首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In plant cells, the vacuolar‐type H+‐ATPases (V‐ATPase) are localized in the tonoplast, Golgi, trans‐Golgi network and endosome. However, little is known about how V‐ATPase influences plant growth, particularly with regard to the V‐ATPase c subunit (VHA‐c). Here, we characterized the function of a VHA‐c gene from Puccinellia tenuiflora (PutVHA‐c) in plant growth. Compared to the wild‐type, transgenic plants overexpressing PutVHA‐c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V‐ATPase activity. Consistently, the Arabidopsis atvha‐c5 mutant shows reduced V‐ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA‐c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V‐ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA‐c‐GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling‐1 (AtRGS1). These findings suggest that the decrease in V‐ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA‐c plays an important role in plant growth by influencing V‐ATPase‐dependent endosomal trafficking.  相似文献   

3.
The accumulation of copper in organisms can lead to altered functions of various pathways and become cytotoxic through the generation of reactive oxygen species. In yeast, cytotoxic metals such as Hg+, Cd2+ and Cu2+ are transported into the lumen of the vacuole through various pumps. Copper ions are initially transported into the cell by the copper transporter Ctr1 at the plasma membrane and sequestered by chaperones and other factors to prevent cellular damage by free cations. Excess copper ions can subsequently be transported into the vacuole lumen by an unknown mechanism. Transport across membranes requires the reduction of Cu2+ to Cu+. Labile copper ions can interact with membranes to alter fluidity, lateral phase separation and fusion. Here we found that CuCl2 potently inhibited vacuole fusion by blocking SNARE pairing. This was accompanied by the inhibition of V‐ATPase H+ pumping. Deletion of the vacuolar reductase Fre6 had no effect on the inhibition of fusion by copper. This suggests that Cu2+ is responsible for the inhibition of vacuole fusion and V‐ATPase function. This notion is supported by the differential effects of chelators. The Cu2+‐specific chelator triethylenetetramine rescued fusion, whereas the Cu+‐specific chelator bathocuproine disulfonate had no effect on the inhibited fusion.  相似文献   

4.
The activity of vacuolar H+‐ATPase (V‐ATPase) in the apical membrane of blowfly (Calliphora vicina) salivary glands is regulated by the neurohormone serotonin (5‐HT). 5‐HT induces, via protein kinase A, the phosphorylation of V‐ATPase subunit C and the assembly of V‐ATPase holoenzymes. The protein phosphatase responsible for the dephosphorylation of subunit C and V‐ATPase inactivation is not as yet known. We show here that inhibitors of protein phosphatases PP1 and PP2A (tautomycin, ocadaic acid) and PP2B (cyclosporin A, FK‐506) do not prevent V‐ATPase deactivation and dephosphorylation of subunit C. A decrease in the intracellular Mg2+ level caused by loading secretory cells with EDTA‐AM leads to the activation of proton pumping in the absence of 5‐HT, prolongs the 5‐HT‐induced response in proton pumping, and inhibits the dephosphorylation of subunit C. Thus, the deactivation of V‐ATPase is most probably mediated by a protein phosphatase that is insensitive to okadaic acid and that requires Mg2+, namely, a member of the PP2C protein family. By molecular biological techniques, we demonstrate the expression of at least two PP2C protein family members in blowfly salivary glands. © 2009 Wiley Periodicals, Inc.  相似文献   

