共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Whinam J. Hope G.S. Clarkson B.R. Buxton R.P. Alspach P.A. Adam P. 《Wetlands Ecology and Management》2003,11(1-2):37-49
In comparison to the northern hemisphere, Sphagnum peatlands are an unusual andinfrequent component of the Australasianlandscape. Most peatlands in Australasiaare primarily composed of eitherRestionaceous or Cyperaceous peats. Sphagnum peatlands in Australia and PapuaNew Guinea/Irian Jaya (now West Papua) arelargely located in montane and alpineenvironments, but also occur down to sealevel in New Zealand and as moss patches onsome subantarctic islands. Fire is a majordeterminant of the characteristics ofpeatlands in Australasia. Peatlandmanagement in Australasia is hindered bythe need for increased understanding ofpeatland processes to enable a sustainablebalance of conservation of a small resourcewith localised utilisation. Themanagement focus in Australasia has largelybeen on ensuring ecologically sustainable Sphagnum moss harvesting, withlimited peat mining. We have found thatgeneral recovery of Sphagnum after moss harvesting canbe enhanced by harvesting larger peatlands,and by leaving one-third of the acrotelm toregenerate. The largest upland peat swampin mainland Australia, Wingecarribee Swamp,suffered a major collapse in 1998 followingpeat mining. Environmental and managementconsequences of this collapse have majorramifications for rehabilitation options. Sphagnum peatlands in Australasia arelikely to be adversely affected bydrainage, burning, grazing, trampling,global warming and peat mining. 相似文献
3.
Rochefort Line Quinty François Campeau Suzanne Johnson Kurt Malterer Thomas 《Wetlands Ecology and Management》2003,11(1-2):3-20
Sphagnum dominated peatlands do not rehabilitate well after being cutover (mined) for peat and some action needs to be taken in order to restore these sites within a human generation. Peatland restoration is recent and has seen significant advances in the 1990s. A new approach addressing the North American context has been developed and is presentedin this paper. The short-term goal of this approach is to establish a plant cover composed of peat bog species and to restore a water regime characteristic of peatland ecosystems. The long-term objective is to return the cutover areas to functional peat accumulating ecosystems. The approach developed for peatland restoration in North America involves the following steps: 1)field preparation, 2) diaspore collection, 3) diaspore introduction, 4) diaspore protection, and 5) fertilization. Field preparation aims at providing suitable hydrological conditions for diaspores through creation of microtopography and water retention basins, re-shaping cutover fields and blocking ditches. It is site specific because it depends largely onlocal conditions. The second step is the collection of the top 10 centimetres of the living vegetation in a natural bog as a source of diaspores. It is recommended to use a ratio of surface collected to surface restored between 1: 10 and 1: 15 in order to minimize the impact on natural bogs and to insure rapid plant establishment in less than four years. Diaspores are then spread as a thin layer on the bare peat surfaces to be restored. It has been demonstrated that too scant or too thick a layer decreases plant establishment success. Diaspores are then covered by a straw mulch applied at a rate of 3 000 kg ha-1 which provides improved water availabilityand temperature conditions. Finally, phosphorus fertilization favours more rapid substrate colonization by vascular plants, which have been shown to help stabilize the bare peat surface and act as nurse plants to the Sphagnum mosses. 相似文献
4.
It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation–soil feedbacks. One fruitful avenue for studying such changing feedbacks is through plant functional traits, as an understanding of these traits may help us to understand and synthesise (1) responses of vegetation (through ‘response traits’ and ‘specific response functions’ of each species) to winter climate and (2) the effects of changing vegetation composition (through ‘effect traits’ and ‘specific effect functions’ of each species) on soil functions. It is the relative correspondence of variation in response and effect traits that will provide useful data on the impacts of winter climate change on carbon and nutrient cycling processes. Here we discuss several examples of how the trait-based, response–effect framework can help scientists to better understand the effects of winter warming on key ecosystem functions in cold biomes. These examples support the view that measuring species for their response and effect traits, and how these traits are linked across species through correspondence of variation in specific response and effects functions, may be a useful approach for teasing out the contribution of changing vegetation composition to winter warming effects on ecosystem functions. This approach will be particularly useful when linked with ecosystem-level measurements of vegetation and process responses to winter warming along natural gradients, over medium time scales in given sites or in response to experimental climate manipulations. 相似文献
5.
6.
