首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thioredoxins (TRXs) are important proteins involved in redox regulation of metabolism. In plants, it has been shown that the mitochondrial metabolism is regulated by the mitochondrial TRX system. However, the functional significance of TRX h2, which is found at both cytosol and mitochondria, remains unclear. Arabidopsis plants lacking TRX h2 showed delayed seed germination and reduced respiration alongside impaired stomatal and mesophyll conductance, without impacting photosynthesis under ambient O2 conditions. However, an increase in the stoichiometry of photorespiratory CO2 release was found during O2-dependent gas exchange measurements in trxh2 mutants. Metabolite profiling of trxh2 leaves revealed alterations in key metabolites of photorespiration and in several metabolites involved in respiration and amino acid metabolism. Decreased abundance of serine hydroxymethyltransferase and glycine decarboxylase (GDC) H and L subunits as well as reduced NADH/NAD+ ratios were also observed in trxh2 mutants. We further demonstrated that the redox status of GDC-L is altered in trxh2 mutants in vivo and that recombinant TRX h2 can deactivate GDC-L in vitro, indicating that this protein is redox regulated by the TRX system. Collectively, our results demonstrate that TRX h2 plays an important role in the redox regulation of mitochondrial photorespiratory metabolism.  相似文献   

2.
SUMMARY: Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin biosynthesis as a branch point from lignin biosynthesis; however, ortho-hydroxylation of cinnamates is not yet fully understood. In this study, scopoletin biosynthesis was explored using Arabidopsis thaliana, which accumulates scopoletin and its beta-glucopyranoside scopolin in its roots. T-DNA insertion mutants of caffeoyl CoA O-methyltransferase 1 (CCoAOMT1) showed significant reduction in scopoletin and scopolin levels in the roots, and recombinant CCoAOMT1 exhibited 3'-O-methyltransferase activity on caffeoyl CoA to feruloyl CoA. These results suggest that feruloyl CoA is a key precursor in scopoletin biosynthesis. Ortho-hydroxylases of cinnamates were explored in the oxygenase families in A. thaliana, and one of the candidate genes in the Fe(II)- and 2-oxoglutarate-dependent dioxygenase (2OGD) family was designated as F6'H1. T-DNA insertion mutants of F6'H1 showed severe reductions in scopoletin and scopolin levels in the roots. The pattern of F6'H1 expression is consistent with the patterns of scopoletin and scopolin accumulation. The recombinant F6'H1 protein exhibited ortho-hydroxylase activity for feruloyl CoA (K(m) = 36.0 +/- 4.27 microM; k(cat) = 11.0 +/- 0.45 sec(-1)) to form 6'-hydroxyferuloyl CoA, but did not hydroxylate ferulic acid. These results indicate that Fe(II)- and 2-oxoglutarate-dependent dioxygenase is the pivotal enzyme in the ortho-hydroxylation of feruloyl CoA in scopoletin biosynthesis.  相似文献   

3.
Mitochondrial glutathione (GSH) is a key endogenous antioxidant and its maintenance is critical for cell survival. Here, we generated stable NSC34 motor neuron‐like cell lines over‐expressing the mitochondrial GSH transporter, the 2‐oxoglutarate carrier (OGC), to further elucidate the importance of mitochondrial GSH transport in determining neuronal resistance to oxidative stress. Two stable OGC cell lines displayed specific increases in mitochondrial GSH content and resistance to oxidative and nitrosative stressors, but not staurosporine. Inhibition of transport through OGC reduced levels of mitochondrial GSH and resensitized the stable cell lines to oxidative stress. The stable OGC cell lines displayed significant up‐regulation of the anti‐apoptotic protein, B cell lymphoma 2 (Bcl‐2). This result was reproduced in parental NSC34 cells by chronic treatment with GSH monoethylester, which specifically increased mitochondrial GSH levels. Knockdown of Bcl‐2 expression decreased mitochondrial GSH and resensitized the stable OGC cells to oxidative stress. Finally, endogenous OGC was co‐immunoprecipitated with Bcl‐2 from rat brain lysates in a GSH‐dependent manner. These data are the first to show that increased mitochondrial GSH transport is sufficient to enhance neuronal resistance to oxidative stress. Moreover, sustained and specific enhancement of mitochondrial GSH leads to increased Bcl‐2 expression, a required mechanism for the maintenance of increased mitochondrial GSH levels.

