首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mid‐Cenozoic decline of atmospheric CO2 levels that promoted global climate change was critical to shaping contemporary arid ecosystems. Within angiosperms, two CO2‐concentrating mechanisms (CCMs)—crassulacean acid metabolism (CAM) and C4—evolved from the C3 photosynthetic pathway, enabling more efficient whole‐plant function in such environments. Many angiosperm clades with CCMs are thought to have diversified rapidly due to Miocene aridification, but links between this climate change, CCM evolution, and increased net diversification rates (r) remain to be further understood. Euphorbia (~2000 species) includes a diversity of CAM‐using stem succulents, plus a single species‐rich C4 subclade. We used ancestral state reconstructions with a dated molecular phylogeny to reveal that CCMs independently evolved 17–22 times in Euphorbia, principally from the Miocene onwards. Analyses assessing among‐lineage variation in r identified eight Euphorbia subclades with significantly increased r, six of which have a close temporal relationship with a lineage‐corresponding CCM origin. Our trait‐dependent diversification analysis indicated that r of Euphorbia CCM lineages is approximately threefold greater than C3 lineages. Overall, these results suggest that CCM evolution in Euphorbia was likely an adaptive strategy that enabled the occupation of increased arid niche space accompanying Miocene expansion of arid ecosystems. These opportunities evidently facilitated recent, replicated bursts of diversification in Euphorbia.  相似文献   

2.
Crassulacean acid metabolism (CAM), an advanced photosynthetic pathway conferring water conservation to plants in arid habitats, has enigmatically been reported in some species restricted to extremely wet tropical forests. Of these, epiphytic Bromeliaceae may possess absorbent foliar trichomes that hinder gas‐exchange when wetted, imposing further limitations on carbon dioxide (CO2) uptake. The hypothesis that the metabolic plasticity inherent to CAM confers an ecological advantage over conventional C3 plants, when constant rainfall and mist might inhibit gas‐exchange was investigated. Gas‐exchange, fluorometry and organic acid and mineral nutrient contents were compared for the bromeliads Aechmea dactylina (CAM) and Werauhia capitata (C3) in situ at the Cerro Jefe cloud forest, Panama (annual rainfall > 4 m). Daily carbon gain and photosynthetic nutrient use efficiencies were consistently higher for A. dactylina, due to a greater CO2 uptake period, recycling of CO2 from respiration and a dynamic response of CO2 uptake to wetting of leaf surfaces. During the dry season CAM also had water conserving and photoprotective roles. A paucity of CAM species at Cerro Jefe suggests a recent radiation of this photosynthetic pathway into the wet cloud forest, with CAM extending diversity in form and function for epiphytes.  相似文献   

3.
Summary A study was made of the bulk-leaf water relations of selected species of epiphytic bromeliads growing in their natural habitat in Trinidad (West Indies). Field measurements were made during the rainy season at three forest sites centred on the wetter part of the island. The epiphytic bromeliads were sampled in situ using modified rock-climbing techniques at 4- to 6-h intervals during complete day-nigh cycles. Eleven species were studied that differed in their photosynthetic pathways and habitat preferences.The C3 species among the epiphytic bromeliads characteristically showed maximum values of xylem tension (measured with the pressure chamber) during the day, whereas the species with crassulacean acid metabolism (CAM) attained maximum values towards the end of the night. In addition, the CAM species showed large nocturnal increases in leaf-cell-sap osmotic pressure and titratable acidity. These nocturnal increases showed mean values of 0.601 MPa and 289 mol H+ m-3, respectively, for four species sampled at an exposed forest clearing (250 m), where CAM species were well represented. At the other two sites, a lowland forest (60 m) and a ridge forest (740 m), CAM bromeliads were found in the forest canopy, but in the lowest strata all the bromeliads were C3 species. This species distribution was associated with a marked vertical stratification of microlimate, the forest canopy being characterized by much bigger day-night changes in temperature and water-vapour-pressure deficit than the undergrowth. The C3-CAM intermediateGuzmania monostachia var.monostachia showed significant nocturnal acidification in the forest clearing but not in the understory of the lowland forest.Taken as a whole, the C3 and CAM bromeliads were very similar in the range of values observed for xylem tension and osmotic pressure, as well as in aspects of their leaf anatomy. However, epidermal trichomes covered a large percentage of the leaf surface area in xeromorphic species (e.g.Tillandsia utriculata), whereas they were poorly developed in shade-tolerant species (e.g.G. lingulata var.lingulata). The absolute values of sylem tension and osmotic pressure were low for all species. Mean minimum xylem tension during the day-night cycles was in the range of 0.18–0.23 MPa and mean maximum in the range 0.41–0.53 MPa; during periods of rain, xylem tension reached a mean minimum of 0.12 MPa. Mean minimum osmotic pressure was in the range 0.449–0.523 MPa. Such between-site and between-species differences as were observed in the water relations of the bromeliads could be related to the microclimatic conditions prevailing in the various epiphytic habitats.Abbreviations CAM crassulacean acid metabolism - PPFD photosynthetic photon flux density  相似文献   