The mass balance and internal cycle of sulfur within a small forested,Sphagnum bog in northern Minnesota are presented here based on a 4-year record of hydrologic inputs and outputs (precipitation, throughfall, streamflow, upland runoff) and a 3-year measurement of plant growth and sulfur uptake. Concentrations and accumulation rates of inorganic and organic sulfur species were measured in porewater. The bog is a large sink for sulfur, retaining 37% of the total sulfur input. Because of the relatively large export of organic S (21% of inputs), retention efficiency for total-S (organic S + SO 4 = ; 37%) is less than that for SO 4 = (58%). There is a dynamic cycle of oxidation and reduction within the bog. Annual oxidation and recycling of S is equal to total inputs in the center of the bog. Plants receive 47% of their uptake requirement from atmospheric deposition, 5% from retranslocation from foliage, and the remainder from sulfur remineralized from peat. Mineralization is most intense in the aerobic zone above the water table. Inorganic sulfur species comprise <5% of the total sulfur burden within the peat. 相似文献
7.
Bjorn J.M. Robroek Jasper van Ruijven Matthijs G.C. Schouten Angela Breeuwer Patrick H. Crushell Frank Berendse Juul Limpens 《Basic and Applied Ecology》2009,10(8):697-706
In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately improve the functioning of peatland ecosystems, regarding atmospheric carbon sequestration. Yet, the factors controlling the success of re-introduction are unclear. In Ireland and Estonia, we transplanted small and large aggregates of three Sphagnum species into existing vegetation. We recorded changes in cover over a 3-year period, at two water levels (?5 and ?20 cm).Performance of transplanted aggregates of Sphagnum was highly species specific. Hummock species profited at low water tables, whereas hollow species profited at high water tables. But our results indicate that performance and establishment of species was also promoted by increased aggregate size. This mechanism (positive self-association) has earlier been seen in other ecosystems, but our results are the first to show this mechanism in peatlands. Our results do not agree with present management, which is aimed at retaining water on the surface of peat remnants in order to restore a functional and diverse Sphagnum community. More than the water table, aggregate size of the reintroduced species is crucial for species performance, and ultimately for successful peatland restoration. 相似文献
8.
Although observational data and experiments suggest that carbon flux and storage in peatlands are controlled by hydrology and/or nutrient availability, we lack a rigorous theory to account for the roles that different plant species or life-forms, particularly mosses, play in carbon and nutrient flux and storage and how they interact with different hydrologic sources of nutrients. We construct and analyze a model of peatlands that sheds some light on this problem. The model is a set of six coupled differential equations that define the flow of nutrients from moss and vascular plants to their litters, then to peat, and finally to an inorganic nutrient resource pool. We first analyze a simple version of this model (model 1) in which all nutrient input is from precipitation and enters the moss compartment directly, mimicking the dynamics of ombrotrophic bogs. There is a transcritical bifurcation that results in a switch of stability between two equilibrium bog communities: a moss monoculture and a community where mosses and vascular plants coexist. The bifurcation depends on the magnitudes of the input/output budget of the peatland and the life-history traits of the plants. We generalize model 1 to model 2 by dividing nutrient inputs between precipitation and groundwater, thus also allowing the development of minerotrophic fens that receive nutrient subsidies from both groundwater and precipitation and adding intraspecific competition (self-limitation) terms for both moss and vascular plants. Partitioning precipitation inputs between moss and the nutrient pool resulted in the greatest changes in model behavior, including the appearance of a lake and a vascular plant monoculture as well as the moss monoculture and coexistence equilibrium. As with model 1, these solutions are separated by transcritical bifurcations depending on critical combinations of parameters determining the input-output budget of the peatland as well as the life-history characteristics of the plant species. Model 2 also allowed for an early transient spike in vascular plant dominance followed by approach to near moss monoculture and then eventual approach to coexistence equilibrium. This generalized model mimics the broad features of successional development of peatlands from fens to bogs often found in the paleorecords of peat cores. 相似文献
9.
