首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Wetlands Ecology and Management -  相似文献   

2.
Feng  Lu  Sundberg  Sebastian  Ooi  Mark K. J.  Wu  Yu-Huan  Wang  Meng  Bu  Zhao-Jun 《Plant and Soil》2018,432(1-2):403-413
Plant and Soil - To test the effects of characteristic ecological gradients in peatlands including oxygen-deficiency and allelopathy on Sphagnum spore persistence. We determined the initial...  相似文献   

3.
Abstract. The sequences of macrofossils in 17 cores from two Tasmanian valley Sphagnum peatlands reveal a wide variety of successional pathways. The most common sequence is from restiad mires to Sphagnum mires to heath. While it is impossible to conclusively separate allogenic and autogenic influences, it seems likely that the rapid rate of change recorded in the upper levels of the cores may, in part, reflect recent climatic change. Most other changes recorded in the core are likely to be predominantly autogenic.  相似文献   

4.
Climate change will influence plant photosynthesis by altering patterns of temperature and precipitation, including their variability and seasonality. Both effects may be important for peatlands as the carbon (C) sink potential of these ecosystems depends on the balance between plant C uptake through photosynthesis and microbial decomposition. Here, we show that the effect of climate warming on Sphagnum community photosynthesis toggles from positive to negative as the peatland goes from rainy to dry periods during summer. More particularly, we show that mechanisms of compensation among the dominant Sphagnum species (Sphagnum fallax and Sphagnum medium) stabilize the average photosynthesis and productivity of the Sphagnum community during summer despite rising temperatures and frequent droughts. While warming had a negligible effect on S. medium photosynthetic capacity (Amax) during rainy periods, Amax of S. fallax increased by 40%. On the opposite, warming exacerbated the negative effects of droughts on S. fallax with an even sharper decrease of its Amax while S. medium Amax remained unchanged. S. medium showed a remarkable resistance to droughts due to anatomical traits favouring its water holding capacity. Our results show that different phenotypic plasticity among dominant Sphagnum species allow the community to cope with rising temperatures and repeated droughts, maintaining similar photosynthesis and productivity over summer in warmed and control conditions. These results are important because they provide information on how soil water content may modulate the effects of climate warming on Sphagnum productivity in boreal peatlands. It further confirms the transitory nature of warming‐induced photosynthesis benefits in boreal systems and highlights the vulnerability of the ecosystem to excess warming and drying.  相似文献   

5.
Whinam  J.  Hope  G.S.  Clarkson  B.R.  Buxton  R.P.  Alspach  P.A.  Adam  P. 《Wetlands Ecology and Management》2003,11(1-2):37-49
In comparison to the northern hemisphere, Sphagnum peatlands are an unusual andinfrequent component of the Australasianlandscape. Most peatlands in Australasiaare primarily composed of eitherRestionaceous or Cyperaceous peats. Sphagnum peatlands in Australia and PapuaNew Guinea/Irian Jaya (now West Papua) arelargely located in montane and alpineenvironments, but also occur down to sealevel in New Zealand and as moss patches onsome subantarctic islands. Fire is a majordeterminant of the characteristics ofpeatlands in Australasia. Peatlandmanagement in Australasia is hindered bythe need for increased understanding ofpeatland processes to enable a sustainablebalance of conservation of a small resourcewith localised utilisation. Themanagement focus in Australasia has largelybeen on ensuring ecologically sustainable Sphagnum moss harvesting, withlimited peat mining. We have found thatgeneral recovery of Sphagnum after moss harvesting canbe enhanced by harvesting larger peatlands,and by leaving one-third of the acrotelm toregenerate. The largest upland peat swampin mainland Australia, Wingecarribee Swamp,suffered a major collapse in 1998 followingpeat mining. Environmental and managementconsequences of this collapse have majorramifications for rehabilitation options. Sphagnum peatlands in Australasia arelikely to be adversely affected bydrainage, burning, grazing, trampling,global warming and peat mining.  相似文献   

