首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aims: To study the metabolic profile of Pseudomonas rhodesiae and Pseudomonas fluorescens in water–organic solvent systems using terpene substrates for both growth and biotransformation processes and to determine the aerobic or anaerobic status of these degradation pathways. Materials and Methods: Substrates from pinene (α‐pinene, α‐pinene oxide, β‐pinene, β‐pinene oxide, turpentine) and limonene (limonene, limonene‐1,2‐oxide, orange peel oil) families were tested. For the bioconversion, the terpene‐grown biomass was concentrated and used either as whole cells or as a crude enzymatic extract. Conclusion: Pseudomonas rhodesiae was the most suitable biocatalyst for the production of isonovalal from α‐pinene oxide and did not metabolize limonene. Pseudomonas fluorescens was a more versatile micro‐organism and metabolized limonene in two different ways. The first (anaerobic, cofactor‐independent, noninducible) allowed limonene elimination by synthesizing α‐terpineol. The second (aerobic, cofactor‐dependent) involved limonene‐1,2‐oxide as an intermediate for energy production through a β‐oxidation process. Significance and Impact of the Study: Enzymatic isomerization of β‐ to α‐pinene was described for the first time for both strains. Alpha‐terpineol production by P. fluorescens was very efficient and appeared as a promising alternative for the commercial production of this bioflavour.  相似文献   

2.
Leptocybe invasa is an insect pest causing gall formation on oviposited shoot tips and leaves of Eucalyptus trees leading to leaf deformation, stunting, and death in severe cases. We previously observed different constitutive and induced terpenes, plant specialized metabolites that may act as attractants or repellents to insects, in a resistant and susceptible clone of Eucalyptus challenged with Linvasa. We tested the hypothesis that specific terpenes are associated with pest resistance in a Eucalyptus grandis half‐sib population. Insect damage was scored over 2 infestation cycles, and leaves were harvested for near‐infrared reflectance (NIR) and terpene measurements. We used Bayesian model averaging for terpene selection and obtained partial least squares NIR models to predict terpene content and Linvasa infestation damage. In our optimal model, 29% of the phenotypic variation could be explained by 7 terpenes, and the monoterpene combination, limonene, α‐terpineol, and 1,8‐cineole, could be predicted with an NIR prediction ability of  .67. Bayesian model averaging supported α‐pinene, γ‐terpinene, and iso‐pinocarveol as important for predicting Linvasa infestation. Susceptibility was associated with increased γ‐terpinene and α‐pinene, which may act as a pest attractant, whereas reduced susceptibility was associated with iso‐pinocarveol, which may act to recruit parasitoids or have direct toxic effects.  相似文献   

3.
In order to investigate the possible use of terpenic derivatives to treat anisakiasis caused by L3 larvae of Anisakis, we studied the in vitro and in vivo larvicidal activity of three sesquiterpenes (nerolidol, farnesol and elemol). In vitro experiments included the histological study of larval damage and in vivo studies the measurement of myeloperoxidase activity in rat gastrointestinal tract after administration of the sesquiterpenes. In the in vitro assays, the most active compound against the L3 larvae was nerolidol, followed by farnesol; both caused the death of all nematodes, which showed cuticle changes and intestinal wall rupture. In the in vivo assays, only 20% of infected rats treated with nerolidol or farnesol showed gastric wall lesions in comparison to 86.6% of control animals. According to these results, nerolidol and farnesol are good candidates for further research as biocidal agents against L3 larvae of Anisakis type I.  相似文献   

