首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ribosomal protein L11 (RPL11) binds and inhibits the MDM2 ubiquitin ligase, thereby promoting p53 stability. Thus, RPL11 acts as a tumor suppressor. Here, we show that GRWD1 (glutamate‐rich WD40 repeat containing 1) physically and functionally interacts with RPL11. GRWD1 is localized to nucleoli and is released into the nucleoplasm upon nucleolar stress. Silencing of GRWD1 increases p53 induction by nucleolar stress, whereas overexpression of GRWD1 reduces p53 induction. Furthermore, GRWD1 overexpression competitively inhibits the RPL11–MDM2 interaction and alleviates RPL11‐mediated suppression of MDM2 ubiquitin ligase activity toward p53. These effects are mediated by the N‐terminal region of GRWD1, including the acidic domain. Finally, we show that GRWD1 overexpression in combination with HPV16 E7 and activated KRAS confers anchorage‐independent growth and tumorigenic capacity on normal human fibroblasts. Consistent with this, GRWD1 overexpression is associated with poor prognosis in cancer patients. Taken together, our results suggest that GRWD1 is a novel negative regulator of p53 and a potential oncogene.  相似文献   

2.

Background

Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9).

Methodology/Principal Findings

Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis.

Conclusions

p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.  相似文献   

3.
Ribosome biogenesis is an energy consuming process which takes place mainly in the nucleolus. By producing ribosomes to fuel protein synthesis, it is tightly connected with cell growth and cell cycle control. Perturbation of ribosome biogenesis leads to the activation of p53 tumor suppressor protein promoting processes like cell cycle arrest, apoptosis or senescence. This ribosome biogenesis stress pathway activates p53 through sequestration of MDM2 by a subset of ribosomal proteins (RPs), thereby stabilizing p53. Here, we identify human HEATR1, as a nucleolar protein which positively regulates ribosomal RNA (rRNA) synthesis. Downregulation of HEATR1 resulted in cell cycle arrest in a manner dependent on p53. Moreover, depletion of HEATR1 also caused disruption of nucleolar structure and activated the ribosomal biogenesis stress pathway – RPL5 / RPL11 dependent stabilization and activation of p53. These findings reveal an important role for HEATR1 in ribosome biogenesis and further support the concept that perturbation of ribosome biosynthesis results in p53-dependent cell cycle checkpoint activation, with implications for human pathologies including cancer.  相似文献   