4.
Wang  R.Z. 《Photosynthetica》2002,40(2):243-250
Photosynthetic pathways (C4, C3, and CAM species) and plant life forms of three grassland types in North China were compared. Of the total 201 species, 144 species in 78 genera and 34 families had C3 photosynthetic pathway, 56 species in 35 genera and 11 families had C4 photosynthetic pathway, and 1 species had CAM photosynthetic pathway. The number of C4 species in Songnen meadow was 70–80 % greater than that in Xilinguole steppe and Hunshandak desert grassland, but that for C3 species did not differ significantly among the three grassland types. The number of therophytes in the Songnen meadow was relatively greater than that of the other two grassland types, but that of hemicryptophytes was lower. Thus the distribution of C4 species and plant life form is probably related to precipitation.  相似文献   

5.
  • Global climate change is likely to impact all plant life. Vascular epiphytes represent a life form that may be affected more than any other by possible changes in precipitation leading to water shortage, but negative effects of drought may be mitigated through increasing levels of atmospheric CO2.
  • We studied the response of three epiphytic Aechmea species to different CO2 and watering levels in a full‐factorial climate chamber study over 100 days. All species use crassulacean acid metabolism (CAM). Response variables were relative growth rate (RGR), nocturnal acidification and foliar nutrient levels (N, P, K, Mg).
  • Both elevated CO2 and increased water supply stimulated RGR, but the interaction of the two factors was not significant. Nocturnal acidification was not affected by these factors, indicating that the increase in growth in these CAM species was due to higher assimilation in the light. Mass‐based foliar nutrient contents were consistently lower under elevated CO2, but most differences disappeared when expressed on an area basis.
  • Compared to previous studies with epiphytes, in which doubling of CO2 increased RGR, on average, by only 14%, these Aechmea species showed a relatively strong growth stimulation of up to +61%. Consistent with earlier findings with other bromeliads, elevated CO2 did not mitigate the effect of water shortage.
  相似文献   

6.
Abstract

Ecological aspects of C3, C4 and CAM photosynthetic pathways. - Three different photosynthetic CO2 fixation pathways are known to occur in higher plants. However all three pathways ultimately depend on the Calvin-Benson cycle for carbon reduction. The oxygenase activity of RuBP carboxilase is responsible for photorespiratory CO2 release. Both C4 and CAM pathways behave as a CO2 concentrating mechanism which prevent photorespiration. The CO2-concentrating mechanism in C4 plants is based on intracellular symplastic transport of C4 dicarboxylic acids from mesophyll-cells to the adjacent bundle-sheath cells. On the contrary in CAM plants the CO2-concentrating mechanism is based on the intracellular transport of malic acid into and out of the vacuole.

The C4 photosynthetic pathway as compared to the C3 pathway permits higher rates of CO2 fixation in high light and high temperature environments at low costs in terms of water loss, given the stability of the photosynthetic apparatus under such conditions.

CAM is interpreted as an adaptation to arid environments because it enables carbon assimilation to take place at very low water costs during the night when the evaporative demand is low. Nevertheless many aquatic species of Isoetes and some relatives are CAM, suggesting the adaptive role of CAM to environments which become depleted in CO2.

