首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the obligate short‐day potato Solanum tuberosum group Andigena (Solanum andigena), short days, or actually long nights, induce tuberization. Applying a night break in the middle of this long night represses tuberization. However, it is not yet understood how this repression takes place. We suggest a coincidence model, similar to the model explaining photoperiodic flowering in Arabidopsis. We hypothesize that potato CONSTANS (StCOL1), expressed in the night of a short day, is stabilized by the light of the night break. This allows for StCOL1 to repress tuberization through induction of StSP5G, which represses the tuberization signal StSP6A. We grew S. andigena plants in short days, with night breaks applied at different time points during the dark period, either coinciding with StCOL1 expression or not. StCOL1 protein presence, StCOL1 expression and expression of downstream targets StSP5G and StSP6A were measured during a 24‐h time course. Our results show that a night break applied during peak StCOL1 expression is unable to delay tuberization, while coincidence with low or no StCOL1 expression leads to severely repressed tuberization. These results imply that coincidence between StCOL1 expression and light does not explain why a night break represses tuberization in short days. Furthermore, stable StCOL1 did not always induce StSP5G, and upregulated StSP5G did not always lead to fully repressed StSP6A. Our findings suggest there is a yet unknown level of control between StCOL1, StSP5G and StSP6A expression, which determines whether a plant tuberizes.  相似文献   

2.
3.
Tuberization in potato (Solanum tuberosum L.) is a complex biological phenomenon which is affected by several environmental cues, genetic factors and plant nutrition. Understanding the regulation of tuber induction is essential to devise strategies to improve tuber yield and quality. It is well established that short-day photoperiods promote tuberization, whereas long days and high-temperatures inhibit or delay tuberization. Worldwide research on this complex biological process has yielded information on the important bio-molecules (proteins, RNAs, plant growth regulators) associated with the tuberization process in potato. Key proteins involved in the regulation of tuberization include StSP6A, POTH1, StBEL5, StPHYB, StCONSTANS, Sucrose transporter StSUT4, StSP5G, etc. Biomolecules that become transported from “source to sink” have also been suggested to be important signaling candidates regulating the tuberization process in potatos. Four molecules, namely StSP6A protein, StBEL5 RNA, miR172 and GAs, have been found to be the main candidates acting as mobile signals for tuberization. These biomolecules can be manipulated (overexpressed/inhibited) for improving the tuberization in commercial varieties/cultivars of potato. In this review, information about the genes/proteins and their mechanism of action associated with the tuberization process is discussed.  相似文献   

4.
Gene frequencies at 13 isozyme loci were determined in three South American taxa of cultivated potatoes [the diploid group (gp.) Stenotomum, the diploid subgroups (subgp.) Goniocalyx, and the tetraploid gp. Andigena ofS. tuberosum], in the diploid weed speciesS. sparsipilum, and in most of the main cultivars now raised in the Northern Hemisphere (the tetraploid gp. Tuberosum ofS. tuberosum). High levels of genetic variability (mean number of alleles per locus, percentage of polymorphic loci, and mean heterozygosity) were detected, being higher in tetraploid potatoes. An equilibrium among the evolutionary factors which increase genetic variability and artificial selection for maximum yield would explain the high uniformity of heterozygosity values we observed in both Andigena (0.36 ± 0.02) and Tuberosum (0.38 ± 0.01) cultivars.—The low value of genetic distance (D = 0.044) between Stenotomum and Goniocalyx does not support the status of species forS. goniocalyx.—In most isozyme loci, the electromorphs of gp. Andigena were a combination of those found in both gp. Stenotomum andS. sparsipilum, suggesting an amphidiploid origin of gp. Andigena from that two diploid taxa. The presence in Andigena of unique electromorphs, which were lacking in both gp. Stenotomum andS. sparsipilum, suggests that other diploid species could be also implied in the origin of tetraploid Andean potatoes. Furthermore, since Andigena were more related to Stenotomum (D = 0.052) than toS. sparsipilum (D = 0.241), the autopolyploidization of Stenotomum individuals and the subsequent hybridization with gp. Andigena may also have occurred. Thus, our study suggests a multiple origin (amphidiploidy, autoploidy, and hybridization at tetraploid level) of gp. Andigena.—Most of the electromorphs of gp. Tuberosum were also found in gp. Andigena; both the direct derivation of that group from the Andean tetraploid potatoes and the repeated introgression provided by breeding programmes could explain this result. However, the allele c of Pgm-B, present in 30 out of 76 Tuberosum cultivars from Northern Hemisphere as well as in 3 Chilean Tuberosum cultivars, lacks in the 258 Andigena genotypes sampled, suggesting that Chilean germplasm could have taken part in the origin of at least the 39% of the potato cultivars from Europe and North America analyzed here.—The distanceWagner procedure provides an estimate of a 30% of heterogeneity in the evolutionary divergence shown by different groups of cultivated potatoes. Diploid groups show a higher (22.5%) evolutionary rate than tetraploids, which can be attributed to both tetrasomic inheritance and facultative autofecundation that exists in Andigena and Tuberosum groups. Thus, artificial selection acting since 10000 years has not resulted in a higher rate of molecular evolution at the isozyme level in the tetraploids.  相似文献   