4.
Ontogenetic changes in leaf chemistry can affect plant–herbivore interactions profoundly. Various theoretical models predict different ontogenetic trajectories of defence chemicals. Empirical tests do not consistently support one model. In Eucalyptus nitens, a fast‐growing tree, we assessed early developmental changes to seedlings, in foliage concentrations of nitrogen and the full suite of known secondary (defence) chemicals. This included the terpene, α‐pinene, whose impact on marsupial herbivory is unknown. To test for the influence of abiotic conditions on the ontogenetic trajectories we overlaid a nutrient treatment. Ontogenetic trajectories varied among compounds. Sideroxylonals and cineole were barely detected in very young seedlings, but increased substantially over the first 200 days. Total phenolic concentration increased fourfold over this time. In contrast, α‐pinene concentration peaked within the first 60 days and again between 150 and 200 days. Nutrients altered the degree but not the direction of change of most chemicals. A shorter trial run at a different season showed qualitatively similar patterns, although α‐pinene concentration started very high. We investigated the effect of detected levels of α‐pinene and cineole on food intake by two mammalian herbivores, common brushtail possums (Trichosurus vulpecula) and red‐bellied pademelons (Thylogale billardierii). Under no‐choice conditions neither terpene reduced intake; but with a choice, possums preferred α‐pinene to cineole. The ontogenetic trajectories of most compounds were therefore consistent with models that predict an increase as plants develop. Published data from later developmental stages in E. nitens also confirm this pattern. α‐Pinene, however, was the only secondary compound found at significant levels in very young seedlings; but it did not constrain feeding by marsupial herbivores. Models must allow for different roles of defensive secondary chemicals, presumably associated with different selective pressures as plants age, which result in different ontogenetic trajectories.  相似文献   

5.
The parasitic wasp Microplitis croceipes (Cresson) (Hymenoptera: Braconidae) showed its own characteristic electroantennogram (EAG) response profiles to 13 host‐related (cis‐3‐hexenol, α‐pinene (R)‐(+)‐limonene (S)‐(–)‐limonene, trans‐β‐ocimene (±)‐linalool, (–)‐trans‐caryophyllene, α‐humulene, nerolidol, trans‐nerolidol, cis‐nerolidol, methyl jasmonate and indole) and four anthropogenic (2‐diisopropylaminoethanol, 2,2′‐thiodiethanol, 2‐methyl‐5‐nitroaniline and cyclohexanone) volatile compounds. These profiles were similar between males and females except for 2‐diisopropylaminoethanol, which elicited significantly larger EAG responses in males. Among the compounds tested, cis‐3‐hexenol, linalool and cyclohexanone elicited the largest EAG responses. EAG responses were not influenced by the age of wasps between 1 and 13 days after emergence. EAG responses were dose‐dependent, and highly EAG‐active compounds elicited significant EAG responses with less than 10 μg of the compounds at source. Quantification of compounds released from an odour cartridge indicates that release rate is highly dependent on the chemical nature of stimuli, showing up to 10 000‐fold differences in the amount released between different compounds when the same amount was loaded in the odour cartridge. Wasps having undergone a behavioural training regime to be attracted to either cyclohexanone or methyl jasmonate did not show any differences in EAG responses from those of untrained wasps.  相似文献   

6.
Abstract 1 Host plant terpenes can influence attraction of conifer bark beetles to their aggregation pheromones: both synergistic and inhibitory compounds have been reported. However, we know little about how varying concentrations of individual monoterpenes affect responses. 2 We tested a gradient of ratios of α‐pinene, the predominant monoterpene in host pines in the Great Lakes region of North America, to Ips pini's pheromone, racemic ipsdienol plus lanierone. 3 Ips pini demonstrated a parabolic response, in which low concentrations of α‐pinene had no effect on attraction to its pheromone, intermediate concentrations were synergistic and high concentrations were inhibitory. These results suggest optimal release rates for population monitoring and suppression programmes. 4 Inhibition of bark beetle attraction to pheromones may be an important component of conifer defences. At terpene to pheromone ratios emulating emissions from trees actively responding to a first attack, arrival of flying beetles was low. This may constitute an additional defensive role of terpenes, which are also toxic to bark beetles at high concentrations. 5 Reduced attraction to a low ratio of α‐pinene to pheromone, as occurs when colonization densities become high and the tree's resin is largely depleted, might reflect a mechanism for preventing excessive crowding. 6 Thanasimus dubius, the predominant predator of I. pini, was also attracted to ipsdienol plus lanierone, but its response differed from that of its prey. Attraction increased across all concentrations of α‐pinene. This indicates that separate lures are needed to sample both predators and bark beetles effectively. It also provides an opportunity for maximizing pest removal while reducing adverse effects on beneficial species. This disparity further illustrates the complexity confronting natural enemies that track chemical signals to locate herbivores.  相似文献   

