首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
The p53 tumor suppressor that plays a central role in the cellular response to genotoxic stress was suggested to be associated with the DNA repair machinery which mostly involves nucleotide excision repair (NER). In the present study we show for the first time that p53 is also directly involved in base excision repair (BER). These experiments were performed with p53 temperature-sensitive (ts) mutants that were previously studied in in vivo experimental models. We report here that p53 ts mutants can also acquire wild-type activity under in vitro conditions. Using ts mutants of murine and human origin, it was observed that cell extracts overexpressing p53 exhibited an augmented BER activity measured in an in vitro assay. Depletion of p53 from the nuclear extracts abolished this enhanced activity. Together, this suggests that p53 is involved in more than one DNA repair pathway.  相似文献   

2.
DNA damaging agents are a constant threat to genomes in both the nucleus and the mitochondria. To combat this threat, a suite of DNA repair pathways cooperate to repair numerous types of DNA damage. If left unrepaired, these damages can result in the accumulation of mutations which can lead to deleterious consequences including cancer and neurodegenerative disorders. The base excision repair (BER) pathway is highly conserved from bacteria to humans and is primarily responsible for the removal and subsequent repair of toxic and mutagenic oxidative DNA lesions. Although the biochemical steps that occur in the BER pathway have been well defined, little is known about how the BER machinery is regulated. The budding yeast, Saccharomyces cerevisiae is a powerful model system to biochemically and genetically dissect BER. BER is initiated by DNA N-glycosylases, such as S. cerevisiae Ntg1. Previous work demonstrates that Ntg1 is post-translationally modified by SUMO in response to oxidative DNA damage suggesting that this modification could modulate the function of Ntg1. In this study, we mapped the specific sites of SUMO modification within Ntg1 and identified the enzymes responsible for sumoylating/desumoylating Ntg1. Using a non-sumoylatable version of Ntg1, ntg1ΔSUMO, we performed an initial assessment of the functional impact of Ntg1 SUMO modification in the cellular response to DNA damage. Finally, we demonstrate that, similar to Ntg1, the human homologue of Ntg1, NTHL1, can also be SUMO-modified in response to oxidative stress. Our results suggest that SUMO modification of BER proteins could be a conserved mechanism to coordinate cellular responses to DNA damage.  相似文献   

3.
A single polypeptide with ddNTP-sensitive DNA polymerase activity was purified to near homogeneity from the shoot tips of rice seedlings and analysis of the preparations by SDS-PAGE followed by silver staining showed a polypeptide of 67 kDa size. The DNA polymerase activity was found to be inhibitory by ddNTP in both in vitro DNA polymerase activity assay and activity gel analysis. Aphidicolin, an inhibitor of other types of DNA polymerases, had no effect on plant enzyme. The 67 kDa rice DNA polymerase was found to be recognized by the polyclonal antibody (purified IgG) made against rat DNA polymerase beta (pol beta) both in solution and also on Western blot. The recognition was found to be very specific as the activity of Klenow enzyme was unaffected by the antibody. The ability of rice nuclear extract to correct G:U mismatch of oligo-duplex was observed when oligo-duplex with 32P-labeled lower strand containing U (at 22nd position) was used as substrate. Differential appearance of bands at 21-mer, 22-mer, and 51-mer position in presence of dCTP was visible only with G:U mismatch oligo-duplex, but not with G:C oligo-duplex. While ddCTP or polyclonal antibody against rat-DNA pol beta inhibits base excision repair (BER), aphidicolin had no effect. These results for the first time clearly demonstrate the ability of rice nuclear extract to run BER and the involvement of ddNTP-sensitive pol beta type DNA polymerase. Immunological similarity of the ddNTP-sensitive DNA polymerase beta of rice and rat and its involvement in BER revealed the conservation of structure and function of ddNTP-sensitive DNA pol beta in plant and animal.  相似文献   

4.
Poly(ADP-ribosyl)ation is a posttranslational protein modification significant for genomic stability and cell survival in response to DNA damage. Poly(ADP-ribosyl)ation is catalyzed by poly(ADP-ribose)polymerases (PARPs). Among the 17 members of the PARP family, PARP-1 and PARP-2 are described as enzymes whose catalytic activity is stimulated by some types of DNA damages.  相似文献   