In boreal forested peatlands, we disturbed Sphagnum spp. and Pleurozium schreberi carpets to see how disturbance influenced substrate physico-chemistry, and growth and foliar nutrition of planted Picea mariana seedlings. Carpets were hand disturbed using gardening tools to a depth of approximately 25 cm. Carpet disturbance was aimed at disrupting only the organic layer and did not result in the mixing of organic matter with mineral soil. Disturbed carpets, whether P. schreberi or Sphagnum spp., were warmer than undisturbed carpets and had a lower cover of ericaceous shrubs. Pleurozium schreberi carpets had a higher decomposition index than Sphagnum spp. carpets, whereas disturbance had no effect on this variable. Pleurozium schreberi had higher Ntot and dissolved organic N concentrations (DON) than Sphagnum spp., whereas disturbance increased NH 4 + availability in both substrates. Moss disruption increased seedling growth rates as well as their foliar N and P concentrations in both substrates and these variables remained higher in P. schreberi than in Sphagnum spp. within a given treatment. Seedling growth was positively correlated to substrate Ntot, NH 4 + and DON concentrations, and to foliar N and P concentrations, and negatively to substrate C/N and ericaceous shrub cover. Disruption of the moss carpets without mineral soil mixing improved black spruce seedling growth and nutrition in both moss types but the superiority of P. schreberi compared to Sphagnum spp. as a growing substrate remained present. 相似文献
10.
Taro is a staple crop that is often grown in wetlands throughout the Indo-Pacific, but the long-term impacts of its cultivation on wetland ecosystem functions are unknown. The objective of this study was to determine how cultivating taro affects carbon cycling by comparing key pathways in a forested peatland and an adjacent cultivated taro patch. Leaves decomposed rapidly at both sites with roughly 73% remaining after 2 weeks, 53% after 8 weeks, 38% after 17 weeks, and 17% after 36 weeks. Root decomposition proceeded much more slowly with roughly 93% remaining after 2 weeks, 80% after 8 weeks, 71% after 17 weeks, and 66% after 36 weeks. Annual litterfall was 1181 g m–2 year–1 and 849 g m–2 year–1 for the forested and cultivated sites, respectively. For the two sites combined, litterfall consisted of 78% leaves, 10% reproductive material, 3% branches, and 9% miscellaneous material. Fine root biomass was greater in the forested site than the cultivated site, averaging 205 g m–2 and 34 g m–2, respectively. Fine root production was much greater in the forested than the cultivated site, averaging 226 g C m–2 year–1 and 48 g C m–2 year–1, respectively. Soil respiration averaged 99 mg C m–2 h–1 and 55 mg C m–2 h–1 at the forested and cultivated sites, respectively. We found that the major change to carbon fluxes in the cultivated site was less carbon was entering the peatland, particularly less root production. Alterations to the carbon cycle caused by cultivation would probably not be permanent, because taro patches are periodically abandoned and allowed to regenerate naturally. 相似文献
11.
In an accompanying editorial Dr Petr Baldrian made a case casting doubt on our recent work addressing the saprophytic potential
of ectomycorrhizal (EM) fungi. Dr Baldrian’s statements illustrate a very valid truth: the book is still very much open on
this subject. The point he raised that the only logical reason for these fungi to be responding to high carbon demand or decreased
host photosynthetic capacity by up-regulating enzymes is for the purpose of carbon acquisition is valid as well. Despite this,
he makes the case that there is no compelling evidence that EM fungi exhibit saprophytic activity. The concept central to
Dr Baldrian’s conclusion is that even though some EM fungi possess the genes necessary for saprophytic behaviour and may even
express these genes, EM fungi do not inhabit a position in the soil column that provides access to usable substrate. In this
paper we present both previously published and newly obtained data that demonstrate that this assumption is erroneous, and
we present arguments that place the saprophytic potential of EM fungi within a broad ecological context. 相似文献
12.
Modelling and analysis of peatlands as dynamical systems 总被引:8,自引:0,他引:8
13.
Wagner WE Beckers OM Tolle AE Basolo AL 《Proceedings. Biological sciences / The Royal Society》2012,279(1739):2899-2906
Tradeoffs occur between a variety of traits in a diversity of organisms, and these tradeoffs can have major effects on ecological and evolutionary processes. Far less is known, however, about tradeoffs between male traits that affect mate attraction than about tradeoffs between other types of traits. Previous results indicate that females of the variable field cricket, Gryllus lineaticeps, prefer male songs with higher chirp rates and longer chirp durations. In the current study, we tested the hypothesis that a tradeoff between these traits affects the evolution of male song. The two traits were negatively correlated among full-sibling families, consistent with a genetically based tradeoff, and the tradeoff was stronger when nutrients were limiting. In addition, for males from 12 populations reared in a common environment, the traits were negatively correlated within populations, the strength of the tradeoff was largely invariant across populations, and the within-population tradeoff predicted how the traits have evolved among populations. A widespread tradeoff thus affects male trait evolution. Finally, for males from four populations assayed in the field, the traits were negatively correlated within and among populations. The tradeoff is thus robust to the presence of environmental factors that might mask its effects. Together, our results indicate there is a fundamental tradeoff between male traits that: (i) limits the ability of males to produce multiple attractive traits; (ii) limits how male traits evolve; and (iii) might favour plasticity in female mating preferences. 相似文献
14.