The photosynthetic carbon fixation pathway certainly contributes to the ecological success of plants in different environments. However the distribution of plants may also reflect their biological history. On the other hand plants with different photosynthetic pathways coexist in many communities and tend to share resources in time. In any case some generalizations are possible: C4 plants enjoy an ecological advantage in hot, moist, high light regions while the majority of species in desert environments are C3; CAM plants are more frequent in semiarid regions with seasonal rainfall, coastal fog deserts, and in epiphytic habitats in tropical rain forests.  相似文献   

7.
Abstract An investigation was carried out into the water relations of CAM and C3 bromeliads in their natural habitat during the dry season in Trinidad. Measurements were made of xylem tension with the pressure chamber and of cell-sap osmotic pressure and titratable acidity on crushed leaf samples. A steady-state CO2 and H2O-vapour porometer was also used so that changes in leaf water relations during individual day-night cycles could be directly related to gas-exchange patterns in situ. Xylem tension changed in parallel with transpiration rate and in general reached its maximum value in CAM bromeliads at night and in C3 bromeliads during the day. In addition, large nocturnal increases in cell-sap osmotic pressure and titratable acidity (ΔH+) typically occurred in the CAM bromeliads. The C3-CAM intermediate Guzmania monostachia showed slight nocturnal acidification, but had higher values of xylem tension during the day. Very high values of AH+ were observed in the CAM species when the tanks of the epiphytic bromeliads contained water: Aechmea nudicaulis showed a mean maximum ΔH+ of 474 mol m?3, the highest value so far observed for CAM plants. On some nights dew formed on the leaf surfaces of the epiphytes, partially curtailing gas exchange and leading to a marked decrease in xylem tension in both C3 and CAM species. Between-site comparisons were also made for a wide range of habitats from arid coastal scrub to montane rain forest. Compared with values characteristic of other life-forms, xylem tension and cell-sap osmotic pressure were low for all bromeliads, and did not differ significantly in co-occurring CAM and C3 bromeliads. Mean maximum xylem tension (10 species in total) ranged from 0.29 M Pa at the montane sites to 0.67 MPa at the most arid site, and mean minimum osmotic pressure (17 species) from 0.51 to 0.97 MPa. At the arid sites the bromeliads were exclusively CAM species, two of which (Aechmea aquilega and Bromelia plumieri) grew terrestrially in the undergrowth of the coastal scrub. Xylem tension in these species was low enough to indicate that they must be functionally independent of the substratum during the dry season. In the wetter part of Trinidad, no between-site differences in leaf water relations were found along an altitudinal gradient in the Northern Mountain Range; seasonal differences in this area were also small. Overall, leaf water relations and gas exchange in the bromeliads were strongly affected both by short-term changes in water availability and by longer-term climatic differences in the various regions of the island.  相似文献   

8.
While temperature responses of photosynthesis and plant respiration are known to acclimate over time in many species, few studies have been designed to directly compare process‐level differences in acclimation capacity among plant types. We assessed short‐term (7 day) temperature acclimation of the maximum rate of Rubisco carboxylation (Vcmax), the maximum rate of electron transport (Jmax), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax), and foliar dark respiration (Rd) in 22 plant species that varied in lifespan (annual and perennial), photosynthetic pathway (C3 and C4), and climate of origin (tropical and nontropical) grown under fertilized, well‐watered conditions. In general, acclimation to warmer temperatures increased the rate of each process. The relative increase in different photosynthetic processes varied by plant type, with C3 species tending to preferentially accelerate CO2‐limited photosynthetic processes and respiration and C4 species tending to preferentially accelerate light‐limited photosynthetic processes under warmer conditions. Rd acclimation to warmer temperatures caused a reduction in temperature sensitivity that resulted in slower rates at high leaf temperatures. Rd acclimation was similar across plant types. These results suggest that temperature acclimation of the biochemical processes that underlie plant carbon exchange is common across different plant types, but that acclimation to warmer temperatures tends to have a relatively greater positive effect on the processes most limiting to carbon assimilation, which differ by plant type. The acclimation responses observed here suggest that warmer conditions should lead to increased rates of carbon assimilation when water and nutrients are not limiting.  相似文献   