5.
Interstrand DNA–DNA cross-links are highly toxic lesions that are important in medicinal chemistry, toxicology, and endogenous biology. In current models of replication-dependent repair, stalling of a replication fork activates the Fanconi anemia pathway and cross-links are “unhooked” by the action of structure-specific endonucleases such as XPF-ERCC1 that make incisions flanking the cross-link. This process generates a double-strand break, which must be subsequently repaired by homologous recombination. Recent work provided evidence for a new, incision-independent unhooking mechanism involving intrusion of a base excision repair (BER) enzyme, NEIL3, into the world of cross-link repair. The evidence suggests that the glycosylase action of NEIL3 unhooks interstrand cross-links derived from an abasic site or the psoralen derivative trioxsalen. If the incision-independent NEIL3 pathway is blocked, repair reverts to the incision-dependent route. In light of the new model invoking participation of NEIL3 in cross-link repair, we consider the possibility that various BER glycosylases or other DNA-processing enzymes might participate in the unhooking of chemically diverse interstrand DNA cross-links.  相似文献   

6.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   

7.
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.  相似文献   

8.
9.
Tissue-specific iron content is tightly regulated to simultaneously satisfy specialized metabolic needs and avoid cytotoxicity. In the brain, disruption of iron homeostasis may occur in acute as well as progressive injuries associated with neuronal dysfunction and death. We hypothesized that adverse effects of disrupted metal homeostasis on brain function may involve impairment of DNA repair processes. Because in the brain, the base excision repair (BER) pathway is central for handling oxidatively damaged DNA, we investigated effects of elevated iron and zinc on key BER enzymes. In vitro DNA repair assays revealed inhibitory effects of metals on BER activities, including the incision of abasic sites, 5'-flap cleavage, gap filling DNA synthesis and ligation. Using the comet assay, we showed that while metals at concentrations which inhibit BER activities in in vitro assays, did not induce direct genomic damage in cultured primary neurons, they significantly delayed repair of genomic DNA damage induced by sublethal exposure to H2O2. Thus, in the brain even a mild transient metal overload, may adversely affect the DNA repair capacity and thereby compromise genomic integrity and initiate long-term deleterious sequelae including neuronal dysfunction and death.  相似文献   

10.
The repair enzyme 8-oxoguanine glycosylase/ apyrimidinic/apurinic lyase (OGG) removes 8-hydroxy-2'deoxyguanosine (oh8dG) in human cells. Our goal was to examine oh8dG-removing activity in the cell nuclei of male C57BL/6 mouse brains treated with either forebrain ischemia-reperfusion (FblR) or sham operations. We found that the OGG activity in nuclear extracts, under the condition in which other nucleases did not destroy the oligodeoxynucleotide duplex, excised oh8dG with the greatest efficiency on the oligodeoxynucleotide duplex containing oh8dG/dC and with less efficiency on the heteroduplex containing oh8dG/dT, oh8dG/dG, or oh8dG/dA. This specificity was the same as for the recombinant type 1 OGG (OGG1) of humans. We observed that the OGG1 peptide and its activity in the mouse brain were significantly increased after 90 min of ischemia and 20-30 min of reperfusion. The increase in the protein level and in the activity of brain OGG1 correlated positively with the elevation of FblR-induced DNA lesions in an indicator gene (the c-fos gene) of the brain. The data suggest a possibility that the OGG1 protein may excise oh8dG in the mouse brain and that the activity of OGG1 may have a functional role in reducing oxidative gene damage in the brain after FblR.  相似文献   

11.
DNA polymerase X (pol X) from African swine fever virus (ASFV) is the smallest naturally ocurring DNA-directed DNA polymerase (174 amino acid residues) described so far. Previous biochemical analysis has shown that ASFV pol X is a highly distributive, monomeric enzyme, lacking a proofreading 3'-5' exonuclease. Also, ASFV pol X binds intermediates of the single-nucleotide base excision repair (BER) process, and is able to efficiently repair single-nucleotide gapped DNA. In this work, we perform an extensive kinetic analysis of single correct and incorrect nucleotide insertions by ASFV pol X using different DNA substrates: (i) a primer/template DNA; (ii) a 1nt gapped DNA; (iii) a 5'-phosphorylated 1nt gapped DNA. The results obtained indicate that ASFV pol X exhibits a general preference for insertion of purine deoxynucleotides, especially dGTP opposite template C. Moreover, ASFV pol X shows higher catalytic efficiencies when filling in gapped substrates, which are increased when a phosphate group is present at the 5'-margin of the gap. Interestingly, ASFV pol X misinserts nucleotides with frequencies from 10(-4) to 10(-5), and the insertion fidelity varies depending on the substrate, being more faithful on a phosphorylated 1nt gapped substrate. We have analyzed the capacity of ASFV pol X to act on intermediates of BER repair. Although no lyase activity could be detected on preincised 5'-deoxyribose phosphate termini, ASFV pol X has lyase activity on unincised abasic sites. Altogether, the results support a role for ASFV pol X in reparative BER of damaged viral DNA during ASFV infection.  相似文献   