Plant and Soil - Trade-offs between slow and fast nutrient turnover rates among plants may affect soil properties and biomass production. We examined how plant traits interact with abiotic... 相似文献
15.
Melanie A. Vile R. Kelman Wieder Tatjana Živković Kimberli D. Scott Dale H. Vitt Jeremy A. Hartsock Christine L. Iosue James C. Quinn Meaghan Petix Hope M. Fillingim Jacqueline M. A. Popma Katherine A. Dynarski Todd R. Jackman Cara M. Albright Dennis D. Wykoff 《Biogeochemistry》2014,121(2):317-328
Symbiotic relationships between N2-fixing prokaryotes and their autotrophic hosts are essential in nitrogen (N)-limited ecosystems, yet the importance of this association in pristine boreal peatlands, which store 25 % of the world’s soil (C), has been overlooked. External inputs of N to bogs are predominantly atmospheric, and given that regions of boreal Canada anchor some of the lowest rates found globally (~1 kg N ha?1 year?1), biomass production is thought to be limited primarily by N. Despite historically low N deposition, we show that boreal bogs have accumulated approximately 12–25 times more N than can be explained by atmospheric inputs. Here we demonstrate high rates of biological N2-fixation in prokaryotes associated with Sphagnum mosses that can fully account for the missing input of N needed to sustain high rates of C sequestration. Additionally, N amendment experiments in the field did not increase Sphagnum production, indicating that mosses are not limited by N. Lastly, by examining the composition and abundance of N2-fixing prokaryotes by quantifying gene expression of 16S rRNA and nitrogenase-encoding nifH, we show that rates of N2-fixation are driven by the substantial contribution from methanotrophs, and not from cyanobacteria. We conclude biological N2-fixation drives high sequestration of C in pristine peatlands, and may play an important role in moderating fluxes of methane, one of the most important greenhouse gases produced in peatlands. Understanding the mechanistic controls on biological N2-fixation is crucial for assessing the fate of peatland carbon stocks under scenarios of climate change and enhanced anthropogenic N deposition. 相似文献
16.
Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change 总被引:4,自引:0,他引:4
Ecosystems across the biosphere are subject to rapid changes in elemental balance and climatic regimes. A major force structuring ecological responses to these perturbations lies in the stoichiometric flexibility of systems - the ability to adjust their elemental balance whilst maintaining function. The potential for stoichiometric flexibility underscores the utility of the application of a framework highlighting the constraints and consequences of elemental mass balance and energy cycling in biological systems to address global change phenomena. Improvement in the modeling of ecological responses to disturbance requires the consideration of the stoichiometric flexibility of systems within and across relevant scales. Although a multitude of global change studies over various spatial and temporal scales exist, the explicit consideration of the role played by stoichiometric flexibility in linking micro-scale to macro-scale biogeochemical processes in terrestrial ecosystems remains relatively unexplored. Focusing on terrestrial systems under change, we discuss the mechanisms by which stoichiometric flexibility might be expressed and connected from organisms to ecosystems. We suggest that the transition from the expression of stoichiometric flexibility within individuals to the community and ecosystem scales is a key mechanism regulating the extent to which environmental perturbation may alter ecosystem carbon and nutrient cycling dynamics. 相似文献
17.
Erwin J. J. Sieben 《Plant Ecology》2012,213(5):809-820
The assumption that ecosystems with similar emergent properties consist of similar functional groupings of plant species is
tested by comparing three peatlands from different bioregions across South Africa. They are Mfabeni Swamp in the subtropical
coastal region, Wakkerstroom on the inland plateau, and Goukou wetland in the Winter Rainfall region of the Western Cape.