  相似文献   


4.
Mitochondrial respiratory complex II contains four subunits: a flavoprotein (SDH1), an iron-sulphur subunit (SDH2) and two membrane anchor subunits (SDH3 and SDH4). We have found that in Arabidopsis thaliana SDH1 and SDH3 are encoded by two, and SDH4 by one nuclear genes, respectively. All these encoded polypeptides are found to be imported into isolated plant mitochondria. While both SDH1 proteins are highly conserved when compared to their counterparts in other organisms, SDH3 and SDH4 share little similarity with non-plant homologues. Expression of SDH1-1, SDH3 and SDH4 genes was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the second SDH1 gene (SDH1-2) is expressed at a low level.  相似文献   

5.
Bioinformatics studies have shown that the genomes of trypanosomatid species each encode one SCP2‐thiolase‐like protein (SLP), which is characterized by having the YDCF thiolase sequence fingerprint of the Cβ2‐Cα2 loop. SLPs are only encoded by the genomes of these parasitic protists and not by those of mammals, including human. Deletion of the Trypanosoma brucei SLP gene (TbSLP) increases the doubling time of procyclic T. brucei and causes a 5‐fold reduction of de novo sterol biosynthesis from glucose‐ and acetate‐derived acetyl‐CoA. Fluorescence analyses of EGFP‐tagged TbSLP expressed in the parasite located the TbSLP in the mitochondrion. The crystal structure of TbSLP (refined at 1.75 Å resolution) confirms that TbSLP has the canonical dimeric thiolase fold. In addition, the structures of the TbSLP‐acetoacetyl‐CoA (1.90 Å) and TbSLP‐malonyl‐CoA (2.30 Å) complexes reveal that the two oxyanion holes of the thiolase active site are preserved. TbSLP binds malonyl‐CoA tightly (Kd 90 µM), acetoacetyl‐CoA moderately (Kd 0.9 mM) and acetyl‐CoA and CoA very weakly. TbSLP possesses low malonyl‐CoA decarboxylase activity. Altogether, the data show that TbSLP is a mitochondrial enzyme involved in lipid metabolism. Proteins 2016; 84:1075–1096. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Tobacco cells (Nicotiana tabacum L.) accumulate harmful naphthols in the form of malonylated glucosides ( Taguchi et al., 2005 ). Here, we showed that the malonylation of glucosides is a system to metabolize xenobiotics and is common to higher plants. Moreover, some plantlets including Arabidopsis thaliana excreted some of the incorporated naphthols into the culture media as their glucosides. In order to analyze the function of malonylation in the metabolism of these xenobiotics, we identified a malonyltransferase gene (At5g39050) responsible for the malonylation of these compounds in A. thaliana. The recombinant enzyme had malonyltransferase activity toward several phenolic glucosides including naphthol glucosides. A knockout mutant of At5g39050 (pmat1) exposed to naphthols accumulated only a few malonylglucosides in the cell, and released larger amounts of simple glucosides into the culture medium. In contrast, forced expression of At5g39050 in the pmat1 mutant resulted in increased malonylglucoside accumulation and decreased glucoside excretion to the media. The results provided clear evidence of whether the release of glucosides or the storage of malonylglucosides was determined by the At5g39050 expression level. A similar event in naphthol metabolism was observed in the tobacco mutant with a suppressed malonyltransferase gene (NtMaT1). These results suggested that malonylation could be a key reaction to separate the way of xenobiotics disposition, that is, release from cell surface or storage in vacuoles.  相似文献   