12.
Karashdeep Kaur 《Biomarkers》2020,25(6):498-505
Abstract

Pesticide-induced DNA damage is primarily repaired by base excision repair (BER) pathway. However, polymorphism in DNA repair genes may modulate individual’s DNA repair capacity (DRC) leading to increased genotoxicity and adverse health effects. Our first study in North-West Indian population aimed to evaluate the impact of OGG1 rs1052133 (Ser326Cys; C1245G), XRCC1 rs1799782 (Arg194Trp; C26304T) and XRCC1 rs25487 (Arg399Gln; G28152A) polymorphisms on the modulation of pesticide-induced DNA damage in a total of 450 subjects (225 pesticide-exposed agricultural workers and 225 age- and sex-matched controls). DNA damage was estimated by alkaline comet assay using silver-staining method. Genotyping was carried out by PCR-RFLP using site-specific restriction enzymes. Mann-Whitney U-test revealed elevation in DNA damage parameters (p?<?0.01) in pesticide-exposed agricultural workers than controls. Chi-square test showed significant (p?<?0.05) differences in the XRCC1 Arg194Trp (C26304T) and Arg399Gln (G28152A) genotypes among two groups. Multivariate logistic-regression analysis revealed that heterozygous genotypes of OGG1 rs1052133 (326Ser/Cys; 1245CA), XRCC1 rs1799782 (194Arg/Trp; 26304CT) and XRCC1 rs25487 (399Arg/Gln; 2815GA) were positively associated (p?<?0.05) with elevated DNA damage parameters in pesticide-exposed agricultural workers. Our results strongly indicate significant positive association of variant OGG1 and XRCC1 genotypes with reduced DRC and higher pesticide-induced DNA damage in North-West Indian agricultural workers.  相似文献   

13.
The base excision repair (BER) pathway involves gap filling by DNA polymerase (pol) β and subsequent nick sealing by ligase IIIα. X-ray cross-complementing protein 1 (XRCC1), a nonenzymatic scaffold protein, assembles multiprotein complexes, although the mechanism by which XRCC1 orchestrates the final steps of coordinated BER remains incompletely defined. Here, using a combination of biochemical and biophysical approaches, we revealed that the polβ/XRCC1 complex increases the processivity of BER reactions after correct nucleotide insertion into gaps in DNA and enhances the handoff of nicked repair products to the final ligation step. Moreover, the mutagenic ligation of nicked repair intermediate following polβ 8-oxodGTP insertion is enhanced in the presence of XRCC1. Our results demonstrated a stabilizing effect of XRCC1 on the formation of polβ/dNTP/gap DNA and ligase IIIα/ATP/nick DNA catalytic ternary complexes. Real-time monitoring of protein–protein interactions and DNA-binding kinetics showed stronger binding of XRCC1 to polβ than to ligase IIIα or aprataxin, and higher affinity for nick DNA with undamaged or damaged ends than for one nucleotide gap repair intermediate. Finally, we demonstrated slight differences in stable polβ/XRCC1 complex formation, polβ and ligase IIIα protein interaction kinetics, and handoff process as a result of cancer-associated (P161L, R194W, R280H, R399Q, Y576S) and cerebellar ataxia-related (K431N) XRCC1 variants. Overall, our findings provide novel insights into the coordinating role of XRCC1 and the effect of its disease-associated variants on substrate-product channeling in multiprotein/DNA complexes for efficient BER.  相似文献   