6.
North American approach to the restoration of Sphagnum dominated peatlands   总被引:4,自引:2,他引:2  
Sphagnum dominated peatlands do not rehabilitate well after being cutover (mined) for peat and some action needs to be taken in order to restore these sites within a human generation. Peatland restoration is recent and has seen significant advances in the 1990s. A new approach addressing the North American context has been developed and is presentedin this paper. The short-term goal of this approach is to establish a plant cover composed of peat bog species and to restore a water regime characteristic of peatland ecosystems. The long-term objective is to return the cutover areas to functional peat accumulating ecosystems. The approach developed for peatland restoration in North America involves the following steps: 1)field preparation, 2) diaspore collection, 3) diaspore introduction, 4) diaspore protection, and 5) fertilization. Field preparation aims at providing suitable hydrological conditions for diaspores through creation of microtopography and water retention basins, re-shaping cutover fields and blocking ditches. It is site specific because it depends largely onlocal conditions. The second step is the collection of the top 10 centimetres of the living vegetation in a natural bog as a source of diaspores. It is recommended to use a ratio of surface collected to surface restored between 1: 10 and 1: 15 in order to minimize the impact on natural bogs and to insure rapid plant establishment in less than four years. Diaspores are then spread as a thin layer on the bare peat surfaces to be restored. It has been demonstrated that too scant or too thick a layer decreases plant establishment success. Diaspores are then covered by a straw mulch applied at a rate of 3 000 kg ha-1 which provides improved water availabilityand temperature conditions. Finally, phosphorus fertilization favours more rapid substrate colonization by vascular plants, which have been shown to help stabilize the bare peat surface and act as nurse plants to the Sphagnum mosses.  相似文献   

7.
Peatlands in Australia and New Zealand are composed mainly of Restionaceous and Cyperaceous peats, although Sphagnum peat is common in wetter climates (Mean Annual Precipitation > 1,000 mm) and at higher altitudes (>1,000 m). Experimental trials in two contrasting peatland types—fire‐damaged Sphagnum peatlands in the Australian Alps and cutover restiad bogs in lowland New Zealand—revealed similar approaches to peatland restoration. Hydrological restoration and rehydration of drying peats involved blocking drainage ditches to raise water tables or, additionally in burnt Sphagnum peatlands, peat‐trenching, and the use of sterilized straw bales to form semipermanent “dam walls” and barriers to spread and slow surface water movement. Recovery to the predisturbance vegetation community was most successful once protective microclimates had been established, either artificially or naturally. Specifically, horizontally laid shadecloth resulted in Sphagnum cristatum regeneration rates and biomass production 3–4 times that of unshaded vegetation (Australia), and early successional nurse shrubs facilitated establishment of Sporadanthus ferrugineus (New Zealand) within 2–3 years. On severely burnt or cutover sites, a patch dynamic approach using transplants of Sphagnum or creation of restiad peat “islands” markedly improved vegetation recovery. In New Zealand, this approach has been scaled up to whole mine‐site restoration, in which the newly vegetated islands provide habitat and seed sources for plants and invertebrates to spread onto surrounding areas. Although a vegetation cover can be established relatively rapidly in both peatland types, restoration of invertebrate communities, ecosystem processes, and peat hydrological function and accumulation may take many decades.  相似文献   

8.
The use of functional traits to describe community structure is a promising approach to reveal generalities across organisms and ecosystems. Plant ecologists have demonstrated the importance of traits in explaining community structure, competitive interactions as well as ecosystem functioning. The application of trait‐based methods to more complex communities such as food webs is however more challenging owing to the diversity of animal characteristics and of interactions. The objective of this study was to determine how functional structure is related to food web structure. We consider that food web structure is the result of 1) the match between consumer and resource traits, which determine the occurence of a trophic interaction between them, and 2) the distribution of functional traits in the community. We implemented a statistical approach to assess whether or not 35 466 pairwise interactions between soil organisms are constrained by trait‐matching and then used a Procrustes analysis to investigate correlations between functional indices and network properties across 48 sites. We found that the occurrence of trophic interactions is well predicted by matching the traits of the resource with those of the consumer. Taxonomy and body mass of both species were the most important traits for the determination of an interaction. As a consequence, functional evenness and the variance of certain traits in the community were correlated to trophic complementarity between species, while trait identity, more than diversity, was related to network topology. The analysis was however limited by trait data availability, and a coarse resolution of certain taxonomic groups in our dataset. These limitations explain the importance of taxonomy, as well as the complexity of the statistical model needed. Our results outline the important implications of trait composition on ecological networks, opening promising avenues of research into the relationship between functional diversity and ecosystem functioning in multi‐trophic systems.  相似文献   