4.
FTY720, a new immunosuppressant, derived from ISP‐1, has been studied for its putative anti‐cancer properties in the recent years. In this study, we have reported that FTY720 greatly inhibited gastric cancer cell proliferation for the first time, and found this effect was associated with G1 phase cell cycle arrest and apoptosis. Results from our Western blotting and Real‐time PCR showed that FTY720 induced obvious PTEN expression in a p53‐independent way, consistent with a substantial decrease in p‐Akt and MDM2. FTY720 dramatically increased the expression of Cip1/p21, p27, and BH3‐only proteins through the accumulation of p53 by PTEN‐mediated inhibition of the PI3K/Akt/MDM2 signaling. Suppression of PTEN expression with siRNA significantly reduced the p53 and p21 levels and activated Akt, resulting in decreased apoptosis and increased cell survival. Furthermore, we have observed an additive effect of FTY720 in killing gastric cancer cells when in combination with Cisplatin, partly through PTEN‐mediated Akt/MDM2 inhibition. In vivo study has also shown that tumor growth was significantly suppressed after FTY720 treatment. In conclusion, our results suggest that FTY720 induces a significant increase of PTEN, which inhibits p‐Akt and MDM2, and then increases the level of p53, thereby inducing G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, for the first time, which shows potential anti‐tumor effects on gastric cancer by PTEN activation through p53‐independent mechanism, especially in combination with Cisplatin. This PTEN target‐based therapy is worth further investigation and warrants clinical evaluation. J. Cell. Biochem. 111: 218–228, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Prostate cancer (PCa) is a challenging issue for men's health worldwide due to its uncontrolled proliferation and high metastatic potential. Increasing evidence has supported plant extracts and natural plant derivatives as promising antitumor therapy with less toxic side effects. Yuanhuacine is an active component isolated from Daphne genkwa and can effectively suppress the tumorigenesis of several cancers. However, its role in PCa remains unclear. In this study, yuanhuacine dose-dependently inhibited the proliferation and induced apoptosis of PCa cells. Moreover, yuanhuacine also restrained the invasion and migration of PCa cells. Mechanically, yuanhuacine decreased the ubiquitination and degradation of p53 protein, and ultimately increased p53 levels, which was regulated by inhibiting the phosphorylation and total protein levels of mouse double minute 2 (MDM2). Moreover, elevation of MDM2 reversed the suppressive efficacy of yuanhuacine in PCa cell viability, invasion, and migration. The network pharmacologic and bioinformatics analysis confirmed that MDM2 might be a common target of D. genkwa and LINC00665. Furthermore, yuanhuacine inhibited LINC00665 expression. Upregulation of LINC00665 reversed yuanhuacine-mediated inhibition in MDM2 protein expression and suppressed p53 levels by enhancing its ubiquitination in yuanhuacine-treated cells. Importantly, the inhibitory effects of yuanhuacine on cell viability and metastatic potential were offset after LINC00665 elevation. Together, the current findings highlight that yuanhuacine may possess tumor-suppressive efficacy by inhibiting LINC00665-mediated MDM2/p53 ubiquitination signaling. Therefore, this study indicates that yuanhuacine may be a promising candidate for the treatment of PCa.  相似文献   

6.
核转录因子p53是重要的肿瘤抑制因子,具有DNA损伤修复、促细胞凋亡、促细胞分化及增殖抑制等功能,并通过调控细胞周期行进和促进细胞凋亡发挥肿瘤抑制功能。原癌蛋白MDM2为p53的E3泛素化连接酶,MDM2-p53信号轴的功能异常与多种恶性肿瘤的发生发展相关。核糖体蛋白(RP)是蛋白质合成反应的关键调节蛋白,其功能失常与多种疾病相关。近年来的研究发现,RP能通过调节MDM2-p53信号轴在p53相关性肿瘤调控中发挥重要作用。我们根据目前的研究进展,对RP-MDM2-D53信号轴进行简要综述。  相似文献   

7.
The mouse double minute 2 (MDM2)–p53 interaction regulates the activity of p53 and is a potential target for human cancer therapy. Here, we report that RYBP (RING1‐ and YY1‐binding protein), a member of the polycomb group (PcG), interacts with MDM2 and decreases MDM2‐mediated p53 ubiquitination, leading to stabilization of p53 and an increase in p53 activity. RYBP induces cell‐cycle arrest and is involved in the p53 response to DNA damage. Expression of RYBP is decreased in human cancer tissues compared with adjacent normal tissues. These results show that RYBP is a new regulator of the MDM2–p53 loop and that it has tumour suppressor activity.  相似文献   

8.
Increasing attention has been paid to certain ribosomal or ribosome biosynthesis-related proteins involved in oncogenesis. Members of one group are classified as “tumor suppressive factors” represented by RPL5 and RPL11; loss of their functions leads to cancer predisposition. RPL5 and RPL11 prevent tumorigenesis by binding to and inhibiting the MDM2 ubiquitin ligase and thereby up-regulating p53. Many other candidate tumor suppressive ribosomal/nucleolar proteins have been suggested. However, it remains to be experimentally clarified whether many of these factors can actually prevent tumorigenesis and if so, how they do so. Conversely, some ribosomal/nucleolar proteins promote tumorigenesis. For example, PICT1 binds to and anchors RPL11 in nucleoli, down-regulating p53 and promoting tumorigenesis. GRWD1 was recently identified as another such factor. When overexpressed, GRWD1 suppresses p53 and transforms normal human cells, probably by binding to RPL11 and sequestrating it from MDM2. However, other pathways may also be involved.  相似文献   