5.
In vitro versus in vivo genetic divergence in potato   总被引:1,自引:0,他引:1  
 The objective of this study was to compare the genetic divergence pattern in potato (Solanum tuberosum L.) under in vitro and in vivo conditions. Twenty two potato genotypes were evaluated for ten morphological characters under four in vitro conditions, and for 20 characters under four in vivo seasons. Mahalanobis’ generalized intra- and inter-group genetic distances, and the distribution of genotypes into different clusters, led to the same conclusions under both in vitro and in vivo conditions: (1) genetic diversity was not related to geographic diversity, (2) genetic distances were higher between Tuberosum and Andigena than within Tuberosum and Andigena, and (3) present-day Indian varieties have more resemblance to Tuberosum than to the Andigena group. The in vitro approach was more effective than the in vivo approach for differentiating the genotypes per se, although its effectiveness for cross prediction is known to be low. Received: 15 September 1997 / Accepted: 15 July 1998  相似文献   

6.
A highly efficient and synchronousin vitro tuberization system is described. One-node stem pieces from potato (Solanum tuberosum cv. Bintje) plants grown under short day-light conditions containing an axillary bud were cultured in the dark on a tuber-inducing medium. After 5 or 6 days all axillary buds started to develop tubers. To study gene expression during tuber development, RNA isolated from tuberizing axillary buds was used for bothin vitro translation and northern blot hybridizations. The genes encoding the proteinase inhibitors I and II (PI-I and PI-II), a Kunitz-and a Bowman-Birk-type proteinase inhibitor were already expressed in uninduced axillary buds. The length of the day-light conditions differently influenced the expression level of the individual genes. In addition, the expression of each of these genes changed specifically during the development of the axillary bud to tuber. In contrast to the expression of these proteinase inhibitor genes, patatin gene expression was only detectable from the day tuberization was manifested as a radial expansion of the axillary bud.These results are discussed with respect to the regulation of the expression of the genes studied in relation to the regulation of tuber development.  相似文献   

7.
8.
Photoperiodic inhibition of potato tuberization: an update   总被引:1,自引:0,他引:1  
  相似文献   

9.
10.
We studied the effect of the ectopic expression of the Arabidopsis PHYB gene, which encodes the phytochrome B (phyB) apoprotein, under the control of cauliflower mosaic virus 35S promoter on the photoperiodic response of tuberization and growth of potato (Solanum tuberosum L., cv. Désirée) transformed lines. Stem cuttings of transformed and control plants were cultured on Murashige and Skoog nutrient medium containing 5 or 8% sucrose in the phytotron chambers at 20°C under conditions of a long day (16 h), a short day (10 h), or in darkness. We showed that the overexpression of the PHYB gene enhanced the inhibitory effect of the long day on tuberization. In addition, tuber initiation in these transformed plants occurred at a higher sucrose concentration. The insertion of the PHYB gene decreased plant and tuber weights and shortened stems and internodes. Thus, we demonstrated the complex result of the PHYB gene insertion: it affected the photoperiodic response of tuberization, the control of tuber initiation by sucrose, and the growth of potato vegetative organs.  相似文献   

11.
12.
Phytochrome B mediates the photoperiodic control of tuber formation in potato   总被引:14,自引:1,他引:13  
To determine whether phytochrome B is involved in the response of potato plants to photoperiod, a potato PHYB cDNA fragment was inserted in the antisense orientation behind the 35S CaMV promoter in Bin19 and this construct was transformed into Solanum tuberosum ssp. andigena plants which normally require short days for tuberization. Two independent transformants were obtained that had much lower levels of PHYB mRNA and protein, and which exhibited phenotypes characteristic of phyB mutants, for example, elongated stems and decreased chlorophyll content. The level of phyA, and of several phytochrome A-controlled responses, was unaffected in these plants. The photoperiodic control of tuberization in these antisense PHYB plants was abolished, the plants tuberizing in short day, long day, or short day plus night break conditions. This result shows that phytochrome B is required for the photoperiodic control of tuberization in potato ( Solanum tuberosum ssp. andigena ) and that it regulates this developmental process by preventing tuber formation in non-inductive photoperiods rather than by promoting tuberization in inductive photoperiods.  相似文献   