7.
We investigated the effect of prohydrojasmon [propyl (1RS,2RS)‐(3‐oxo‐ 2‐pentylcyclopentyl) acetate] (PDJ) treatment of intact corn plants, on their attractiveness to the specialist endoparasitoid, Cotesia kariyai Watanabe (Hymenoptera: Braconidae), and on the performance of the common armyworm, Mythimna separata (Walker) (Lepidoptera: Noctuidae) under laboratory conditions. Attractiveness of C. kariyai to PDJ‐treated plants was studied in a wind tunnel, whereas performance of M. separata larvae was tested in plastic cages. The attractiveness of the treated plants increased with concentrations of PDJ increasing to 2 mm , which was equivalent to the attractiveness of host‐infested plants. PDJ‐treated corn plants emitted 16 volatile compounds (α‐pinene, β‐myrcene, (Z)‐3‐hexenyl acetate, limonene, (E)‐β‐ocimene, linalool, (E)‐4,8‐dimethyl‐1,3,7‐nonatriene, (+)‐cyclosativene, ylangene, (E)‐β‐farnesene, (E, E)‐4,8,12‐trimethyl‐1,3,7,11‐tridecatetraene, α‐bergamotene, γ‐cadinene, δ‐cadinene, α‐muulolene and nerolidol), most of which were observed in the headspace of host‐infested corn plants with some quantitative and qualitative differences. We also tested the effects of PDJ treatment on the performance of M. separata larvae. The survival rates of the larval and pupal stages were significantly lower at 2 mm level of PDJ. A significant decrease in weight at 6th stadium larvae was observed only at 2 mm level of PDJ. In contrast, PDJ treatment at all PDJ concentration levels caused significant reduction in weight of pupal stage as compared to control. These data suggested that PDJ, originally developed as a plant growth regulator, especially to induce coloring of fruits, has the potential to induce direct and indirect defenses in corn plants against common armyworm, M. separata.  相似文献   

8.
Monochamus (Coleoptera: Cerambycidae) species are longhorn pine sawyers that serve as insect vectors of the pinewood nematode Bursaphelenchus xylophilus (Nematoda: Parasitaphelenchidae), which are responsible for debilitating pine wilt disease. An aggregation pheromone, 2‐(1‐undecyloxy)‐1‐ethanol (hereafter referred to as monochamol), was shown to be effective at attracting Monochamus species. However, attraction of the pine sawyers to aggregation pheromones varied depending on semiochemicals, including host plant volatiles and kairomones. In this study, we investigated the abilities of monochamol and the host‐plant volatiles α‐pinene and ethanol to attract M. saltuarius in a pine forest in Cheongsong, Gyeongsangbuk‐do, Korea. A total of 91 M. saltuarius (28 males and 63 females) were captured. The combination of monochamol (700 mg) with α‐pinene and ethanol exhibited a synergistic effect on attracting M. saltuarius (11.0 beetles per trap), whereas monochamol alone and a mixture of α‐pinene and ethanol resulted in the capture of 3.2 beetles and 3.6 beetles per trap, respectively. Our results suggest that multi‐funnel traps baited with a blend of monochamol, α‐pinene and ethanol are highly effective for monitoring M. saltuarius and M. alternatus in pine forests.  相似文献   