9.
10.
A comprehensive analysis of photosynthetic pathways in relation to phylogeny and elevational distribution was conducted in Bromeliaceae, an ecologically diverse Neotropical family containing large numbers of both terrestrial and epiphytic species. Tissue carbon isotope ratio (δ13C) was used to determine the occurrence of crassulacean acid metabolism (CAM) and C3 photosynthesis in 1893 species, representing 57% of species and all 56 genera in the family. The frequency of δ13C values showed a strongly bimodal distribution: 1074 species (57%) had values more negative than −20‰ (mode = −26.7‰), typical of predominantly daytime carbon fixation via the C3 pathway, whereas 819 species (43%) possessed values less negative than −20‰ (mode = −13.3‰), indicative of predominantly nocturnal fixation of carbon via the CAM pathway. Amongst the six almost exclusively terrestrial subfamilies in Bromeliaceae, Brocchinioideae, Lindmanioideae and Navioideae consisted entirely of C3 species, with CAM species being restricted to Hechtioideae (all species of Hechtia tested), Pitcairnioideae (all species belonging to a xeric clade comprising Deuterocohnia, Dyckia and Encholirium) and Puyoideae (21% of Puya spp.). Of the other two subfamilies, in the overwhelmingly epiphytic (plus lithophytic) Tillandsioideae, 28% of species possessed CAM photosynthesis, all restricted to the derived genus Tillandsia and tending towards the more extreme epiphytic ‘atmospheric’ life‐form. In Bromelioideae, with comparable numbers of terrestrial and epiphytic species, 90% of taxa showed CAM; included in these are the first records of CAM photosynthesis in Androlepis, Canistropsis, Deinacanthon, Disteganthus, Edmundoa, Eduandrea, Hohenbergiopsis, Lymania, Pseudananas, Ronnbergia and Ursulaea. With respect to elevational gradients, the greatest number of C3 bromeliad species were found at mid‐elevations between 500 and 1500 m, whereas the frequency of CAM species declined monotonically with increasing elevation. However, in Puya, at least ten CAM species have been recorded at elevations > 3000 m, showing that CAM photosynthesis is not necessarily incompatible with low temperatures. This survey identifies five major origins of CAM photosynthesis at a higher taxonomic level in Bromeliaceae, but future phylogenetic work is likely to reveal a more fine‐scale pattern of gains and losses of this trait, especially in ecologically diverse and widely distributed genera such as Tillandsia and Puya. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 169–221.  相似文献   

11.
Habitat heterogeneity is a primary ecological factor that is particularly pronounced in arid ecosystems. The Tehuacán valley is a subtropical semi‐arid ecosystem in which several species of columnar cacti and agave (i.e., CAM plants) constitute the dominant elements accompanied by patches of trees and shrubs (i.e., C3 plants). Vegetation in Tehuacán is isotopically heterogenous because CAM plants have less depleted δ13C values than C3 plants. Fruits and flowers of cactus and agaves offer abundant food to vertebrates, but their leaves might be less attractive to insects than the leaves of C3 plants. Therefore, we use carbon and nitrogen stable isotope analysis to test the hypothesis that C3 and CAM food would contribute asymmetrically to different guilds of birds and bats. We predict that granivorous and frugivorous birds and nectarivorous and frugivorous bats will consume a CAM diet, whereas insectivorous birds and bats will consume a C3 diet. Due to omnivory of bird and bat consumers, we predict that the importance of CAM food will decrease as the trophic level of the animal increases. Our results showed that CAM food predominated in plant‐eating birds and in some flower‐visiting bats, whereas C3 food predominated in insect‐eating bats and birds and frugivorous bats. Habitat heterogeneity in Tehuacán is important for conservation due to the asymmetric role of CAM and C3 food in the nutrition of different feeding guilds of vertebrates. Our study provides basic information to evaluate the potential impact of habitat loss on functional groups of consumers in a semi‐arid ecosystem.  相似文献   

12.
Previous studies of crassulacean acid metabolism (CAM) pathway during stress have been directed at individual drought and salinity stress, here, we studied the effects of a combination of drought and salt on CAM expression, chlorophyll fluorescence and antioxidant parameters in the C3-CAM facultative Sedum album and C4-CAM facultative Portulaca oleracea plants. While salinity alone was not able to induce functional CAM expression in P. oleracea leaves, we showed that salinity induced low level of nocturnal acid accumulation in S. album species. After 20 d of exposure to the combination of simultaneous salt and drought stress, P. oleracea plants exhibited more resistance to photoinhibition as compared to S. album plants. The decrease of maximum quantum yield (Fv/Fm) in S. album leaves under combined stress was in parallel with the largest suppression of CAM expression of >50%, probably displaying the withdrawal of functional CAM back to C3 pathway. However, under drought treatment alone, S. album plants exhibited higher photosynthetic flexibility, which was associated with the up-regulation of antioxidant enzymes activities and maintenance of glutathione (GSH) pool, and consequently higher photochemical functioning. The levels of nitric oxide (NO) correlated well with CAM expression, which was observed only in S. album, suggesting that NO acts in a different way in C3 and C4 species during CAM induction. Additionally, in both species, over the course of CAM induction, the changes in CAM expression parameters exhibited a similar pattern to that of antioxidant capacity and photochemical functioning parameters.  相似文献   