7.
The multifunctional protein (MFP) of peroxisomal beta-oxidation catalyses four separate reactions, two of which (2-trans enoyl-CoA hydratase and L-3-hydroxyacyl-CoA dehydrogenase) are core activities required for the catabolism of all fatty acids. We have isolated and characterized five Arabidopsis thaliana mutants in the MFP2 gene that is expressed predominantly in germinating seeds. Seedlings of mfp2 require an exogenous supply of sucrose for seedling establishment to occur. Analysis of mfp2-1 seedlings revealed that seed storage lipid was catabolized more slowly, long-chain acyl-CoA substrates accumulated and there was an increase in peroxisome size. Despite a reduction in the rate of beta-oxidation, mfp2 seedlings are not resistant to the herbicide 2,4-dichlorophenoxybutyric acid, which is catabolized to the auxin 2,4-dichlorophenoxyacetic acid by beta-oxidation. Acyl-CoA feeding experiments show that the MFP2 2-trans enoyl-CoA hydratase only exhibits activity against long chain (C18:0) substrates, whereas the MFP2 L-3-hydroxyacyl-CoA dehydrogenase is active on C6:0, C12:0 and C18:0 substrates. A mutation in the abnormal inflorescence meristem gene AIM1, the only homologue of MFP2, results in an abnormal inflorescence meristem phenotype in mature plants (Richmond and Bleecker, Plant Cell 11, 1999, 1911) demonstrating that the role of these genes is very different. The mfp2-1 aim1double mutant aborted during the early stages of embryo development showing that these two proteins share a common function that is essential for this key stage in the life cycle.  相似文献   

8.
This work investigated the contribution of AtRbohD and AtRbohF to regulating defence-associated metabolism during three types of interaction: (i) incompatible and (ii) compatible interaction with Pseudomonas syringae; and (iii) intracellular oxidative stress in the catalase-deficient cat2 background. In all three cases, loss of function of either gene modulated the response of defence compounds. AtRbohF gene function was necessary for rapid and full induction of salicylic acid (SA) during compatible and incompatible interactions, and for resistance to virulent bacteria. Both artrboh mutations modulated the effects of intracellular ROS in the cat2 background, although the predominant effect was mediated by atrbohF. Loss of this gene function increased lesion formation in cat2 but uncoupled this effect from cat2-triggered induction of SA and camalexin, accumulation of glutathione and disease resistance, all of which were much lower in cat2 artbohF than in cat2. A detailed comparison of GC-TOF-MS profiles produced by the three interactions revealed considerable overlap between cat2 effects and those produced by bacterial infection in the wild-type background. Analysis of the impact of the two atrboh mutations on these profiles provided further evidence that AtRbohF interacts closely with intracellular oxidative stress to tune dynamic metabolic responses during infection. Thus, AtRbohF appears to be a key player not only in HR-related cell death but also in regulating metabolomic responses and resistance. Based on the results obtained during the three types of interaction, a model is proposed of how NADPH oxidases and intracellular ROS interact to determine the outcome of pathogen defence responses.  相似文献   

9.
Objectives: Mitochondrial oxidative stress is involved in the pathogenesis of diabetic kidney disease. The objective of our study is to identify the mechanisms of renal mitochondrial oxidative stress, focusing on Sirt3, which is nicotinamide adenine dinucleotide (NAD+; oxidized NAD)-dependent deacetylase in mitochondria.

Methods: Renal mitochondrial oxidative stress and Sirt3 activity, using Zucker diabetic fatty rats (ZDFRs) and cultured proximal tubular cells under high-glucose condition were evaluated.

Results: At 28 weeks of age, ZDFRs exhibited the increased urinary albumin/liver-type fatty acid-binding protein (L-FABP)/8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, histological tubular cell damage, compared to non-diabetic Zucker Lean rats. In renal mitochondria, acetylated isocitrate dehydrogenase2 (IDH2) and superoxide dismutase2 (SOD2), accompanied with mitochondrial oxidative stress and mitochondrial morphologic alterations, were increased in ZDFRs, indicating inactivation of Sirt3. Additionally, expression of the NAD-degrading enzyme, CD38, was increased, and the NAD+/NADH (reduced NAD) ratio was reduced in the renal cortex of ZDFRs. High-glucose stimulation in cultured proximal tubular cells also resulted in an increase in acetylated IDH2/SOD2, CD38 overexpression and a reduction in the NAD+/NADH ratio.