13.
KAHN  B. A.; EWING  E. E. 《Annals of botany》1983,52(6):861-871
Potato plants (Solanum tuberosum L. cvs Chippewa and Katahdin)were grown in a glasshouse under continuous light. Various numbersof long (16 h) nights were given to these plants and stem cuttingswere taken. Treatments were applied to the cuttings, which werethen placed in a mist bench under continuous light and examinedfor tuberization after 12 days. The general tendency for the strongest tuberization to occurat the most basipetal nodes, which is commonly seen with intactpotato plants, was also found on stem cuttings. This patterncould not be attributed primarily to orientation with respectto gravity, proximity to the mother tuber, or age of buriedbuds. Buried buds farthest from active leaves tended to tuberizethe most strongly. However, distance of the buried bud fromstem exposed to light may have been of equal or greater importance. potato, Solanum tuberosum L., stem cuttings, tuberization  相似文献   

14.
15.
Taxonomic and evolutionary relationships between the Chilean cultivars ofSolanum tuberosum and the wild speciesS. maglia are explored. Widely separated centers of origin are postulated for the Group Tuberosum and Group Andigena varieties of the common potato. The first group is believed to have been domesticated originally in the humid forest-lands of southcentral Chile, while the second appears to have arisen in the high, cold Andes of Peru and Bolivia. In connection with the origin of the Group Tuberosum varieties, a 13,000-yr-old specimen ofS. maglia from the archaeological site of Monte Verde, Chile, is illustrated and described for the first time. These remains, the oldest on record for any wild or cultivated potato species, are important in that they help to establish the area of southern Chile as one of two main centers for evolution of the common potato.  相似文献   

16.
The transition to tuberization contributes greatly to the adaptability of potato to a wide range of environments. Phytochromes are important light receptors for the growth and development of plants, but the detailed functions of phytochromes remain unclear in potato. In this study, we first confirmed that phytochrome F ( St PHYF ) played essential roles in photoperiodic tuberization in potato. By suppressing the St PHYF gene, the strict short‐day potato genotype exhibited normal tuber formation under long‐day ( LD ) conditions, together with the degradation of the CONSTANTS protein St COL 1 and modulation of two FLOWERING LOCUS  T ( FT ) paralogs, as demonstrated by the repression of St SP 5G and by the activation of St SP 6A during the light period. The function of St PHYF was further confirmed through grafting the scion of St PHYF ‐silenced lines, which induced the tuberization of untransformed stock under LD s, suggesting that St PHYF was involved in the production of mobile signals for tuberization in potato. We also identified that St PHYF exhibited substantial interaction with St PHYB both in vitro and in vivo . Therefore, our results indicate that St PHYF plays a role in potato photoperiodic tuberization, possibly by forming a heterodimer with St PHYB .  相似文献   

17.
Using high pressure liquid chromatography, the cucumber cotyledon bioassay, and mass spectrometry a cytokinin isolated from Solanum tuberosum L. cv. Katahdin plant tissues has been identified as cis-zeatin riboside. Zeatin riboside (ZR) levels in plants grown under inducing conditions (28 C day and 13 C night with a 10-hour photoperiod) were significantly higher than those in plants grown under noninducing conditions (30 C day and 28 C night with an 18-hour photoperiod). The highest level of ZR was noted in below-ground tissue after 4 days exposure to inducing conditions, with tuber initiation observed after 8 days. A companion study conducted to determine the effect of ZR on in vitro tuberization of noninduced rhizomes revealed that after 1 month in culture, controls exhibited 0% tuberization, while ZR treatments of 0.3 and 3.0 milligrams per liter showed 39 and 75% tuberization, respectively.  相似文献   

