首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Li X  Qin JC  Wang QY  Wu X  Lang CY  Pan HY  Gruber MY  Gao MJ 《Plant cell reports》2011,30(8):1435-1442
Genistein, 4′,5,7-trihydroxyisoflavone, is an isoflavonoid compound predominantly restricted to legumes and known to possess phyto-oestrogenic and antioxidative activities. The key enzyme that redirects phenylpropanoid pathway intermediates from flavonoids to isoflavonoids is the isoflavone synthase (IFS). Brassica napus is a non-legume oilseed crop with vegetative tissues producing phenylpropanoids and flavonoids, but does not naturally accumulate isoflavones due to the absence of IFS. To demonstrate whether exogenous IFS is able to use endogenous substrate to produce isoflavone genistein in oilseed crop, the soybean IFS gene (GmIFS2) was incorporated into B. napus plants. The presence of GmIFS2 in B. napus was shown to direct the synthesis and accumulation of genistein derivatives in leaves up to 0.72 mg g−1 DW. In addition, expression levels for most B. napus genes in the phenylpropanoid pathway were altered. These results suggest that the heterologous GmIFS2 enzyme is functionally active at using the B. napus naringenin as a substrate to produce genistein in oilseed rape.  相似文献   

3.
Effects of isoflavones on plant salt tolerance were investigated in soybean (Glycine max L. Merr. cultivar N23674) and tobacco (Nicotiana tabacum L.). Leaf area, fresh weight, net photosynthetic rate (Pn), and transpiration rate (Tr) of soybean N23674 plants treated with 80 mM NaCl were significantly reduced, while a gene (GmIFS1) encoding for 2-hydroxyisoflavone synthase was highly induced, and isoflavone contents significantly increased in leaves and seeds. To test the impact of isoflavones to salt tolerance, transgenic soybean cotyledon hairy roots expressing GmIFS1 (hrGmIFS1) were produced. Salt stress slightly increased isoflavone content in hairy roots of the transgenic control harboring the empty vector but substantially reduced the maximum root length, root fresh weight, and relative water content (RWC). The isoflavone content in hrGmIFS1 roots, however, was significantly higher, and the above-mentioned root growth parameters decreased much less. The GmIFS1 gene was also transformed into tobacco plants; plant height and leaf fresh weight of transgenic GmIFS1 tobacco plants were much greater than control plants after being treated with 85 mM NaCl. Leaf antioxidant capacity of transgenic tobacco was significantly higher than the control plants. Our results suggest that salt stress-induced GmIFS1 expression increased isoflavone accumulation in soybean and improved salt tolerance in transgenic soybean hairy roots and tobacco plants.  相似文献   

4.
Isoflavones and proanthocyanidins (PAs), which are flavonoid derivatives, possess many health benefits and play important roles in forage‐based livestock production. However, the foliage of Medicago species accumulates limited levels of both isoflavones and PAs. In this study, biosynthesis of isoflavone and PA in Medicago truncatula was enhanced via synergy between soya bean isoflavone synthase (IFS1); two upstream enzymes, chalcone synthase (CHS) and chalcone isomerase (CHI); and the endogenous flavanone 3‐hydroxylase (F3H). Constitutive expression of GmIFS1 alone resulted in ectopic accumulation of the isoflavone daidzein and large increases in the levels of the isoflavones formononetin, genistein and biochanin A in the leaves. Furthermore, coexpression of GmIFS1 with GmCHS7 and GmCHI1A generally increased the available flux to flavonoid biosynthesis and resulted in elevated isoflavone, flavone and PA contents. In addition, down‐regulation of MtF3H combined with coexpression of GmIFS1, GmCHS7 and GmCHI1A led to the highest isoflavone levels (up to 2 μmol/g fresh weight in total). Taken together, our results demonstrate that multigene synergism is a powerful means to enhance the biosynthesis of particular flavonoids and can be more broadly applied to the metabolic engineering of forage species.  相似文献   