Conclusions: Enhancement of mitochondrial oxidative stress in the diabetic kidney was mediated by the reduction of Sirt3 activity. CD38 overexpression may be related to a reduction in the NAD+/NADH ratio in the diabetic kidney.  相似文献   


10.
11.
12.
13.
We have isolated a rab-related (responsive to ABA) gene, rab18 from Arabidopsis thaliana. The gene encodes a hydrophilic, glycine-rich protein (18.5 kDa), which contains the conserved serine- and lysine-rich domains characteristic of similar RAB proteins in other plant species. The rab18 mRNA accumulates in plants exposed to low temperature, water stress or exogenous ABA but not in plants subjected to heat shock. This stress-related accumulation of the rab18 mRNA is markedly decreased in the ABA-synthesis mutant aba-1, the ABA-response mutant abi-1 or in wild-type plants treated with the carotenoid synthesis inhibitor, fluridone. Exogenous ABA treatment can induce the rab18 mRNA in the aba-1 mutant but not in the abi-1 mutant. These results provide direct genetic evidence for the ABA-dependent regulation of the rab18 gene in A. thaliana.  相似文献   

14.
Plants reconfigure their metabolic network under stress conditions. Changes of mitochondrial metabolism such as tricarboxylic acid (TCA) cycle and amino acid metabolism are reported in Arabidopsis roots but the exact molecular basis underlying this remains unknown. We here hypothesise the reassembly of enzyme protein complexes to be a molecular mechanism for metabolic regulation and tried in the present study to find out mitochondrial protein complexes which change their composition under oxidative stress by the combinatorial approach of proteomics and metabolomics. Arabidopsis seedlings were treated with menadione to induce oxidative stress. The inhibition of several TCA cycle enzymes and the oxidised NADPH pool indicated the onset of oxidative stress. In blue native/SDS-PAGE analysis of mitochondrial protein complexes the intensities of 18 spots increased and those of 13 spots decreased in menadione treated samples suggesting these proteins associate with, or dissociate from, protein complexes. Some spots were identified as metabolic enzymes related to central carbon metabolism such as malic enzyme, glyceraldehyde-3-phosphate dehydrogenase, monodehydroascorbate reductase and alanine aminotransferase. The change in spot intensity was not directly correlated to the total enzyme activity and mRNA level of the corresponding enzyme but closely related to the metabolite profile, suggesting the metabolism is regulated under oxidative stress at a higher level than translation. These results are somewhat preliminary but suggest the regulation of the TCA cycle, glycolysis, ascorbate and amino acid metabolism by reassembly of plant enzyme complexes.  相似文献   

15.
Transport of dicarboxylates across the chloroplast envelope plays an important role in transferring carbon skeletons to the nitrogen assimilation pathway and exporting reducing equivalent to the cytosol to prevent photo-inhibition (the malate valve). It was previously shown that the Arabidopsis plastidic 2-oxoglutarate/malate transporter (AtpOMT1) and the general dicarboxylate transporter (AtpDCT1) play crucial roles at the interface between carbon and nitrogen metabolism. However, based on the in vitro transport properties of the recombinant transporters, it was hypothesized that AtpOMT1 might play a dual role, also functioning as an oxaloacetate/malate transporter, which is a crucial but currently unidentified component of the chloroplast malate valve. Here, we test this hypothesis using Arabidopsis T-DNA insertional mutants of AtpOMT1. Transport studies revealed a dramatically reduced rate of oxaloacetate uptake into chloroplasts isolated from the knockout plant. CO(2) -dependent O(2) evolution assays showed that cytosolic oxaloacetate is efficiently transported into chloroplasts mainly by AtpOMT1, and supported the absence of additional oxaloacetate transporters. These findings strongly indicate that the high-affinity oxaloacetate transporter in Arabidopsis chloroplasts is AtpOMT1. Further, the knockout plants showed enhanced photo-inhibition under high light due to greater accumulation of reducing equivalents in the stroma, indicating malfunction of the malate valve in the knockout plants. The knockout mutant showed a phenotype consistent with reductions in 2-oxoglutarate transport, glutamine synthetase/glutamate synthase activity, subsequent amino acid biosynthesis and photorespiration. Our results demonstrate that AtpOMT1 acts bi-functionally as an oxaloacetate/malate transporter in the malate valve and as a 2-oxoglutarate/malate transporter mediating carbon/nitrogen metabolism.  相似文献   

16.
17.
18.
小麦耐逆基因-TaLEA2转化拟南芥的研究   总被引:9,自引:0,他引:9  
研究小麦第3组LEA基因中T aLEA2对耐旱和耐盐性能的影响.将小麦第3组LEA基因T aLEA2连接在双元表达载体pB I121 C aM V 35S启动子下游,构建了能在植物中高效表达的载体pB I121-T aLEA2.通过农杆菌介导的真空渗透法,将其转入野生拟南芥中,经抗性筛选及PCR验证,获得T0代转基因植株,并用不同浓度的PEG 4000和N aC l对转基因拟南芥的耐逆性进行检测.结果表明,这些转基因植株可明显改进拟南芥在10%PEG及0.8%N aC l培养基上的生长状态.在实验条件下,转基因拟南芥的耐旱性及耐盐性均有所提高,提示T aLEA2基因在植物水分调节方面有重要作用.  相似文献   