5.
 Vacuolar ATPase (EC 3.6.1.3) and PPase (EC 3.6.1.1) were studied in suspension cells and seedlings from spruce [Picea abies (L.) Karst. Proton transport activity and uncoupler (1 μM nigericin) stimulated substrate hydrolysis were measured in tonoplast enriched membrane vesicles. In suspension cells the vacuolar PPase exhibited 1.8-fold activity of the ATPase. In roots and needles from 12-week-old spruce seedlings the vacuolar PPase was inactive, whereas the ATPase was active. Therefore, we investigated whether the preparation of spruce tonoplast vesicles from roots and needles inactivates the vacuolar PPase but not the ATPase. For this purpose, maize (Zea mays L.) tonoplast membranes exhibiting vacuolar PPase as well as ATPase activity were used as a probe and added to the homogenization medium prior to the preparation of spruce vesicles. The preparation of spruce vesicles was more inhibitory to the vacuolar ATPase than to the PPase. The comparison of vacuolar PPases from spruce suspension cells and maize roots revealed similar enzymatic properties. After isopycnic centrifugation on continuous sucrose gradients the vacuolar PPase from spruce suspension cells co-purified with the vacuolar ATPase. Together, these data show: (1) vacuolar PPases from spruce suspension cells and maize roots are similar, (2) the preparation of tonoplast vesicles from spruce roots and needles does not inactivate the vacuolar PPase, (3) tonoplasts of suspension cultured cells and seedlings from spruce are differentially energized by the vacuolar pyrophosphatase that may indicate a difference in pyrophosphate metabolism between embryogenic and differentiated spruce cells, and (4) tonoplast vesicles from spruce seedlings may allow investigations of the effect of pyrophosphate on the vacuolar ATPase in the absence of vacuolar PPase activity. Received: 2 July 1998 / Accepted: 14 September 1998  相似文献   

6.
7.
Redistribution of acid‐base transporters is a crucial regulatory mechanism for many types of cells to cope with extracellular pH changes. In epithelial cells, however, translocation of acid‐base transporters ultimately leads to changes in vectorial transport of H+ and HCO. We have previously shown that the bicarbonate‐secreting epithelium of salivary ducts responds to changes of systemic acid‐base balance by adaptive redistribution of H+ and HCO transporters, thereby influencing the ionic composition and buffering capacity of saliva. However, the specific proteins involved in regulated vesicular traffic of acid‐base transporters are largely unknown. In the present study we have investigated the impact of Rab11 family members on the acidosis‐induced trafficking of the vacuolar‐type H+‐ATPase (V‐ATPase) in salivary duct cells in vitro using the human submandibular cell line of ductal origin HSG as an experimental model. The results show that Rab11b is expressed in salivary ducts and exhibits a significantly higher co‐localization with V‐ATPase than Rab11a and Rab25. We also show that Rab11 but not Rab25 interacts with the ε subunit of V‐ATPase. Extracellular acidosis up‐regulates Rab11b expression and protein abundance in HSG cells and causes translocation of the V‐ATPase from intracellular pools toward the plasma membrane. Loss‐of‐function experiments using specific siRNA either against Rab11b or against its effector Rip11 prevent acidosis‐induced V‐ATPase translocation. These data introduce Rab11b as a crucial regulator and Rip11 as mediator of acidosis‐induced V‐ATPase traffic in duct cells of submandibular gland. J. Cell. Physiol. 226: 638–651, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Tom Stevens' lab has explored the subunit composition and assembly of the yeast V‐ATPase for more than 30 years. Early studies helped establish yeast as the predominant model system for study of V‐ATPase proton pumps and led to the discovery of protein splicing of the V‐ATPase catalytic subunit. The Vma? phenotype, characteristic of loss‐of‐V‐ATPase activity in yeast was key in determining the enzyme's subunit composition via yeast genetics. V‐ATPase subunit composition proved to be highly conserved among eukaryotes. Genetic screens for new vma mutants led to identification of a set of dedicated V‐ATPase assembly factors and helped unravel the complex pathways for V‐ATPase assembly. In later years, exploration of the evolutionary history of several V‐ATPase subunits provided new information about the enzyme's structure and function. This review highlights V‐ATPase work in the Stevens’ lab between 1987 and 2017.   相似文献   

9.
Vacuolar H+‐ATPase (V‐ATPase) is a large, multisubunit membrane protein complex responsible for the acidification of subcellular compartments and the extracellular space. V‐ATPase activity is regulated by reversible disassembly, resulting in cytosolic V1‐ATPase and membrane‐integral V0 proton channel sectors. Reversible disassembly is accompanied by transient interaction with cellular factors and assembly chaperones. Quantifying protein‐protein interactions involving membrane proteins, however, is challenging. Here we present a novel method to determine kinetic constants of membrane protein–protein interactions using biolayer interferometry (BLI). Yeast vacuoles are solubilized, vacuolar proteins are reconstituted into lipid nanodiscs with native vacuolar lipids and biotinylated membrane scaffold protein (MSP) followed by affinity purification of nanodisc‐reconstituted V‐ATPase (V1V0ND). We show that V1V0ND can be immobilized on streptavidin‐coated BLI sensors to quantitate binding of a pathogen derived inhibitor and to measure the kinetics of nucleotide dependent enzyme dissociation.  相似文献   