9.
研究泥炭地特征性环境因子——淹水、少氧和化感物质对泥炭藓孢子持久性的影响, 可深入理解泥炭地泥炭藓持久孢子库的形成机制, 为退化泥炭地泥炭藓地被恢复研究提供参考。该研究以藓丘种和丘间种两种泥炭藓的孢子为试验材料, 通过室内模拟控制实验的方法, 研究泥炭藓孢子在空气、超纯水、泥炭地地表水和泥炭藓沥出液中, 及3种速率充气下, 孢子萌发力持久性的变化。经充气处理后, 泥炭藓孢子持久性显著低于不充气处理。不充气时, 泥炭藓孢子在含有化感物质的泥炭地地表水和泥炭藓沥出液中保存, 持久性显著高于在超纯水中保存。通径分析结果显示, 溶解氧是影响泥炭地泥炭藓孢子持久性的主要因子和限制因子, 养分元素氮(TN)和磷(TP)的浓度为孢子持久性的负作用因子。研究结果表明, 泥炭藓孢子散布于苔藓地被基质或淹水的丘间生境中, 比暴露于空气或在无化感物质的水中, 能更好地维持萌发力。泥炭地中, 泥炭藓孢子和其他植物的繁殖体的超长寿命可能归因于少氧、养分贫乏和丰富的化感物质等泥炭地特征性环境因子。  相似文献   

10.
Facilitation among plants mediated by grazers occurs when an unpalatable plant extends its protection against grazing to another plant. This type of indirect facilitation impacts species coexistence and ecosystem functioning in a large array of ecosystems worldwide. It has nonetheless generally been understudied so far in comparison with the role played by direct facilitation among plants. We aimed at providing original data on indirect facilitation at the community scale to determine the extent to which indirect facilitation mediated by grazers can shape plant communities. Such experimental data are expected to contribute to refining the conceptual framework on plant–plant–herbivore interactions in stressful environments. We set up a 2‐year grazing exclusion experiment in tropical alpine peatlands in Bolivia. Those ecosystems depend entirely on a few, structuring cushion‐forming plants (hereafter referred to as “nurse” species), in which associated plant communities develop. Fences have been set over two nurse species with different strategies to cope with grazing (direct vs. indirect defenses), which are expected to lead to different intensities of indirect facilitation for the associated communities. We collected functional traits which are known to vary according to grazing pressure (LDMC, leaf thickness, and maximum height), on both the nurse and their associated plant communities in grazed (and therefore indirect facilitation as well) and ungrazed conditions. We found that the effect of indirectly facilitated on the associated plant communities depended on the functional trait considered. Indirect facilitation decreased the effects of grazing on species relative abundance, mean LDMC, and the convergence of the maximum height distribution of the associated communities, but did not affect mean height or cover. The identity of the nurse species and grazing jointly affected the structure of the associated plant community through indirect facilitation. Our results together with the existing literature suggest that the “grazer–nurse–beneficiary” interaction module can be more complex than expected when evaluated in the field.  相似文献   

11.
Ecosystem restoration frequently involves the reintroduction of plant material in the degraded ecosystem. When there are no plant nurseries or seeds available on the market, the plant material has to be harvested in the wild, in a “donor ecosystem.” A comprehensive assessment of donor ecosystem recovery is lacking, especially for Sphagnum‐dominated donor peatlands, where all top vegetation is harvested mechanically with different practices. We aimed to evaluate (1) the regeneration of vegetation, especially of Sphagnum mosses, to determine which harvesting practices are best to enhance recovery and (2) the influence of the site hydrological conditions and meteorological variables of the first complete growing season postharvesting on peat moss regeneration. Twenty‐five donor sites covering a 17‐year chronosequence (harvested 1–17 years ago) were inventoried along with 15 associated natural reference sites located in Quebec, New Brunswick, and Alberta, Canada. All donor sites aged 10 years or more were dominated by Sphagnum mosses, though plant composition varied between donor and their associated reference sites because of the wetter conditions at harvested donor sites. Harvesting practices strongly influenced donor site recovery, showing that the skills of the practitioner are an essential ingredient. Harvesting practices minimizing donor site disturbances are recommended, such as the choice of the adequate donor site (localization, hydrologic conditions, vegetation), the use of less disruptive methods, and harvesting when the soil is deeply frozen. This study demonstrated that harvesting surface plant material for peatland restoration is not detrimental towards the recovery of near‐natural peatland ecosystems.  相似文献   

12.
Many vertebrate species act as both plant pollinators and seed-dispersers, thus interconnecting these processes, particularly on islands. Ecological multilayer networks are a powerful tool to explore interdependencies between processes; however, quantifying the links between species engaging in different types of interactions (i.e. inter-layer edges) remains a great challenge. Here, we empirically measured inter-layer edge weights by quantifying the role of individually marked birds as both pollinators and seed-dispersers of Galápagos plant species over an entire year. Although most species (80%) engaged in both functions, we show that only a small proportion of individuals actually linked the two processes, highlighting the need to further consider intra-specific variability in individuals'' functional roles. Furthermore, we found a high variation among species in linking both processes, i.e. some species contribute more than others to the modular organization of the multilayer network. Small and abundant species are particularly important for the cohesion of pollinator seed-dispersal networks, demonstrating the interplay between species traits and neutral processes structuring natural communities.  相似文献   

