related pathways in melanoma cells and identify those whose activation was associated with BRAF V600E and used the support vector machine (SVM) algorithm to predict the resistance of BRAF-mutated melanoma cells to BRAF/MEK inhibitors. We then experimentally confirmed the in silico findings. In a microarray gene expression dataset of 63 melanoma cell lines, we found that activation of multiple oncogenic pathways preferentially occurred in BRAF-mutated melanoma cells. This finding was reproduced in 5 additional independent melanoma datasets. Further analysis of 46 melanoma cell lines that harbored BRAF mutation showed that 7 pathways, including TNFα, EGFR, IFNα, hypoxia, IFNγ, STAT3, and MYC, were significantly differently expressed in AZD6244-resistant compared with responsive melanoma cells. A SVM classifier built on this 7-pathway activation pattern correctly predicted the response of 10 BRAF-mutated melanoma cell lines to the MEK inhibitor AZD6244 in our experiments. We experimentally showed that TNFα, EGFR, IFNα, and IFNγ pathway activities were also upregulated in melanoma cell A375 compared with its sub-line DRO, while DRO was much more sensitive to AZD6244 than A375. In conclusion, we have identified specific oncogenic pathways preferentially activated in BRAF-mutated melanoma cells and a pathway pattern that predicts resistance of BRAF-mutated melanoma to BRAF/MEK inhibitors, providing novel clinical implications for melanoma therapy.  相似文献   

10.
11.
12.
KIT mutations have been detected in different cancer subtypes, including melanoma. The gene also has been extensively studied in farm animals for its prominent role in coat color. The present work aimed at detecting KIT variants in a porcine model of cutaneous melanoma, the melanoblastoma‐bearing Libechov Minipig (MeLiM). By sequencing exons and intron borders, 36 SNPs and one indel were identified. Of 10 coding SNPs, three were non‐synonymous mutations, likely to affect the protein conformation. A promising variant, located in exon 19 (p.Val870Ala), was genotyped in a MeLiM × Duroc cross, and an association analysis was conducted on several melanoma‐related traits. This variant showed a significant association with melanoma development, tumor ulceration and cutaneous invasion. In conclusion, although the KIT gene would not be a major causal gene for melanoma development in pig, its genetic variation could be influencing this trait.  相似文献   

13.
BRAF mutations at codons L597 and K601 occur uncommonly in melanoma. Clinical and pathological associations of these mutations were investigated in a cohort of 1119 patients with known BRAF mutation status. A BRAF mutation was identified in 435 patients; Mutations at L597 and the K601E mutation were seen in 3.4 and 3.2% of these, respectively. K601E melanomas tended to occur in male patients, a median age of 58 yr, were generally found on the trunk (64%) and uncommonly associated with chronically sun‐damaged (CSD) skin. BRAF L597 melanomas occurred in older patients (median 66 yr), but were associated with CSD skin (extremities or head and neck location – 73.3%, P = 0.001). Twenty‐three percent of patients with V600E‐ and 43% of patients with K601E‐mutant melanomas presented with nodal disease at diagnosis compared to just 14% of patients with BRAF wild‐type tumors (P = 0.001 and 0.006, respectively). Overall, these mutations represent a significant minority of BRAF mutations, but have distinct clinicopathological phenotypes and clinical behaviors.  相似文献   

14.
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.  相似文献   

15.
To determine the feasibility of liquid biopsy for monitoring of patients with advanced melanoma, cell‐free DNA was extracted from plasma for 25 Stage III/IV patients, most (84.0%) having received previous therapy. DNA concentrations ranged from 0.6 to 390.0 ng/ml (median = 7.8 ng/ml) and were positively correlated with tumor burden as measured by imaging (Spearman rho = 0.5435, p = .0363). Using ultra‐deep sequencing for a 61‐gene panel, one or more mutations were detected in 12 of 25 samples (48.0%), and this proportion did not vary significantly for patients on or off therapy at the time of blood draw (52.9% and 37.5% respectively; p = .673). Sixteen mutations were detected in eight different genes, with the most frequent mutations detected in BRAF, NRAS, and KIT. Allele fractions ranged from 1.1% to 63.2% (median = 29.1%). Among patients with tissue next‐generation sequencing, nine of 11 plasma mutations were also detected in matched tissue, for a concordance of 81.8%.  相似文献   

16.
Melanoma in young children is rare; however, its incidence in adolescents and young adults is rising. We describe the clinical course of a 15‐year‐old female diagnosed with AJCC stage IB non‐ulcerated primary melanoma, who died from metastatic disease 4 years after diagnosis despite three lines of modern systemic therapy. We also present the complete genomic profile of her tumour and compare this to a further series of 13 adolescent melanomas and 275 adult cutaneous melanomas. A somatic BRAFV600E mutation and a high mutational load equivalent to that found in adult melanoma and composed primarily of C>T mutations were observed. A germline genomic analysis alongside a series of 23 children and adolescents with melanoma revealed no mutations in known germline melanoma‐predisposing genes. Adolescent melanomas appear to have genomes that are as complex as those arising in adulthood and their clinical course can, as with adults, be unpredictable.  相似文献   

