首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In agro-ecosystems,plants are important mediators of interactions between their associated herbivorous insects and microbes,and any change in plants induced by one species may lead to cascading effects on interactions with other species.Often,such effects are regulated by phytohormones such as jasmonic acid(JA)and salicylic acid(SA).Here,we investigated the tripartite interactions among rice plants,three insect herbivores(Chilo suppressalis,Cnaphalocrocis medinalis or Nilapai-vata lugens),and the causal agent of rice blast disease,the fungus Magnaporthe oryzae.We found that pre-infestation of rice by C.suppressalis or N.lugens but not by C.medinalis conferred resistance to M.oryzae.For C.suppressalis and N.lugens,insect infestation without fungal inoculation induced the accumulation of both JA and SA in rice leaves.In contrast,infestation by C.medinalis increased JA levels but reduced SA levels.The exogenous application of SA but not of JA conferred resistance against M.oryzae.These results suggest that preinfestation by C suppressalis or N.lugens conferred resistance against M.oryzae by increasing SA accumulation.These findings enhance our understanding of the interactions among rice plant,insects and pathogens,and provide valuable information for developing an ecologically sound strategy for controlling rice blast.  相似文献   

4.
The role of the plant defence activator, acibenzolar‐S‐methyl (ASM), in inducing resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae (Xoo) was studied. Application of ASM induced resistance in rice to infection by Xoo. When the pathogen was clip‐inoculated to the rice plants, it caused bacterial leaf blight symptoms in the untreated control. However, in the rice plants pretreated with ASM, infection was significantly reduced. Induced systemic resistance was found to persist for up to 3 days in the pretreated rice plants. Increased phenolic content and accumulation of pathogenesis‐related (PR) proteins, viz. chitinase, β‐1,3‐glucanase and thaumatin‐like protein (TLP; PR 5) were observed in rice plants pretreated with ASM followed by inoculation with Xoo. Immunoblot analysis using rice TLP and tobacco chitinase antiserum revealed rapid induction and over‐expression of 25 and 35 kDa TLP and chitinase, respectively, in rice in response to pretreatment with ASM followed by Xoo inoculation. Based on these experiments, it is evident that induction of disease resistance in rice was accelerated following treatment with ASM.  相似文献   

5.
The extensively studied Arabidopsis phytoalexin deficient 4 (AtPAD4) gene plays an important role in Arabidopsis disease resistance; however, the function of its sequence ortholog in rice is unknown. Here, we show that rice OsPAD4 appears not to be the functional ortholog of AtPAD4 in host‐pathogen interactions, and that the OsPAD4 encodes a plasma membrane protein but that AtPAD4 encodes a cytoplasmic and nuclear protein. Suppression of OsPAD4 by RNA interference (RNAi) increased rice susceptibility to the biotrophic pathogen Xanthomonas oryzae pv. oryzae (Xoo), which causes bacteria blight disease in local tissue. OsPAD4‐RNAi plants also show compromised wound‐induced systemic resistance to Xoo. The increased susceptibility to Xoo was associated with reduced accumulation of jasmonic acid (JA) and phytoalexin momilactone A (MOA). Exogenous application of JA complemented the phenotype of OsPAD4‐RNAi plants in response to Xoo. The following results suggest that OsPAD4 functions differently than AtPAD4 in response to pathogen infection. First, OsPAD4 plays an important role in wound‐induced systemic resistance, whereas AtPAD4 mediates systemic acquired resistance. Second, OsPAD4‐involved defense signaling against Xoo is JA‐dependent, but AtPAD4‐involved defense signaling against biotrophic pathogens is salicylic acid‐dependent. Finally, OsPAD4 is required for the accumulation of terpenoid‐type phytoalexin MOA in rice‐bacterium interactions, but AtPAD4‐mediated resistance is associated with the accumulation of indole‐type phytoalexin camalexin.  相似文献   

6.
The rice XA21 receptor kinase confers robust resistance to bacterial blight disease caused by Xanthomonas oryzae pv. oryzae (Xoo). A tyrosine‐sulfated peptide from Xoo, called RaxX, triggers XA21‐mediated immune responses, including the production of ethylene and reactive oxygen species and the induction of defence gene expression. It has not been tested previously whether these responses confer effective resistance to Xoo. Here, we describe a newly established post‐inoculation treatment assay that facilitates investigations into the effect of the sulfated RaxX peptide in planta. In this assay, rice plants were inoculated with a virulent strain of Xoo and then treated with the RaxX peptide 2 days after inoculation. We found that post‐inoculation treatment of XA21 plants with the sulfated RaxX peptide suppresses the development of Xoo infection in XA21 rice plants. The treated plants display restricted lesion development and reduced bacterial growth. Our findings demonstrate that exogenous application of sulfated RaxX activates XA21‐mediated immunity in planta, and provides a potential strategy for the control of bacterial disease in the field.  相似文献   