9.
Foliar oils, particularly monoterpenes, can influence the susceptibility of plants to herbivory. In plants, including eucalypts, monoterpenes are often associated with plant defence. A recent analysis revealed an increase in foliar oil content with increasing latitudinal endemism, and we tested this pattern using three eucalypt taxa comprising a latitudinal replacement cline. We also examined the relative concentrations of two monoterpenes (α‐pinene and 1,8‐cineole), for which meta‐analyses also showed latitudinal variation, using hybrids of these three taxa with Corymbia torelliana. These, and pure C. torelliana, were then assessed in common‐garden field plots for the abundance and distribution of herbivory by four distinct herbivore taxa. Differing feeding strategies among these herbivores allowed us to test hypotheses regarding heritability of susceptibility and relationships to α‐pinene and 1,8‐cineole. We found no support for an increase in foliar oil content with increasing latitude, nor did our analysis support predictions for consistent variation in α‐pinene and 1,8‐cineole contents with latitude. However, herbivore species showed differential responses to different taxa and monoterpene contents. For example, eriophyid mites, the most monophagous of our censused herbivores, avoided the pure species, but fed on hybrid taxa, supporting hypotheses on hybrid susceptibility. The most polyphagous herbivore (leaf blister sawfly Phylacteophaga froggatti) showed no evidence of response to plant secondary metabolites, while the distribution and abundance patterns of Paropsis atomaria showed some relationship to monoterpene yields.  相似文献   

10.
Terpene, resin acid and total phenolic concentrations in five‐year‐old Scots pine (Pinus sylvestris L.) seedlings were analysed after exposure to ambient and realistically elevated (2 × ambient) O3 and CO2 concentrations and their combination in open‐top chambers during two growing seasons. Under O3 exposure, limonene concentration in needles and isopimaric concentration in stems decreased significantly. As a response to elevated CO2, α‐pinene and total phenolic concentrations in needles increased significantly, while bornyl acetate concentration in needles and palustric + levopimaric and neoabietic acid concentrations in stems decreased significantly. Some terpenes and resin acids were found at lower concentrations in the combined O3 and CO2 treatment than in O3 exposure or elevated CO2. A negative chamber effect was found: seedlings growing inside the chambers with ambient air had significantly lower concentrations of some terpenes and resin acids than seedlings growing outside the chambers. There was a lot of between‐tree variation in terpene and resin acid concentrations, which is typical of open‐pollinated populations. The results of this study suggest that, at least in short‐term experiments, Scots pine secondary metabolites are relatively insensitive to climate change factors. Total phenolics in the needles were the most responsive group showing about 25% increase in elevated CO2, and O3 exposure did not mitigate this CO2 effect. Terpenes and resin acids were less responsive, although some individual compounds showed notable responses, e.g. α‐pinene in needles, which increased about 50% in response to elevated CO2. As a consequence, although there were only slight effects on total pools of needle secondary metabolites, considerable O3 and CO2 effects on certain individual compounds might have ecological significance via trophic amplification, e.g. in decomposing processes of needle litter.  相似文献   

11.
Herbivorous insects exploit multiple plant cues to detect and orient toward suitable hosts and, accordingly, hosts have evolved complex constitutive and inducible defenses in response. In China, the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae), an invasive bark beetle from North America, attacks mainly Pinus tabuliformis Carrière (Pinaceae), which contains many monoterpenes. In this study, we explored how the monoterpene α‐pinene affects the feeding performance and pheromone production of D. valens. First, the composition and quantities of monoterpenes of both P. tabuliformis healthy trees and fresh stumps were determined and the infestation of D. valens in healthy trees and fresh stumps was investigated, linking the amount of monoterpenes and D. valens infestation. Gas chromatography–mass spectrometry (GC‐MS) analysis showed that P. tabuliformis mainly contained α‐pinene, with concentrations of 0.1 and 0.5 mg g?1 in healthy pine phloem and stump phloem, respectively. Second, the monoterpene's influence on feeding performance was tested using phloem media with α‐pinene concentrations ranging from 0 to 30 mg g?1. The results showed that the percentages of beetles boring and the gallery lengths of both adult females and larvae were negatively correlated with the α‐pinene concentration although body weight changes did not correlate with α‐pinene concentration. Finally, pheromone analysis showed that the production of all pheromones increased with increasing α‐pinene concentrations. This study showed the dual effects of α‐pinene on D. valens: α‐pinene inhibited the bark beetle's feeding activities and in turn the bark beetle made use of it to produce pheromones. Our study indicated the importance of promptly removing fresh stumps in the field for the management of the bark beetle.  相似文献   