13.
The mass balance and internal cycle of sulfur within a small forested,Sphagnum bog in northern Minnesota are presented here based on a 4-year record of hydrologic inputs and outputs (precipitation, throughfall, streamflow, upland runoff) and a 3-year measurement of plant growth and sulfur uptake. Concentrations and accumulation rates of inorganic and organic sulfur species were measured in porewater. The bog is a large sink for sulfur, retaining 37% of the total sulfur input. Because of the relatively large export of organic S (21% of inputs), retention efficiency for total-S (organic S + SO 4 = ; 37%) is less than that for SO 4 = (58%). There is a dynamic cycle of oxidation and reduction within the bog. Annual oxidation and recycling of S is equal to total inputs in the center of the bog. Plants receive 47% of their uptake requirement from atmospheric deposition, 5% from retranslocation from foliage, and the remainder from sulfur remineralized from peat. Mineralization is most intense in the aerobic zone above the water table. Inorganic sulfur species comprise <5% of the total sulfur burden within the peat.  相似文献   

14.
It is essential that scientists be able to predict how strong climate warming, including profound changes to winter climate, will affect the ecosystem services of alpine, arctic and boreal areas, and how these services are driven by vegetation–soil feedbacks. One fruitful avenue for studying such changing feedbacks is through plant functional traits, as an understanding of these traits may help us to understand and synthesise (1) responses of vegetation (through ‘response traits’ and ‘specific response functions’ of each species) to winter climate and (2) the effects of changing vegetation composition (through ‘effect traits’ and ‘specific effect functions’ of each species) on soil functions. It is the relative correspondence of variation in response and effect traits that will provide useful data on the impacts of winter climate change on carbon and nutrient cycling processes. Here we discuss several examples of how the trait-based, response–effect framework can help scientists to better understand the effects of winter warming on key ecosystem functions in cold biomes. These examples support the view that measuring species for their response and effect traits, and how these traits are linked across species through correspondence of variation in specific response and effects functions, may be a useful approach for teasing out the contribution of changing vegetation composition to winter warming effects on ecosystem functions. This approach will be particularly useful when linked with ecosystem-level measurements of vegetation and process responses to winter warming along natural gradients, over medium time scales in given sites or in response to experimental climate manipulations.  相似文献   

15.
Plant functional traits and soil carbon sequestration in contrasting biomes   总被引:6,自引:0,他引:6  
Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration.  相似文献   

16.
In European peatlands which have been drained and cut-over in the past, re-vegetation often stagnates after the return of a species-poor Sphagnum community. Re-introduction of currently absent species may be a useful tool to restore a typical, and more diverse, Sphagnum vegetation and may ultimately improve the functioning of peatland ecosystems, regarding atmospheric carbon sequestration. Yet, the factors controlling the success of re-introduction are unclear. In Ireland and Estonia, we transplanted small and large aggregates of three Sphagnum species into existing vegetation. We recorded changes in cover over a 3-year period, at two water levels (?5 and ?20 cm).Performance of transplanted aggregates of Sphagnum was highly species specific. Hummock species profited at low water tables, whereas hollow species profited at high water tables. But our results indicate that performance and establishment of species was also promoted by increased aggregate size. This mechanism (positive self-association) has earlier been seen in other ecosystems, but our results are the first to show this mechanism in peatlands. Our results do not agree with present management, which is aimed at retaining water on the surface of peat remnants in order to restore a functional and diverse Sphagnum community. More than the water table, aggregate size of the reintroduced species is crucial for species performance, and ultimately for successful peatland restoration.  相似文献   

17.
18.
A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.  相似文献   

19.
In permafrost peatlands, the degradation of permafrost soil can raise soil temperature and alter moisture conditions, which increases the rate of loss of soil organic carbon (SOC). Here we selected three typical permafrost types that have very different active layer thicknesses but with soil originating from the same vegetation and which exist under comparable climatic conditions in the Da Xing’an mountain range: continuous permafrost, island permafrost, and island melting permafrost. To quantify the relative importance of control elements on SOC stabilization in these different permafrost types, we used correlation analysis to assess the relationship between organic carbon, physical and chemical properties and microorganisms, and explored the contribution of these factors to the accumulation of organic carbon. This study shows that the interaction between clay or silt, iron oxides and microorganisms have an important influence on the stability of organic carbon in permafrost peatlands.  相似文献   

20.
  1. Download : Download high-res image (109KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号