10.
11.
Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P‐type H+‐ATPases in the plasma membrane, and multimeric vacuolar‐type H+‐ATPases (V‐ATPases) and vacuolar H+‐pyrophosphatases (H+‐PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A‐ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA‐filled central vacuoles as observed in the wild‐type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P‐type H+‐ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H+‐PPase VHP1. Our findings indicate that the P3A‐ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12‐mediated transport of PA precursors to the vacuole.  相似文献   

12.
The full‐length complementary (c)DNA of vacuolar‐type‐H+‐ATPase B1 gene (vhab1) in marbled eel Anguilla marmorata with 1741 base pairs (bp) was identified. It contained a 1512 bp open reading frame encoding a polypeptide with 503 amino acids (55·9 kDa), an 83 bp 5′‐untranslated region (UTR) and a 146 bp 3′‐UTR. The expression levels of A. marmorata vhab1 in gill and kidney of A. marmorata were evaluated at different intervals during the exposure to various salinities (0, 10 and 25). The results indicated that the expression levels of A. marmorata vhab1 messenger (m)RNA in gill and kidney had a significant increase and reached the highest level at 1 h in brackish water (BW, salinity 10) group and 6 h in seawater (SW, salinity 25) group. Therefore, salinity did affect the relative expression level of A. marmorata vhab1 mRNA in gills, which exhibited the enhancement by c. 44 times in SW group when compared with that in fresh water. No remarkable difference in the expression of A. marmorata vhab1 mRNA was observed after 15 days of SW exposure (P > 0·05). V‐H+‐ATPase activity exhibited an increase by two‐ to three‐fold when compared with that in gill and kidney from the control group. The consequence primarily suggested that A. marmorata vhab1 gene product in elvers from A. marmorata plays an important role in adaptation response to SW.  相似文献   

13.
High salinity and nitrogen (N) deficiency in soil are two key factors limiting crop productivity, and they usually occur simultaneously. Here we firstly found that H+‐PPase is involved in salt‐stimulated NO3? uptake in the euhalophyte Salicornia europaea. Then, two genes (named SeVP1 and SeVP2) encoding H+‐PPase from S. europaea were characterized. The expression of SeVP1 and SeVP2 was induced by salt stress and N starvation. Both SeVP1 or SeVP2 transgenic Arabidopsis and wheat plants outperformed the wild types (WTs) when high salt and low N occur simultaneously. The transgenic Arabidopsis plants maintained higher K+/Na+ ratio in leaves and exhibited increased NO3? uptake, inorganic pyrophosphate‐dependent vacuolar nitrate efflux and assimilation capacity under this double stresses. Furthermore, they had more soluble sugars in shoots and roots and less starch accumulation in shoots than WT. These performances can be explained by the up‐regulated expression of ion, nitrate and sugar transporter genes in transgenic plants. Taken together, our results suggest that up‐regulation of H+‐PPase favours the transport of photosynthates to root, which could promote root growth and integrate N and carbon metabolism in plant. This work provides potential strategies for improving crop yields challenged by increasing soil salinization and shrinking farmland.  相似文献   

14.
The vacuole is the most prominent organelle of plant cells. Despite its importance for many physiological and developmental aspects of plant life, little is known about its biogenesis and maintenance. Here we show that Arabidopsis plants expressing a dominant‐negative version of the AAA (ATPase associated with various cellular activities) ATPase AtSKD1 (SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1) under the control of the trichome‐specific GLABRA2 (GL2) promoter exhibit normal vacuolar development in early stages of trichome development. Shortly after its formation, however, the large central vacuole is fragmented and finally disappears completely. Secretion assays with amylase fused to the vacuolar sorting signal of Sporamin show that dominant‐negative AtSKD1 inhibits vacuolar trafficking of the reporter that is instead secreted. In addition, trichomes expressing dominant‐negative AtSKD1 frequently contain multiple nuclei. Our results suggest that AtSKD1 contributes to vacuolar protein trafficking and thereby to the maintenance of the large central vacuole of plant cells, and might play a role in cell‐cycle regulation.  相似文献   