19.
Cancer cells may survive under oxygen and nutrient deprivation by metabolic reprogramming for high levels of anaerobic glycolysis, which contributes to tumor growth and drug resistance. Abnormally expressed glucose transporters (GLUTs) are colocalized with hypoxia (Hx) inducible factor (HIF)1α in peri-necrotic regions in human colorectal carcinoma. However, the underlying mechanisms of anti-necrotic resistance conferred by glucose metabolism in hypoxic cancer cells remain poorly understood. Our aim was to investigate signaling pathways of Hx-induced necroptosis and explore the role of glucose pyruvate metabolite in mechanisms of death resistance. Human colorectal carcinoma cells were Hx exposed with or without glucose, and cell necroptosis was examined by receptor-interacting protein (RIP)1/3 kinase immunoprecipitation and 32P kinase assays. Our results showed increased RIP1/3 complex formation and phosphorylation in hypoxic, but not normoxic cells in glucose-free media. Blocking RIP1 signaling, by necrostatin-1 or gene silencing, decreased lactodehydrogenase (LDH) leakage and plasma membrane disintegration. Generation of mitochondrial superoxide was noted after hypoxic challenge; its reduction by antioxidants inhibited RIP signaling and cell necrosis. Supplementation of glucose diminished the RIP-dependent LDH leakage and morphological damage in hypoxic cells, whereas non-metabolizable sugar analogs did not. Hypoxic cells given glucose showed nuclear translocation of HIF1α associated with upregulation of GLUT-1 and GLUT-4 expression, as well as increase of intracellular ATP, pyruvate and lactate levels. The glucose-mediated death resistance was ablated by iodoacetate (an inhibitor to glyceraldehyde-3-phosphate dehydrogenase), but not by UK5099 (an inhibitor to mitochondrial pyruvate carrier), suggesting that glycolytic pathway was involved in anti-necrotic mechanism. Lastly, replacing glucose with cell-permeable pyruvate derivative also led to decrease of Hx-induced necroptosis by suppression of mitochondrial superoxide in an energy-independent manner. In conclusion, glycolytic metabolism confers resistance to RIP-dependent necroptosis in hypoxic cancer cells partly through pyruvate scavenging of mitochondrial free radicals.  相似文献   

20.
The early light-induced proteins (ELIPs) belong to the multigenic family of pigment-binding light-harvesting complexes. ELIPs accumulate transiently and are believed to play a protective role in plants exposed to high levels of light. Constitutive expression of the ELIP2 gene in Arabidopsis resulted in a marked reduction of the pigment content of the chloroplasts, both in mature leaves and during greening of etiolated seedlings. The chlorophyll loss was associated with a decrease in the number of photosystems in the thylakoid membranes, but the photosystems present were fully assembled and functional. A detailed analysis of the chlorophyll-synthesizing pathway indicated that ELIP2 accumulation downregulated the level and activity of two important regulatory steps: 5-aminolevulinate synthesis and Mg-protoporphyrin IX (Mg-Proto IX) chelatase activity. The contents of glutamyl tRNA reductase and Mg chelatase subunits CHLH and CHLI were lowered in response to ELIP2 accumulation. In contrast, ferrochelatase activity was not affected and the inhibition of Heme synthesis was null or very moderate. As a result of reduced metabolic flow from 5-aminolevulinic acid, the steady state levels of various chlorophyll precursors (from protoporphyrin IX to protochlorophyllide) were strongly reduced in the ELIP2 overexpressors. Taken together, our results indicate that the physiological function of ELIPs could be related to the regulation of chlorophyll concentration in thylakoids. This seems to occur through an inhibition of the entire chlorophyll biosynthesis pathway from the initial precursor of tetrapyrroles, 5-aminolevulinic acid. We suggest that ELIPs work as chlorophyll sensors that modulate chlorophyll synthesis to prevent accumulation of free chlorophyll, and hence prevent photooxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号