7.
8.
9.
10.
11.
12.
As important signal molecules, jasmonates (JAs) and green leaf volatiles (GLVs) play diverse roles in plant defense responses against insect pests and pathogens. However, how plants employ their specific defense responses by modulating the levels of JA and GLVs remains unclear. Here, we describe identification of a role for the rice HPL3 gene, which encodes a hydroperoxide lyase (HPL), OsHPL3/CYP74B2, in mediating plant‐specific defense responses. The loss‐of‐function mutant hpl3‐1 produced disease‐resembling lesions spreading through the whole leaves. A biochemical assay revealed that OsHPL3 possesses intrinsic HPL activity, hydrolyzing hydroperoxylinolenic acid to produce GLVs. The hpl3‐1 plants exhibited enhanced induction of JA, trypsin proteinase inhibitors and other volatiles, but decreased levels of GLVs including (Z)‐3‐hexen‐1‐ol. OsHPL3 positively modulates resistance to the rice brown planthopper [BPH, Nilaparvata lugens (Stål)] but negatively modulates resistance to the rice striped stem borer [SSB, Chilo suppressalis (Walker)]. Moreover, hpl3‐1 plants were more attractive to a BPH egg parasitoid, Anagrus nilaparvatae, than the wild‐type, most likely as a result of increased release of BPH‐induced volatiles. Interestingly, hpl3‐1 plants also showed increased resistance to bacterial blight (Xanthomonas oryzae pv. oryzae). Collectively, these results indicate that OsHPL3, by affecting the levels of JA, GLVs and other volatiles, modulates rice‐specific defense responses against different invaders.  相似文献   

13.
14.
15.
Seed treatment and foliar sprays of salicylic acid (SA) provided protection in rice against bacterial leaf blight (BLB) caused by bacterial Xanthomonas oryzae pv. oryzae (Xoo). Treatment of rice with exogenous SA reduced disease severity by more than 38%. Superoxide anion production and hypersensitive response increased approximately 28% and 110% at 6 and 48?h after Xoo inoculation, respectively, for plants treated with SA. Moreover, the Xoo in treated rice plants grew more slowly, resulting in a population that was half of that observed in the control. Fourier transform infrared spectroscopy analysis revealed that the higher ratios of 1233/1517, 1467/1517, and 1735/1517?cm?1 observed in treated rice suggested alteration of monomer composition of lignin and pectin in the rice cell wall. Exogenous SA-treated rice had more amide I β-sheet structure and lipids as shown by the peaks at 1629, 2851, and 1735?cm?1. These biochemical changes of rice treated with SA and inoculated with Xoo were related to primed resistance of the rice plants to BLB disease.  相似文献   

16.
17.
18.
19.
Bacterial blight, caused by Xanthomonas oryzae pv. oryzae (Xoo), usually causes serious rice yield loss in many countries. Rice breeders have used resistance (R) genes to control the disease but many of the resistant cultivars become susceptible few years after releasing. Identification of new R genes to Xoo is one of the main objectives in rice breeding programs. In this study, we used a genomewide association study (GWAS) to analyse the resistance against the Xoo race C1 using the Rice Diversity Panel 1 (RDP1). Disease evaluation of the RDP1 population to C1 indicated that the AUS subgroup conferred a higher level of resistance to C1 than other subgroups. Genomewide association mapping identified 15 QTLs that are distributed on chromosomes 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12. Some of them are located in the regions without known resistance loci or QTLs. This study demonstrated the effectiveness of GWAS on the genetic dissection of rice resistance to Xoo and provided many Xoo resistance‐associated SNP markers for rice breeding.  相似文献   

20.
Development-controlled resistance and resistance specificity frequently restrict the application of a disease resistance (R) gene in crop breeding programs. Xa3/Xa26 and Xa21, encoding leucine-rich repeat (LRR)-kinase type plasma membrane proteins, mediate race-specific resistance to Xanthomonas oryzae pv. oryzae (Xoo), which causes bacterial blight, one of the most devastating rice diseases. Plants carrying Xa3/Xa26 and plants carrying Xa21 have different resistance spectra and the functions of the two R genes are regulated by developmental stage. Four chimeric genes encoding proteins consisting of different parts of XA3/XA26 and XA21 were constructed by domain swapping and transformed into a susceptible rice variety. The resistance spectra and development-regulated resistance of the transgenic plants carrying Xa3/Xa26, Xa21, or chimeric gene to different Xoo strains were analyzed in the same genetic background. The results suggest that the gradually increased expression of Xa3/Xa26 and Xa21 plays an important role in the progressively enhanced Xoo resistance during rice development. In addition, the LRR domains of XA3/XA26 and XA21 are important determinants of race-specific recognition during rice–Xoo interaction, but juxtamembrane regions of the two R proteins also appear to contribute to resistance specificity. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号