9.
Both MDM2 and MDMX regulate p53, but these proteins play different roles in this process. To clarify the difference, we performed a yeast 2 hybrid (Y2H) screen using the MDM2 acidic domain as bait. DNAJB1 was found to specifically bind to MDM2, but not MDMX, in vitro and in vivo. Further investigation revealed that DNAJB1 stabilizes MDM2 at the post-translational level. The C-terminus of DNAJB1 is essential for its interaction with MDM2 and for MDM2 accumulation. MDM2 was degraded faster by a ubiquitin-mediated pathway when DNAJB1 was depleted. DNAJB1 inhibited the MDM2-mediated ubiquitination and degradation of p53 and contributed to p53 activation in cancer cells. Depletion of DNAJB1 in cancer cells inhibited activity of the p53 pathway, enhanced the activity of the Rb/E2F pathway, and promoted cancer cell growth in vitro and in vivo. This function was p53 dependent, and either human papillomavirus (HPV) E6 protein or siRNA against p53 was able to block the contribution caused by DNAJB1 depletion. In this study, we discovered a new MDM2 interacting protein, DNAJB1, and provided evidence to support its p53-dependent tumor suppressor function.  相似文献   

10.
11.
MDM2 and MDMX are oncoproteins that negatively regulate the activity and stability of the tumor suppressor protein p53. The inhibitors of protein–protein interactions (PPIs) of MDM2–p53 and MDMX–p53 represent potential anticancer agents. In this study, a novel approach for identifying MDM2–p53 and MDMX–p53 PPI inhibitor candidates by affinity-based screening using a chemical array has been established. A number of compounds from an in-house compound library, which were immobilized onto a chemical array, were screened for interaction with fluorescence-labeled MDM2 and MDMX proteins. The subsequent fluorescent polarization assay identified several compounds that inhibited MDM2–p53 and MDMX–p53 interactions.  相似文献   

12.
The best‐established function of the melanoma‐suppressor p16 is mediation of cell senescence, a permanent arrest following cell proliferation or certain stresses. The importance of p16 in melanoma suggests indolence of the other major senescence pathway through p53. Little or no p53 is expressed in senescent normal human melanocytes, but p16‐deficient melanocytes can undergo p53‐mediated senescence. As p16 expression occurs in nevi but falls with progression toward melanoma, we here investigated whether p53‐dependent senescence occurs at some stage and, if not, what defects were detectable in this pathway, using immunohistochemistry. Phosphorylated checkpoint kinase 2 (CHEK2) can mediate DNA‐damage signaling, and under some conditions senescence, by phosphorylating and activating p53. Remarkably, we detected no prevalent p53‐mediated senescence in any of six classes of lesions. Two separate defects in p53 signaling appeared common: in nevi, lack of p53 phosphorylation by activated CHEK2, and in melanomas, defective p21 upregulation by p53 even when phosphorylated.  相似文献   