13.
The occurrence of the Crassulacean acid metabolism (CAM) was studied in four epiphytic species of the Gesneriaceae: two neotropical species, Codonanthe crassifolia and Columnea linearis, and two paleotropical species, Aeschynanthus pulcher and Saintpaulia ionantha. Gas exchange parameters, enzymology, and leaf anatomy, including mesophyll succulence and relative percent of the mesophyll volume occupied by airspace, were studied for each species. Codonanthe crassifolia was the only species to show nocturnal CO2 uptake and a diurnal organic acid fluctuation. According to these results, Codonanthe crassifolia shows CAM-cycling under well-watered conditions and when subjected to drought, it switches to CAM-idling. Other characteristics, such as leaf anatomy, mesophyll succulence, and PEP carboxylase and NADP malic enzyme activity, indicate attributes of the CAM pathway. All other species tested showed C3 photosynthesis. The most C3-like species is Columnea linearis, according to the criteria tested in this investigation. The other two species show mesophyll succulence and relative percent of the leaf volume occupied by airspace within the CAM range, but no other characters of the CAM pathway. The leaf structure of certain genera of the Gesneriaceae and of the genus Peperomia in the Piperaceae are similar, both having an upper succulent, multiple epidermis, a medium palisade of one or a few cell layers, and a lower, succulent spongy parenchyma not too unlike CAM photosynthetic tissue. We report ecophysiological similarities between these two distantly related families. Thus, the occurrence of CAM-cycling may be more common among epiphytic species than is currently known.  相似文献   

14.
Summary The photosynthetic pathways of 42 species of the genusEuphorbia growing wild, naturalized or cultivated in Egypt were investigated. The criteria used included the δ13C- and δD-values and Kranz anatomy of the leaves. There is a relationship between the photosynthetic pathway and the ecological conditions in the habitat of a particular species. All 4 CAM species are succulent shrubs, wild or cultivated. The 11 species with C4 pathways are mainly summer annuals of tropical origin and flourish under the hot summer conditions. The 27 C3 species are either winter annuals, perennials, perennials flourishing in winter or shrubs; the majority are Mediterranean, European or Saharo-Arabian. Summer annuals with C3 pathways grow under the shade of the summer crops. Generally, C3 plants grow under conditions of relatively better water resources and lower temperature than the C4 plants. The majority of the CAM and C4 species occur in the southern part of the country, where high temperature is a common feature of the climate.  相似文献   

15.
Crassulacean acid metabolism (CAM) is one of the photosynthetic pathways regarded as adaptations to water stress in land plants. Little is known about correlations among the level of CAM activity, environment of habitat, life form, and phylogenetic relationship of a plant group from an evolutionary perspective. We examined these relationships in 18 species of Cymbidium (Orchidaceae) because the genus shows distinctive diversification of habitats and life forms. The photosynthetic type was classed into three categories, strong CAM, weak CAM, and C3 on the basis of CAM activity. CAM expression in Cymbidium was confined to the epiphytic and lithophytic species. Especially, all of these species from tropical to subtropical rainforest exhibited CAM activity. On the other hand, the terrestrial species always exhibited C3 metabolism irrespective of their varied habitats. Regarding the evolution of photosynthetic characters, weak CAM was the ancestral state in Cymbidium and strong CAM and C3 metabolism occurred subsequently. The evolution of strong CAM likely enabled Cymbidium to extend to exposed sites in tropical lowland where marked water stress exists. Further, different levels of CAM activity characterized each species and such potential plasticity of CAM may realize the radiation of Cymbidium into sites with different environmental conditions.  相似文献   