15.
The vacuolar (H+)-ATPases (V-ATPases) are ATP-driven proton pumps with multiple functions in many organisms. In this study, we performed structural and functional analysis of vha55 gene that encodes V-ATPase subunit B in the smokybrown cockroach Periplaneta fuliginosa (Blattodea). We observed a high homology score of the deduced amino acid sequences between 10 species in seven orders. RNAi of the vha55 gene in R fuliginosa caused nymphal/nymphal molting defects with incomplete shedding of old cuticles, growth inhibition, as well as bent and wrinkled cuticles of thoraxes and abdominal segments. Since growth inhibition caused by vha55 RNAi did not interfere in the commencement of cockroach molting, molting timing and body growth might be controlled by independent mechanism. Our study suggested V-ATPases might be a good candidate molecule for evolutionary and developmental studies of insect molting.  相似文献   

16.
Phosphatidylinositol‐3,5‐bisphosphate (PI(3,5)P2) is a low‐abundance signaling lipid associated with endo‐lysosomal and vacuolar membranes in eukaryotic cells. Recent studies on Arabidopsis indicated a critical role of PI(3,5)P2 in vacuolar acidification and morphology during ABA‐induced stomatal closure, but the molecular targets in plant cells remained unknown. By using patch‐clamp recordings on Arabidopsis vacuoles, we show here that PI(3,5)P2 does not affect the activity of vacuolar H+‐pyrophosphatase or vacuolar H+‐ATPase. Instead, PI(3,5)P2 at low nanomolar concentrations inhibited an inwardly rectifying conductance, which appeared upon vacuolar acidification elicited by prolonged H+ pumping activity. We provide evidence that this novel conductance is mediated by chloride channel a (CLC‐a), a member of the anion/H+ exchanger family formerly implicated in stomatal movements in Arabidopsis. H+‐dependent currents were absent in clc‐a knock‐out vacuoles, and canonical CLC‐a‐dependent nitrate/H+ antiport was inhibited by low concentrations of PI(3,5)P2. Finally, using the pH indicator probe BCECF, we show that CLC‐a inhibition contributes to vacuolar acidification. These data provide a mechanistic explanation for the essential role of PI(3,5)P2 and advance our knowledge about the regulation of vacuolar ion transport.  相似文献   

17.
18.
The a subunit of the V0 membrane‐integrated sector of human V‐ATPase has four isoforms, a1a4, with diverse and crucial functions in health and disease. They are encoded by four conserved paralogous genes, and their vertebrate orthologs have positionally conserved N‐glycosylation sequons within the second extracellular loop, EL2, of the a subunit membrane domain. Previously, we have shown directly that the predicted sequon for the a4 isoform is indeed N‐glycosylated. Here we extend our investigation to the other isoforms by transiently transfecting HEK 293 cells to express cDNA constructs of epitope‐tagged human a1a3 subunits, with or without mutations that convert Asn to Gln at putative N‐glycosylation sites. Expression and N‐glycosylation were characterized by immunoblotting and mobility shifts after enzymatic deglycosylation, and intracellular localization was determined using immunofluorescence microscopy. All unglycosylated mutants, where predicted N‐glycosylation sites had been eliminated by sequon mutagenesis, showed increased relative mobility on immunoblots, identical to what was seen for wild‐type a subunits after enzymatic deglycosylation. Cycloheximide‐chase experiments showed that unglycosylated subunits were turned over at a higher rate than N‐glycosylated forms by degradation in the proteasomal pathway. Immunofluorescence colocalization analysis showed that unglycosylated a subunits were retained in the ER, and co‐immunoprecipitation studies showed that they were unable to associate with the V‐ATPase assembly chaperone, VMA21. Taken together with our previous a4 subunit studies, these observations show that N‐glycosylation is crucial in all four human V‐ATPase a subunit isoforms for protein stability and ultimately for functional incorporation into V‐ATPase complexes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号