18.
A highly synchronized in vitro tuberization system, based on single-node cuttings containing an axillary bud, was used to investigate the activity patterns of enzymes involved in the conversion of hexose phosphates and related products during stolon-to-tuber transition of potato (Solanum tuberosum L.). At tuberization the activity of enzymes involved in glycolysis and the oxidative pentose phosphate pathway (OPPP) showed a small but clear increase. This increase reflects a higher capacity of respiratory(-related) metabolism, presumably due to the onset of rapid cell division in the apical part of the tuberizing stolon. During the phase of successive tuber growth these enzymes decreased in activity, suggesting that the concomitant massive starch accumulation is not accompanied by a large increase in respiration. A high degree of positive correlation between the activities of these enzymes could be observed, implying that the level of respiratory metabolism-related enzymes is co-ordinately regulated by the same mechanism of coarse control. The activity pattern of pyrophosphate:fructose-6-phosphate phosphotransferase (PFP) showed no developmental change and does not resemble the activity pattern of the enzymes participating in respiratory(-related) metabolism. Instead, its level of activity is very likely the result of metabolic regulation. The level of the content of the metabolites UDP-glucose (UDPGlc) and glucose-6-phosphate (Glc6P) decreased after the onset of tuberization. This decline indicates that tuber induction is not accompanied by an appreciable increase in the level of the cytosolic hexose phosphate (hexose-P) content but that it rather remains on a low level, which might be a prerequisite in order to maintain a high net rate of sucrose degradation during tuber development. In contrast to UDPGlc and Glc6P, the content of fructose-1,6-bisphosphate (Fru1,6bisP) showed an increase after tuber induction. The overall activities of ADP-glucose pyrophosphorylase (AGPase) and starch phosphorylase (STP) both showed a large increase after tuber initiation, which is consistent with their presumed role in the process of starch synthesis and accumulation during rapid tuber growth.  相似文献   

19.
Two models of potato (Solanum tuberosum L.) tuberization in vitro (intact plants and single nodes) were used to study the role of cytokinins in this process. We applied hormone in two different ways. The exogenous addition of 10 mg · L-1 N 6-benzyladenine (BA) into the tuberization medium resulted in advanced tuber formation in intact plants, and microtubers appeared 10–20 days earlier than in the experiments in which no cytokinin was supplied. Transformation with the Agrobacterium tumefaciens ipt gene provided potato clones with endogenously elevated cytokinin levels (3–20 times higher zeatin riboside content in different clones). The onset of tuberization in intact ipt-transformed plants with low transgene expression was advanced in comparison with control material, and exogenously applied BA further promoted the tuberization process. On the contrary, tuberization was strongly inhibited in ipt-transformed nodes, and an external increase of the cytokinin level caused complete inhibition of expiant growth. In untransformed (control) nodes cytokinin application resulted in primary and secondary tuber formation, which depended on the BA concentration in cultivation media.Abbreviations BA N 6-benzyladenine - PCR polymerase chain reaction - HPLC high performance liquid chromatography - ELISA enzyme-linked immunosorbent assay - NAA -naphthylacetic acid  相似文献   

20.
QTL analysis of potato tuber dormancy   总被引:5,自引:1,他引:4  
The potential loss of chemical sprout inhibitors because of public concern over the use of pesticides underscores the desirability of breeding for long dormancy of potato (Solanum tuberosum L.) tubers. Quantitative trait locus (QTL) analyses were performed in reciprocal backcrosses between S. tuberosum and S. berthaultii toward defining the complexity of dormancy. S. berthaultii is a wild Bolivian species characterized by a short-day requirement for tuberization, long tuber dormancy, and resistance to several insect pests. RFLP alleles segregating from the recurrent parents as well as from the interspecific hybrid were monitored in two segregating progenies. We detected QTLs on nine chromosomes that affected tuber dormancy, either alone or through epistatic interactions. Alleles from the wild parent promoted dormancy, with the largest effect at a QTL on chromosome 2. Long dormancy appeared to be recessive in the backcross to S. berthaultii (BCB). In BCB the additive effects of dormancy QTLs accounted for 48% of the measured phenotypic variance, and adding epistatic effects to the model explained only 4% more. In contrast, additive effects explained only 16% of the variance in the backcross to S. tuberosum (BCT), and an additional 24% was explained by the inclusion of epistatic effects. In BCB variation at all QTLs detected was associated with RFLP alleles segregating from the hybrid parent; in BCT all QTLs except for two found through epistasis were detected through RFLP alleles segregating from the recurrent parent. At least three dormancy QTLs mapped to markers previously found to be associated with tuberization in these crosses.Paper number 55 of the Department of Fruit and Vegetable Science, Cornell University  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号