16.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

17.
There is a general assumption that intraspecific populations originating from relatively arid climates will be better adapted to cope with the expected increase in drought from climate change. For ecologically and economically important species, more comprehensive, genecological studies that utilize large distributions of populations and direct measures of traits associated with drought‐resistance are needed to empirically support this assumption because of the implications for the natural or assisted regeneration of species. We conducted a space‐for‐time substitution, common garden experiment with 35 populations of coast Douglas‐fir (Pseudotsuga menziesii var. menziesii) growing at three test sites with distinct summer temperature and precipitation (referred to as ‘cool/moist’, ‘moderate’, or ‘warm/dry’) to test the hypotheses that (i) there is large genetic variation among populations and regions in traits associated with drought‐resistance, (ii) the patterns of genetic variation are related to the native source‐climate of each population, in particular with summer temperature and precipitation, (iii) the differences among populations and relationships with climate are stronger at the warm/dry test site owing to greater expression of drought‐resistance traits (i.e., a genotype × environment interaction). During midsummer 2012, we measured the rate of water loss after stomatal closure (transpirationmin), water deficit (% below turgid saturation), and specific leaf area (SLA, cmg?1) on new growth of sapling branches. There was significant genetic variation in all plant traits, with populations originating from warmer and drier climates having greater drought‐resistance (i.e., lower transpirationmin, water deficit and SLA), but these trends were most clearly expressed only at the warm/dry test site. Contrary to expectations, populations from cooler climates also had greater drought‐resistance across all test sites. Multiple regression analysis indicated that Douglas‐fir populations from regions with relatively cool winters and arid summers may be most adapted to cope with drought conditions that are expected in the future.  相似文献   

18.
19.
Aiming at understanding the odd case of CAM expression by a C4 plant, some properties of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31, orthophosphate: oxaloacetate carboxylyase, phosphorylating) were comparatively studied in leaves of CAM-expressing and non-expressing Portulaca oleracea L. plants. CAM expression was induced by growing plants under an 8-h photoperiod and under water-stress. CAM induction in leaves of these plants (designated as CAM) is indicated by the nocturnal acidification and by the clear diurnal oscillation pattern and amplitude of acidity, malic acid, and PEPC activity characteristic of CAM plants. Treatment of the other plant group (designated as C4) by growth under a 16-h photoperiod and well-watered conditions did not induce expression of the tested criteria of CAM in plants. In these C4 plants, the mentioned CAM criteria were undetectable. PEPC from CAM and C4 Portulaca responded differently to any of the studied assay conditions or effectors. For example, extent and timing of sensitivity of PEPC to pH change, inhibition by malate, activation by glucose-6-phosphate or inorganic phosphate, and the enzyme affinity to the substrate PEP were reversed with induction of CAM from the C4-P. oleracea. These contrasting responses indicate distinct kinetic and regulatory properties of PEPC of the two modes. Thus by shifting to CAM in the C4 Portulaca a new PEPC isoform may be synthesised to meet CAM requirements. Simultaneous occurrence of both C4 and CAM is suggested in P. oleracea when challenged with growth under stress. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Crassulacean acid metabolism (CAM) is a photosynthetic pathway that significantly increases water use efficiency in plants. It has been proposed that CAM photosynthesis, which evolved from the ancestral C3 pathway, has played a role in the diversification of some prominent plant groups because it may have allowed them to colonize and successfully spread into arid or semi‐arid environments. However, the hypothesis that CAM photosynthesis constitutes an evolutionary key innovation, thereby enhancing diversification rates of the clades possessing it, has not been evaluated quantitatively. We tested whether CAM photosynthesis is a key innovation in the Bromeliaceae, a large and highly diversified plant family that has successfully colonized arid environments. We identified five pairs of sister groups with and without the CAM feature, including 31 genera and over 2000 species. In all five cases, the clades with CAM photosynthesis were more diverse than their C3 counterparts. We provide quantitative evidence that the evolution of CAM photosynthesis is significantly associated with increased diversification in Bromeliaceae and thus constitutes an evolutionary key innovation. We also found preliminary evidence of an association between the CAM pathway and growth habit in bromeliads, with terrestrial species being more likely to show CAM photosynthesis than epiphytic species. To our knowledge, this is the first case of a physiological attribute shown to be a key innovation in plants. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 480–486.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号