5.
Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while l ‐ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co‐expressing stylo 9‐cis‐epoxycarotenoid dioxygenase (SgNCED1) and yeast d ‐arabinono‐1,4‐lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild‐type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co‐expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought‐responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold‐responsive genes, but not in SgNCED1 plants. Co‐expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold‐responsive genes. Our result suggests that co‐expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality.  相似文献   

6.
7.
8.
Engineering isoflavone metabolism with an artificial bifunctional enzyme   总被引:7,自引:0,他引:7  
Tian L  Dixon RA 《Planta》2006,224(3):496-507
Plant secondary metabolism has been a focus of research in recent years due to its significant roles in plant defense and in human medicine and nutrition. A protein engineering strategy was designed to more effectively manipulate plant secondary metabolite (isoflavonoid) biosynthesis. A bifunctional isoflavone synthase/chalcone isomerase (IFS/CHI) enzyme was constructed by in-frame gene fusion, and expressed in yeast and tobacco. The fusion protein was targeted to the endoplasmic reticulum (ER) membrane and the individual enzymatic functions of its component fragments were retained when assayed in yeast. Petals and young leaves of IFS/CHI transgenic tobacco plants produced higher levels of the isoflavone genistein and genistein glycosides as a ratio of total flavonoids produced than did plants transformed with IFS alone. Thus, through a combined molecular modeling, in vitro protein engineering and in planta metabolic engineering approach, it was possible to increase the potential for accumulation of isoflavonoid compounds in non-legume plants. Construction of bifunctional enzymes will simplify the transformation of plants with multiple pathway genes, and such enzymes may find broad uses for enzyme (e.g., cytochrome P450 family) and biochemical pathway engineering.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

9.
The MIR396 family, composed of ath‐miR396a and ath‐miR396b in Arabidopsis, is conserved among plant species and is known to target the Growth‐Regulating Factor (GRF) gene family. ath‐miR396 overexpressors or grf mutants are characterised by small and narrow leaves and show embryogenic defects such as cotyledon fusion. Heterologous expression of ath‐miR396a has been reported in tobacco and resulted in reduction of the expression of three NtGRF genes. In this study, the precursor of the Populus trichocarpa ptc‐miR396c, with a mature sequence identical to ath‐miR396b, was expressed under control of the CaMV35S promoter in tobacco. Typical phenotypes of GRF down‐regulation were observed, including cotyledon fusion and lack of shoot apical meristem (SAM). At later stage of growth, transgenic plants had delayed development and altered specification of organ type during flower development. The third and fourth whorls of floral organs were modified into stigmatoid anthers and fasciated carpels, respectively. Several NtGRF genes containing a miR396 binding site were found to be down‐regulated, and the cleavage of their corresponding mRNA at the miR396 binding site was confirmed for two of them using RACE‐PCR analysis. The data obtained agree with the functional conservation of the miR396 family in plants and suggest a role for the miR396/GRF network in determination of floral organ specification.  相似文献   

10.
Genetic modification of secondary metabolic pathways to produce desirable natural products is an attractive approach in plant biotechnology. In our study, we attempted to produce a typical soybean isoflavone genistein, a well-known health-promoting metabolite, in non-legume plants via genetic engineering. Both overexpression and antisense suppression strategies were used to manipulate the expression of several genes encoding key enzymes in the flavonoids/isoflavonoids pathway in transgenic tobacco, lettuce, and petunia. Introducing soybean isoflavone synthase (IFS) into these plants, which naturally do not produce isoflavonoids due to a lack of this leguminous enzyme, resulted in genistein biosynthesis in tobacco petals, petunia leaves and petals, and lettuce leaves. In tobacco, when flavanone 3-hydroxylase (F3H) expression was suppressed by its antisense gene while soybean IFS was overexpressed at the same time, genistein yield increased prominently. In addition, overexpression of phenylalanine ammonia-lyase (PAL) also led to an enhanced genistein production in tobacco petals and lettuce leaves in the presence of IFS than in the plants that overexpressed only IFS.  相似文献   