12.
Although herbivory is widespread among mammals, few species have adopted a strategy of dietary specialization. Feeding on a single plant species often exposes herbivores to high doses of plant secondary metabolites (PSMs), which may exceed the animal's detoxification capacities. Theory predicts that specialists will have unique detoxification mechanisms to process high levels of dietary toxins. To evaluate this hypothesis, we compared liver microsomal metabolism of a juniper specialist, Neotoma stephensi (diet >85% juniper), to a generalist, N. albigula (diet ≤30% juniper). Specifically, we quantified the concentration of a key detoxification enzyme, cytochrome P450 2B (CYP2B) in liver microsomes, and the metabolism of α‐pinene, the most abundant terpene in the juniper species consumed by the specialist woodrat. In both species, a 30% juniper diet increased the total CYP2B concentration (2–3×) in microsomes and microsomal α‐pinene metabolism rates (4‐fold). In N. stephensi, higher levels of dietary juniper (60% and 100%) further induced CYP2B and increased metabolism rates of α‐pinene. Although no species‐specific differences in metabolism rates were observed at 30% dietary juniper, total microsomal CYP2B concentration was 1.7× higher in N. stephensi than in N. albigula (p < .01), suggesting N. stephensi produces one or more variant of CYP2B that is less efficient at processing α‐pinene. In N. stephensi, the rates of α‐pinene metabolism increased with dietary juniper and were positively correlated with CYP2B concentration. The ability of N. stephensi to elevate CYP2B concentration and rate of α‐pinene metabolism with increasing levels of juniper in the diet may facilitate juniper specialization in this species.  相似文献   

13.
Abstract

Pseudomonas fluorescens strains which are proven biocontrol agents in black pepper against foot rot (caused by Phytophthora capsici ) were also found to enhance root proliferation and fibre root production. Experiments conducted in the greenhouse with five efficient strains of P. fluorescens (IISR-6, IISR-8, IISR-11, IISR-13 and IISR-51) showed that the bacterial strains could significantly increase the root biomass of the plants (30 – 135%). Parameters for total root length, root area and root tips were estimated by scanning the entire root system and analysis through GS Root® software (PP systems, Winterstreet, USA). All the strains increased the root length in the treated plants (12 – 127%), the highest being with IISR-6, which was on a par with IISR-11 and IISR-51. A similar trend was observed with the total root area after bacterization (43 – 200%). The P. fluorescens treated plants had a higher number of feeder roots as evidenced by the increased number of root tips (82 – 137%). The enhanced growth parameters upon root bacterization could be corroborated with the production of the plant growth hormones IAA & GA by the bacterial strains and their P-solubilization potential.  相似文献   

14.
Ramamoorthy  V.  Raguchander  T.  Samiyappan  R. 《Plant and Soil》2002,239(1):55-68
Pseudomonas fluorescens isolate Pf1 was found to protect tomato plants from wilt disease caused by Fusarium oxysporum f. sp. lycopersici. Induction of defense proteins and chemicals by P. fluorescens isolate Pf1 against challenge inoculation with F. oxysporum f. sp. lycopersici in tomato was studied. Phenolics were found to accumulate in bacterized tomato root tissues challenged with F. oxysporum f. sp. lycopersici at one day after pathogen challenge. The accumulation of phenolics reached maximum at the 5th day after pathogen challenge. In pathogen-inoculated plants, the accumulation started at the 2nd day and drastically decreased 4 days after the pathogen inoculation. Activities of phenylalanine ammonia-lyase (PAL), peroxidase (PO) and polyphenol oxidase (PPO) increased in bacterized tomato root tissues challenged with the pathogen at one day after pathogen challenge and activities of PAL and PO reached maximum at the 4th day while activity of PPO reached maximum at the 5th day after challenge inoculation. Isoform analysis revealed that a unique PPO1 isoform was induced and PO1 and PPO2 isoforms were expressed at higher levels in bacterized tomato root tissues challenge inoculated with the pathogen. Similarly, -1,3 glucanase, chitinase and thaumatin-like proteins (TLP) were induced to accumulate at higher levels at 3-5 days of challenge inoculation in bacterized plants. Western blot analysis showed that chitinase isoform Chi2 with a molecular weight of 46 kDa was newly induced due to P. fluorescens isolate Pf1 treatment challenged with the pathogen. TLP isoform with molecular weight of 33 kDa was induced not only in P. fluorescens isolate Pf1-treated root tissues challenged with the pathogen but also in roots treated with P. fluorescens isolate Pf1 alone and roots inoculated with the pathogen. These results suggest that induction of defense enzymes involved in phenylpropanoid pathway and accumulation of phenolics and PR-proteins might have contributed to restriction of invasion of F. oxysporum f. sp. lycopersici in tomato roots.  相似文献   