In each of the three peatlands, about 400 small vegetation plots have been made from which the abundance of each species per
wetland can be assessed. The most dominant species in these plots have been investigated for 17 traits. The functional composition
of the vegetation types has been compared across the three peatlands and Functional Diversity has been calculated, taking
the dominance of each species into account. One peatland differed greatly from the other two, since the dominant species was
of a functional type (“Palmiet/woody sedge”) that was very divergent from any other peatland species found in the study. This
functional type can be considered an ecosystem engineer and the effects that this functional type has on the ecosystem results
in the occurrence of many other functional types that do not occur in the other peatlands. When we consider emergent traits
of an ecosystem as a function of all the plant functional traits that occur in that ecosystem, then peatlands can be regarded
as a heterogeneous group of ecosystems. Even if emergent properties such as peat formation are similar between ecosystems,
those ecosystems may still consist of very different functional groups. Ecosystem engineers have an impact on the final functional
composition of an ecosystem and the degree in which ecosystem engineering plays a role in peatlands differs between different
peatlands. 相似文献
18.
John Pastor Jeremy Solin Scott D. Bridgham Karen Updegraff Cal Harth Peter Weishampel Bradley Dewey 《Oikos》2003,100(2):380-386
Peatlands occupy approximately 15% of boreal and sub-arctic regions, contain approximately one third of the world's soil carbon pool, and supply most of the dissolved organic carbon (DOC) entering boreal lakes and rivers and the Arctic Ocean. The high latitudes occupied by these peatlands are expected to see the greatest amount of climatic warming in the next several decades. In addition to increasing temperatures, climatic change could also affect the position of the water-table level and discharge from these peatlands. Changes in temperature, water tables, and discharge could affect delivery of DOC to downstream ecosystems where it exerts significant control over productivity, biogeochemical cycles, and attenuation of visible and UV radiation. We experimentally warmed and controlled water tables while measuring discharge in a factorial experiment in large mesocosms containing peat monoliths and intact plant communities from a bog and fen to determine the effects of climate change on DOC budgets. We show that the DOC budget is controlled largely by changes in discharge rather than by any effect of warming or position of the water-table level on DOC concentrations. Furthermore, we identify a critical discharge rate in bogs and fens for which the DOC budget switches from net export to net retention. We also demonstrate an exponential increase in trace gas CO2 –C and CH4 –C emissions coincident with increased retention of dissolved organic carbon from boreal peatlands. 相似文献
19.
M. W. Spratling 《Journal of computational neuroscience》2014,36(1):97-118
A distinction is commonly made between synaptic connections capable of evoking a response (“drivers”) and those that can alter ongoing activity but not initiate it (“modulators”). Here it is proposed that, in cortex, both drivers and modulators are an emergent property of the perceptual inference performed by cortical circuits. Hence, it is proposed that there is a single underlying computational explanation for both forms of synaptic connection. This idea is illustrated using a predictive coding model of cortical perceptual inference. In this model all synaptic inputs are treated identically. However, functionally, certain synaptic inputs drive neural responses while others have a modulatory influence. This model is shown to account for driving and modulatory influences in bottom-up, lateral, and top-down pathways, and is used to simulate a wide range of neurophysiological phenomena including surround suppression, contour integration, gain modulation, spatio-temporal prediction, and attention. The proposed computational model thus provides a single functional explanation for drivers and modulators and a unified account of a diverse range of neurophysiological data. 相似文献
20.
Kimberley R. Murray Andrea K. Borkenhagen David J. Cooper Maria Strack 《Wetlands Ecology and Management》2017,25(4):501-515
The moss layer transfer technique removes the top layer of vegetation from donor sites as a method to transfer propagules and restore degraded or reclaimed peatlands. As this technique is new, little is known about the impacts of moss layer transfer on vegetation and carbon fluxes following harvest. We monitored growing season carbon dioxide (CO2) and methane (CH4) fluxes as well as plant communities at donor sites and neighbouring natural peatland sites in an ombrotrophic bog and minerotrophic fen in Alberta, Canada from which material was harvested between 1 and 6 years prior to the study. Plant recovery at all donor sites was rapid with an average of 72% total plant cover one growing season after harvest at the fen and an average of 87% total plant cover two growing seasons after harvest at the bog. Moss cover also returned, averaging 84% 6 years after harvest at the bog. The majority of natural peatlands in western Canada are treed and tree recruitment at the donor sites was limited. Methane emissions were higher from donor sites compared to natural sites due to the high water table and greater sedge cover. Carbon budgets suggested that the donor fen and bog sites released higher CO2 and CH4 over the growing season compared to adjacent natural sites. However, vegetation re-establishment on donor sites was rapid, and it is possible that these sites will return to their original carbon-cycle functioning after disturbance, suggesting that donor sites may recover naturally without implementing management strategies. 相似文献