17.
The deubiquitinating enzyme BAP1 is mutated in a hereditary cancer syndrome with a high risk of mesothelioma and melanocytic tumors. Here, we show that Bap1 deletion in melanocytes cooperates with the constitutively active, oncogenic form of BRAF (BRAFV600E) and UV to cause melanoma in mice, albeit at very low frequency. In addition, Bap1‐null melanoma cells derived from mouse tumors are more aggressive and colonize and grow at distant sites more than their wild‐type counterparts. Molecularly, Bap1‐null melanoma cell lines have increased DNA damage measured by γH2aX and hyperubiquitination of histone H2a. Therapeutically, these Bap1‐null tumors are completely responsive to BRAF‐ and MEK‐targeted therapies. Therefore, BAP1 functions as a tumor suppressor and limits tumor progression in melanoma.  相似文献   

18.
The activation of oncogenes in primary cells blocks proliferation by inducing oncogene‐induced senescence (OIS), a highly potent in vivo tumor‐suppressing program. A prime example is mutant BRAF, which drives OIS in melanocytic nevi. Progression to melanoma occurs only in the context of additional alteration(s) like the suppression of PTEN, which abrogates OIS. Here, we performed a near‐genomewide short hairpin (sh)RNA screen for novel OIS regulators and identified by next generation sequencing and functional validation seven genes. While all but one were upregulated in OIS, depletion of each of them abrogated BRAFV600E‐induced arrest. With genome‐wide DNA methylation analysis, we found one of these genes, RASEF, to be hypermethylated in primary cutaneous melanomas but not nevi. Bypass of OIS by depletion of RASEF was associated with suppression of several senescence biomarkers including senescence‐associated (SA)‐β‐galactosidase activity, interleukins, and tumor suppressor p15INK4B. Restoration of RASEF expression inhibited proliferation. These results illustrate the power of shRNA OIS bypass screens and identify a potential novel melanoma suppressor gene.  相似文献   

19.
An activating mutation in codon 599 of BRAF has been identified in approximately 60% of human cutaneous nevi and melanomas, but not melanomas of mucosal origin. The purpose of this study was to determine if BRAF mutations occur in canine oral malignant melanomas. The canine BRAF gene was first cloned from normal canine testicular cDNA, and a novel previously unreported splice variant involving exon 5 was identified during this process. To screen canine melanoma samples for BRAF mutation in codon 599, cDNA and genomic DNA were isolated from canine malignant melanoma cell lines and primary tumor samples respectively, all from cases seen at the Veterinary Medical Teaching Hospital at the University of California, Davis. Polymerase chain reaction (PCR) was performed for exon 15 using primers based at the 5 end of exon 15 and the 5 end of intron 15 and the resultant products were directly sequenced. No mutations in codon 599 or exon 15 were identified in any of the 17 samples evaluated. However, all of the melanoma cell lines expressed BRAF and demonstrated high levels of basal ERK phosphorylation suggesting that dysregulation of this pathway is present. Therefore, similar to the case with human mucosal melanomas, canine oral malignant melanomas do not possess codon 599 BRAF mutations commonly identified in human cutaneous melanomas. This finding supports the notion that melanomas arising from non-sun-exposed sites exhibit distinct mechanisms of molecular transformation.  相似文献   

20.
Next‐generation sequencing has enabled genetic and genomic characterization of melanoma to an unprecedent depth. However, the high mutational background plus the limited depth of coverage of whole‐genome sequencing performed on cutaneous melanoma samples make the identification of novel driver mutations difficult. We sought to explore the somatic mutation portfolio in exonic and gene regulatory regions in human melanoma samples, for which we performed targeted sequencing of tumors and matched germline DNA samples from 89 melanoma patients, identifying known and novel recurrent mutations. Two recurrent mutations found in the RPS27 promoter associated with decreased RPS27 mRNA levels in vitro. Data mining and IHC analyses revealed a bimodal pattern of RPS27 expression in melanoma, with RPS27‐low patients displaying worse prognosis. In vitro characterization of RPS27‐high and RPS27‐low melanoma cell lines, as well as loss‐of‐function experiments, demonstrated that high RPS27 status provides increased proliferative and invasive capacities, while low RPS27 confers survival advantage in low attachment and resistance to therapy. Additionally, we demonstrate that 10 other cancer types harbor bimodal RPS27 expression, and in those, similarly to melanoma, RPS27‐low expression associates with worse clinical outcomes. RPS27 promoter mutation could thus represent a mechanism of gene expression modulation in melanoma patients, which may have prognostic and predictive implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号