15.
Conifers respond to herbivore attack with defensive chemicals, which are toxic to both insects and their associated microorganisms. Microorganisms associated with insects have been widely reported to metabolize toxic chemicals, which may help both microorganisms and host insects overcome host conifer defense. Dendroctonus valens LeConte, an introduced exotic pest from North America to China, has killed millions of healthy pines. Alpha‐pinene is the most abundant defensive monoterpene in Chinese Pinus tabuliformis. Although microorganisms associated with D. valens have already been investigated, little is known about their bioactivities when encountering host defensive monoterpenes. In this study, we evaluated the influences of different concentrations of α‐pinene to D. valens and the three most frequently isolated yeasts and bacteria of D. valens, and further assayed microorganisms’ capabilities to degrade α‐pinene. Results showed that the gallery lengths and body weight changes of bark beetles were significantly affected by 6 mg/mL and 12 mg/mL of α‐pinene applied in media compared to controls. The tolerance of experimental microorganisms to α‐pinene varied depending on the microbial species. Two out of three yeast strains and all three bacterial strains degraded 20%–50% of α‐pinene compared to controls in 24 h in vitro. The microorganisms capable of α‐pinene degradation in vitro and their tolerance to high levels of α‐pinene suggested that D. valens‐associated microorganisms may help both microorganisms and the bark beetle overcome host α‐pinene defense.  相似文献   

16.
Plant growth promoting bacterial (PGPB) strains Pseudomonas fluorescens Pf1 and endophytic Bacillus subtilis EPB5, EPB22, EPB 31 were tested for their capacity to induce water stress related proteins and enzymes in green gram (Vigna radiata) plants. Among the different bacteria used, P. fluorescens Pf1 increased the vigour index, fresh weight and dry weight of green gram seedlings in vitro. Quantitative and qualitative analyses of stress-related enzymes indicated the greater activity of catalase and peroxidase in green gram plants bacterized with P. fluorescens Pf1 against water stress when compared to untreated plants. The greater accumulation of proline was recorded in Pf1 treated plants compared to untreated plants. The pot culture study revealed the greater resistance to water stress by green gram plants treated with P. fluorescens Pf1 compared to untreated plants. The greater activity of stress-related enzymes in green gram plants mediated by PGPB could pave the way for developing drought management strategies.  相似文献   

17.
Electroantennogram (EAG), Y‐tube olfactometer, and wind tunnel bioassays were conducted to test the electrophysiological and behavioral responses of Cryptorrhynchus lapathi L. (Coleoptera: Curculionidae) to six individual volatiles and seven essential oils (compounded volatiles). The aim of this study was to select effective plant compounds that can be used in the development of semiochemical‐based push–pull methods for the control of this harmful insect. Male and female C. lapathi displayed strong EAG responses to linoleic acid, α‐pinene, (Z)‐3‐hexen‐1‐ol, geraniol, turpentine oil, and salicylaldehyde. Y‐tube olfactometer assays indicated that salicylaldehyde and α‐pinene elicited strong repellent effects on female C. lapathi. Linoleic acid and (Z)‐3‐hexen‐1‐ol showed greater luring effects on male and female C. lapathi compared with the control. Turpentine oil was stronger repellent, and geraniol showed stronger luring effects on male C. lapathi than the control. Wind tunnel assays with both male and female C. lapathi indicated that salicylaldehyde, α‐pinene, and turpentine oil elicited repellent effects compared with the control. Linoleic acid, (Z)‐3‐hexen‐1‐ol, and geraniol were stronger lures of both male and female C. lapathi than the control. These results provide a basis for the further development of C. lapathi luring and repellent agents.  相似文献   