14.
In Schizosaccharomyces pombe the repair of apurinic/apyrimidinic (AP) sites is mainly initiated by AP lyase activity of DNA glycosylase Nth1p. In contrast, the major AP endonuclease Apn2p functions by removing 3'-alpha,beta-unsaturated aldehyde ends induced by Nth1p, rather than by incising the AP sites. S. pombe possesses other minor AP endonuclease activities derived from Apn1p and Uve1p. In this study, we investigated the function of these two enzymes in base excision repair (BER) for methyl methanesulfonate (MMS) damage using the nth1 and apn2 mutants. Deletion of apn1 or uve1 from nth1Delta cells did not affect sensitivity to MMS. Exogenous expression of Apn1p failed to suppress the MMS sensitivity of nth1Delta cells. Although Apn1p and Uve1p incised the oligonucleotide containing an AP site analogue, these enzymes could not initiate repair of the AP sites in vivo. Despite this, expression of Apn1p partially restored the MMS sensitivity of apn2Delta cells, indicating that the enzyme functions as a 3'-phosphodiesterase to remove 3'-blocked ends. Localization of Apn1p in the nucleus and cytoplasm hints at an additional function of the enzyme other than nuclear DNA repair. Heterologous expression of Saccharomyces cerevisiae homologue of Apn1p completely restored the MMS resistance of the nth1Delta and apn2Delta cells. This result confirms a difference in the major pathway for processing the AP site between S. pombe and S. cerevisiae cells.  相似文献   

15.
Nucleotide excision repair in Arabidopsis thaliana differs from other eukaryotes as it contains two paralogous copies of the corresponding XPB/RAD25 gene. In this work, the functional characterization of one copy, AtXPB1, is presented. The plant gene was able to partially complement the UV sensitivity of a yeast rad25 mutant strain, thus confirming its involvement in nucleotide excision repair. The biological role of AtXPB1 protein in A. thaliana was further ascertained by obtaining a homozygous mutant plant containing the AtXPB1 genomic sequence interrupted by a T-DNA insertion. The 3' end of the mutant gene is disrupted, generating the expression of a truncated mRNA molecule. Despite the normal morphology, the mutant plants presented developmental delay, lower seed viability and a loss of germination synchrony. These plants also manifested increased sensitivity to continuous exposure to the alkylating agent MMS, thus suggesting inefficient DNA damage removal. These results indicate that, although the duplication seems to be recent, the features described for the mutant plant imply some functional or timing expression divergence between the paralogous AtXPB genes. The AtXPB1 protein function in nucleotide excision repair is probably required for the removal of lesions during seed storage, germination and early plant development.  相似文献   

16.
The contribution of single nucleotide polymorphisms (SNPs) in base excision repair (BER) genes to the risk of breast cancer (BC) was evaluated by focusing on two key genes: apurinic/apyrimidinic endonuclease 1 (APEX1) and 8-oxoguanine DNA glycosylase (OGG1). Genetic variations in the genes encoding these DNA repair enzymes may alter their functions and increase susceptibility to carcinogenesis. The aim of this study was to analyze polymorphisms in two BER genes, exploring their associations and particularly the combined effects of these variants on BC risk in a Korean population. Three SNPs of two BER genes were genotyped using the Illumina GoldenGate™ method. In total, 346 BC patients and 361 cancer-free controls were genotyped for these BER gene polymorphisms and analyzed for their correlation with BC risk in multiple logistic regression models. Multiple logistic regression models adjusted for age, family history of BC, and body mass index were used. The APEX1 Asp148Glu polymorphism was weakly associated with BC risk. The combined analysis among the BER genes, however, showed significant effects on BC risk. The APEX1 Asp148Glu carrier, in combination with OGG1 rs2072668 and OGG1 Ser326Cys, was strongly associated with an increased risk of BC. Moreover, the combination of the C–C haplotype of OGG1 with the APEX1 Asp148Glu genotype was also associated with an additive risk effect of BC [ORs = 2.44, 2.87, and 3.50, respectively]. The combined effect of APEX1 Asp148Glu was found to be associated with an increased risk of BC. These results suggest that the combined effect of different SNPs within BER genes may be useful in predicting BC risk.  相似文献   

17.
Methylation of DNA in eukaryotic cells, global as well as gene-specific, is affected by endogenous and endogenous factors. In this paper, it is reported that deviations in DNA methylation and expression of genes involved in DNA repair and the cell cycle are affected in 143B cultured cells containing an expression vector. Global DNA methylation analysis with cytosine-extension assay revealed a decreased global DNA methylation in the presence of the expression vector. Less promoter-specific methylation, as measured by bisulfite-MS PCR, was observed for MGMT and p16INK4a in vector-containing cells. Comet assay investigations revealed a negative effect on the DNA repair capacity of both BER and NER in Complex III compromised cells. This was reflected in the down-regulation of hOGG1 and ERCC1 expression. The results presented in this paper support the existence of a strong relationship between impaired mitochondrial function and deviations in DNA methylation and extend this relationship to impaired DNA repair.  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号