11.
12.
Agrobacterium genetically transforms plants by transferring and integrating T‐(transferred) DNA into the host genome. This process requires both Agrobacterium and host proteins. VirE2 interacting protein 1 (VIP1), an Arabidopsis bZIP protein, has been suggested to mediate transformation through interaction with and targeting of VirE2 to nuclei. We examined the susceptibility of Arabidopsis vip1 mutant and VIP1 overexpressing plants to transformation by numerous Agrobacterium strains. In no instance could we detect altered transformation susceptibility. We also used confocal microscopy to examine the subcellular localization of Venus‐tagged VirE2 or Venus‐tagged VIP1, in the presence or absence of the other untagged protein, in different plant cell systems. We found that VIP1–Venus localized in both the cytoplasm and the nucleus of Arabidopsis roots, agroinfiltrated Nicotiana benthamiana leaves, Arabidopsis mesophyll protoplasts and tobacco BY‐2 protoplasts, regardless of whether VirE2 was co‐expressed. VirE2 localized exclusively to the cytoplasm of tobacco and Arabidopsis protoplasts, whether in the absence or presence of VIP1 overexpression. In transgenic Arabidopsis plants and agroinfiltrated N. benthamina leaves we could occasionally detect small aggregates of the Venus signal in nuclei, but these were likely to be imagining artifacts. The vast majority of VirE2 remained in the cytoplasm. We conclude that VIP1 is not important for Agrobacterium‐mediated transformation or VirE2 subcellular localization.  相似文献   

13.
14.
15.
16.
17.
Host‐induced gene silencing (HIGS) is an RNA interference‐based approach in which small interfering RNAs (siRNAs) are produced in the host plant and subsequently move into the pathogen to silence pathogen genes. As a proof‐of‐concept, we generated stable transgenic lettuce plants expressing siRNAs targeting potentially vital genes of Bremia lactucae, a biotrophic oomycete that causes downy mildew, the most important disease of lettuce worldwide. Transgenic plants, expressing inverted repeats of fragments of either the Highly Abundant Message #34 (HAM34) or Cellulose Synthase (CES1) genes of B. lactucae, specifically suppressed expression of these genes, resulting in greatly reduced growth and inhibition of sporulation of B. lactucae. This demonstrates that HIGS can provide effective control of B. lactucae in lettuce; such control does not rely on ephemeral resistance conferred by major resistance genes and therefore offers new opportunities for durable control of diverse diseases in numerous crops.  相似文献   

18.
19.
Cereal varieties with improved salinity tolerance are needed to achieve profitable grain yields in saline soils. The expression of AVP1, an Arabidopsis gene encoding a vacuolar proton pumping pyrophosphatase (H+‐PPase), has been shown to improve the salinity tolerance of transgenic plants in greenhouse conditions. However, the potential for this gene to improve the grain yield of cereal crops in a saline field has yet to be evaluated. Recent advances in high‐throughput nondestructive phenotyping technologies also offer an opportunity to quantitatively evaluate the growth of transgenic plants under abiotic stress through time. In this study, the growth of transgenic barley expressing AVP1 was evaluated under saline conditions in a pot experiment using nondestructive plant imaging and in a saline field trial. Greenhouse‐grown transgenic barley expressing AVP1 produced a larger shoot biomass compared to null segregants, as determined by an increase in projected shoot area, when grown in soil with 150 mm NaCl. This increase in shoot biomass of transgenic AVP1 barley occurred from an early growth stage and also in nonsaline conditions. In a saline field, the transgenic barley expressing AVP1 also showed an increase in shoot biomass and, importantly, produced a greater grain yield per plant compared to wild‐type plants. Interestingly, the expression of AVP1 did not alter barley leaf sodium concentrations in either greenhouse‐ or field‐grown plants. This study validates our greenhouse‐based experiments and indicates that transgenic barley expressing AVP1 is a promising option for increasing cereal crop productivity in saline fields.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号