13.
Drugs targeting MDM2's hydrophobic pocket activate p53. However, these agents act allosterically and have agonist effects on MDM2's protein interaction landscape. Dominant p53‐independent MDM2‐drug responsive‐binding proteins have not been stratified. We used as a variable the differential expression of MDM2 protein as a function of cell density to identify Nutlin‐3 responsive MDM2‐binding proteins that are perturbed independent of cell density using SWATH‐MS. Dihydrolipoamide dehydrogenase, the E3 subunit of the mitochondrial pyruvate dehydrogenase complex, was one of two Nutlin‐3 perturbed proteins identified fours hour posttreatment at two cell densities. Immunoblotting confirmed that dihydrolipoamide dehydrogenase was induced by Nutlin‐3. Depletion of MDM2 using siRNA also elevated dihydrolipoamide dehydrogenase in Nutlin‐3 treated cells. Mitotracker confirmed that Nutlin‐3 inhibits mitochondrial activity. Enrichment of mitochondria using TOM22+ immunobeads and TMT labeling defined key changes in the mitochondrial proteome after Nutlin‐3 treatment. Proximity ligation identified rearrangements of cellular protein–protein complexes in situ. In response to Nutlin‐3, a reduction of dihydrolipoamide dehydrogenase/dihydrolipoamide acetyltransferase protein complexes highlighted a disruption of the pyruvate dehydrogenase complex. This coincides with an increase in MDM2/dihydrolipoamide dehydrogenase complexes in the nucleus that was further enhanced by the nuclear export inhibitor Leptomycin B. The data suggest one therapeutic impact of MDM2 drugs might be on the early perturbation of specific protein–protein interactions within the mitochondria. This methodology forms a blueprint for biomarker discovery that can identify rearrangements of MDM2 protein–protein complexes in drug‐treated cells.  相似文献   

14.
Antibodies recognize protein targets with great affinity and specificity. However, posttranslational modifications and the presence of intrinsic disulfide‐bonds pose difficulties for their industrial use. The immunoglobulin fold is one of the most ubiquitous folds in nature and it is found in many proteins besides antibodies. An example of a protein family with an immunoglobulin‐like fold is the Cysteine Protease Inhibitors (ICP) family I42 of the MEROPs database for protease and protease inhibitors. Members of this protein family are thermostable and do not present internal disulfide bonds. Crystal structures of several ICPs indicate that they resemble the Ig‐like domain of the human T cell co‐receptor CD8α As ICPs present 2 flexible recognition loops that vary accordingly to their targeted protease, we hypothesize that members of this protein family would be ideal to design peptide aptamers that mimic protein‐protein interactions. Herein, we use an ICP variant from Entamoeba histolytica (EhICP1) to mimic the interaction between p53 and MDM2. We found that a 13 amino‐acid peptide derived from p53 can be introduced in 2 variable loops (DE, FG) but not the third (BC). Chimeric EhICP1‐p53 form a stable complex with MDM2 at a micromolar range. Crystal structure of the EhICP1‐p53(FG)‐loop variant in complex with MDM2 reveals a swapping subdomain between 2 chimeric molecules, however, the p53 peptide interacts with MDM2 as in previous crystal structures. The structural details of the EhICP1‐p53(FG) interaction with MDM2 resemble the interaction between an antibody and MDM2.  相似文献   

15.
The long intergenic noncoding RNA, regulator of reprogramming (linc-ROR) has been reported to participate in tumorigenesis, while its functions and fundamental mechanisms in esophageal squamous cell carcinoma (ESCC) remain unclear. In this study, gain-of-function assays showed that linc-ROR upregulation enhanced cell viability, promoted cell proliferation, and inhibited apoptosis. Mechanistically, the regulatory network of linc-ROR/miR-204-5p/MDM2 was established with bioinformatics analysis and online databases, then validated via dual-luciferase reporter assays, RNA immunoprecipitation assays in ESCC cells. Linc-ROR positively regulates the expression of MDM2 as a molecular sponge of miR-204-5p. Moreover, results of western blot and coimmunoprecipitation indicated that linc-ROR overexpression enhanced the ubiquitination level of p53, and its downstream apoptosis-related genes have showed higher bcl-2 expression, lower bax, and cleaved caspase-3 expressions, while miR-204-5p could counteract with this effect. Finally, small interfering RNAs tailored to linc-ROR were established to further evaluate its effects on ESCC comprehensively. In summary, this study revealed that linc-ROR modulated cell apoptosis and regulated p53 ubiquitination via targeting miR-204-5p/MDM2 axis, which provides a novel therapeutic insight into treatments for ESCC.  相似文献   