18.
Abstract 1 One proposed approach to improving biological control of bark beetles (Coleoptera: Scolytidae; alt. Curculionidae: Scolytinae) is to manipulate predator movement using semiochemicals. However, selective manipulation is impeded by attraction of both predators and pests to bark beetle pheromones. 2 The primary bark beetle affecting pine plantations in Wisconsin, U.S.A., is the pine engraver, Ips pini (Say). Other herbivores include Ips grandicollis (Eichhoff) and Dryophthorus americanus Bedel (Curculionidae). The predominant predators are the beetles Thanasimus dubius (Cleridae) and Platysoma cylindrica (Histeridae). 3 We conducted field assays using two enantiomeric ratios of ipsdienol, and frontalin plus α‐pinene. Ipsdienol is the principal pheromone component of I. pini, and frontalin is produced by a number of Dendroctonus species. α‐Pinene is a host monoterpene commonly incorporated into commercial frontalin lures. 4 Thanasimus dubius was attracted to frontalin plus α‐pinene, and also to racemic ipsdienol. By contrast, I. pini was attracted to racemic ipsdienol, but showed no attraction to frontalin plus α‐pinene. Platysoma cylindrica was attracted to 97%‐(–)‐ipsdienol and, to a lesser extent, racemic ipsdienol, but not to frontalin plus α‐pinene. Ips grandicollis was attracted to frontalin plus α‐pinene but not to ipsdienol. Dryophthorus americanus was attracted to both ipsdienol and frontalin plus α‐pinene. 5 This ability to selectively attract the predator T. dubius without attracting the principal bark beetle in the system, I. pini, provides new opportunities for research into augmentative biological control and basic population dynamics. Moreover, the attraction of T. dubius, but not P. cylindrica, to frontalin plus α‐pinene creates opportunities for selective manipulation of just one predator. 6 Patterns of attraction by predators and bark beetles to these compounds appear to reflect various degrees of geographical and host tree overlap with several pheromone‐producing species.  相似文献   

19.
Severity of stem-rot disease of peanut caused byRhizoctonia solani was reduced by 54.9 and 68% in plants of two cultivars treated in the greenhouse with antagonistic strains ofPseudomonas fluorescens. These strains were selected based on theirin vitro toxicity to mycelial growth and sclerotial germination ofR. solani. In field experiments, bacterization of peanuts withP. fluorescens resulted in taller plants (by 25.7%) and increased yields (by 59.0%).  相似文献   

20.
Abstract 1 The pine shoot beetle, Tomicus piniperda (L.) (Coleoptera: Scolytidae), is an exotic pest of pine, Pinus spp., and was first discovered in North America in 1992. 2 Although primary attraction to host volatiles has been clearly demonstrated for T. piniperda, the existence and role of secondary attraction to insect‐produced pheromones have been widely debated. 3 Currently, commercial lures for T. piniperda include only the host volatiles α‐pinene in North America and α‐pinene, terpinolene and (+)‐3‐carene in Europe. Several potential pheromone candidates have been identified for T. piniperda. 4 We tested various combinations of host volatiles and pheromone candidates in Michigan, U.S.A., and Ontario, Canada, to determine an optimal blend. 5 Attraction of T. piniperda was significantly increased when trans‐verbenol (95% pure, 3.2%cis‐verbenol content) was added with or without myrtenol to α‐pinene or to blends of α‐pinene and other kairomones and pheromone candidates. 6 Our results, together with other research demonstrating that trans‐verbenol is produced by T. piniperda, support the designation of trans‐verbenol as a pheromone for T. piniperda. A simple operational lure consisting of α‐pinene and trans‐verbenol is recommended for optimal attraction of T. piniperda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号