16.
The oncogenic proteins MDM2 and MDMX have distinct and critical roles in the control of the activity of the p53 tumor suppressor protein. Recently, we have used spatial coarse graining simulations to analyze the conformational transitions manifest in the p53 recognition of MDM2 and MDMX. These conformational movements are different between MDM2 and MDMX and unveil the presence of conserved and nonconserved interactions in the p53 binding cleft that may be exploited in the design of selective and dual modulators of the oncogenic proteins. In this study, we investigate the conformational profiles of apo‐ and p53‐bound states of MDM2 and MDMX using molecular dynamic simulations along a time scale of 60 ns. The analysis of the trajectories is instrumental to discuss energetical and conformational aspects of p53 recognition and to point out specific key residues whose conformational shifts have crucial roles in affecting the apo‐ and p53‐bound states of MDM2 and MDMX. Among these, in particular, linear discriminant analyses identify diverse conformations of Y99/Y100 (MDMX/MDM2) as markers of the apo‐ and p53‐bound states of the oncogenic proteins. The results of this study shed further light on different p53 recognition in MDM2 and MDMX and may prove useful for the design and identification of new potent and selective synthetic modulators of p53‐MDM2/MDMX interactions. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
p53具有抑制肿瘤细胞增殖的作用,但是细胞内p53蛋白的堆积反而加速细胞衰老或凋亡,因此对p53进行严格的调控显得格外重要.泛素化、磷酸化和乙酰化是p53蛋白最主要的几种修饰形式,但近来研究表明泛素化对p53调控发挥着中心作用.MDM2是主要的负调节因子,其具有泛素连接酶的活性,早先的研究认为MDM2的作用主要是特异性结合p53并介导其在蛋白酶作用下降解,但近来的研究发现MDM2还可以介导p53的核-浆交换,这种现象在DNA损伤时尤为明显.推测MDM2介导p53的泛素化在体内可能发挥着多种调控功能.  相似文献   

18.
19.
泛素蛋白连接酶MDM2活性及稳定性调控的研究进展   总被引:2,自引:0,他引:2  
聂晶  田春艳  张令强 《遗传》2009,31(10):993-998
泛素蛋白连接酶MDM2(Murine double minute 2)具有癌基因活性, MDM2高表达会导致抑癌基因p53失活而诱发肿瘤, 但在至少7%的肿瘤中p53基因正常而mdm2异常扩增, 表明MDM2还具有其他底物分子, 以p53不依赖的方式促进肿瘤的发生。鉴于MDM2的重要作用, 文章在基因水平、转录水平、翻译后修饰水平、相互作用分子的调节等方面系统总结了目前对MDM2调控的主要研究机制及其进展。  相似文献   

20.
p53蛋白是人体内十分重要的肿瘤抑制因子,通过调节细胞周期阻滞、诱导细胞凋亡等作用发挥肿瘤抑制功能。突变后的p53蛋白不仅具有显性负性效应(dominant negative effect,DN)抑制野生型p53蛋白功能,而且还通过功能获得性效应(gain of function,GOF)调节细胞代谢、侵袭、迁移等方式促进肿瘤的发生。p53蛋白在超过50%的肿瘤组织中发生突变,是肿瘤细胞区别于正常细胞的一个特异性药物靶点。因此,针对突变p53蛋白开发新型抗癌药物一直是研究的热点。长期以来,由于突变p53蛋白表面较为光滑,缺乏药物结合口袋,使其被认为是一个不可成药的靶点。随着高通量筛选技术的发展以及对突变p53蛋白结构的深入了解,许多靶向突变p53蛋白的小分子化合物被报道并在体外展现出较好的抗肿瘤活性,多款基于突变p53蛋白研发的化合物已经进入临床试验阶段。本文就靶向p53蛋白治疗肿瘤的直接和间接策略进行综述,重点针对突变p53蛋白重激活剂与降解突变p53蛋白的小分子化合物作用机制进行梳理,以期为后续开发靶向突变p53蛋白药物的创新提供帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号