首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carotenoids, apart of their antenna function in photosynthesis, play an important role in the mechanisms protecting the photosynthetic apparatus against various harmful environmental factors. They protect plants against overexcitation in strong light and dissipate the excess of absorbed energy, they scavenge reactive oxygen species formed during photooxidative stress and moderate the effect of extreme temperatures. One of the important factors involved in the protective action of carotenoids is their influence on the molecular dynamics of membranes. To obtain complex information about interactions between carotenoids and lipids in a membrane, different techniques were used. In this review, the data resulting from EPR–spin label spectrometry, 31P- and 13C-NMR, differential scanning calorimetry, and computer simulation of the membrane molecular dynamics are presented. The effects of selected, structurally different carotenoid species on various physical parameters of model and natural membranes are described and their relevance to protection against some environmental stresses are discussed.  相似文献   

2.
The yellow, orange, or red colors of salmonid eggs are due to maternally derived carotenoids whose functions are not sufficiently understood yet. Here, we studied the significance of naturally acquired carotenoids as maternal environmental effects during embryo development in brown trout (Salmo trutta). We collected eggs from wild females, quantified their egg carotenoid content, fertilized them in vitro in full‐factorial breeding blocks to separate maternal from paternal effects, and raised 3,278 embryos singly at various stress conditions until hatching. We found significant sire effects that revealed additive genetic variance for embryo survival and hatching time. Dam effects were 5.4 times larger than these sire effects, indicating that maternal environmental effects play an important role in determining embryo stress tolerance. Of the eight pigment molecules that we targeted, only astaxanthin, zeaxanthin (that both affected egg redness), and lutein were detected above our confidence thresholds. No strong link could be observed between carotenoid content in unfertilized eggs and embryo mortality or hatching timing. However, the consumption of carotenoids during our stress treatment was negatively correlated to embryo survival among sib groups and explained about 14% of the maternal environmental variance. We conclude that maternally derived carotenoids play a role in the ability of embryos to cope with environmental stress, but that the initial susceptibility to the organic pollution was mainly determined by other factors.  相似文献   

3.
Why do some invertebrates store so much carotenoids in their tissues? Storage of carotenoids may not simply be passive and dependent on their environmental availability, as storage variation exists at various taxonomic scales, including among individuals within species. While the strong antioxidant and sometimes immune‐stimulating properties of carotenoids may be beneficial enough to cause the evolution of features improving their assimilation and storage, they may also have fitness downsides explaining why massive carotenoid storage is not universal. Here, the functional and ecological implications of carotenoid storage for the evolution of invertebrate innate immune defenses are examined, especially in crustaceans, which massively store carotenoids for unclear reasons. Three testable hypotheses about the role of carotenoid storage in immunological (resistance and tolerance) and life‐history strategies (with a focus on aging) are proposed, which may ultimately explain the storage of large amounts of these pigments in a context of host–pathogen interactions.  相似文献   

4.
Abstract Testosterone underlies the expression of most secondary sexual traits, playing a key role in sexual selection. However, high levels might be associated with physiological costs, such as immunosuppression. Immunostimulant carotenoids underpin the expression of many red‐yellow ornaments, but are regulated by testosterone and constrained by parasites. We manipulated testosterone and nematode burdens in red grouse (Lagopus lagopus scoticus) in two populations to tease apart their effects on carotenoid levels, ornament size and colouration in three time‐step periods. We found no evidence for interactive effects of testosterone and parasites on ornament size and colouration. We showed that ornament colouration was testosterone‐driven. However, parasites decreased comb size with a time delay and testosterone increased carotenoid levels in one of the populations. This suggests that environmental context plays a key role in determining how individuals resolve the trade‐off between allocating carotenoids for ornamental coloration or for self‐maintenance needs. Our study advocates that adequately testing the mechanisms behind the production or maintenance of secondary sexual characters has to take into account the dynamics of sexual trait expression and their environmental context.  相似文献   

5.
ABSTRACT: INTRODUCTION: Maternal effects occur when the phenotype of the offspring is influenced by the phenotype of the mother, which in turn depends on her heritable state as well as on influences from the current and past environmental conditions. All of these pathways may, therefore, form significant sources of variation in maternal effects. Here, we focused on the maternal transfer of carotenoids and vitamin E to the egg yolk, using canaries as a model species. Maternal yolk carotenoids and vitamin E are known to generate significant phenotypic variation in offspring, representing examples of maternal effects. We studied the intra-individual consistency in deposition patterns across two years and the mother-daughter resemblance across two generations in order to estimate the level of heritable variation. The effects of the current environmental conditions were studied via a food supplementation experiment, while the consequences of past environmental conditions were estimated on the basis of the early growth trajectories. RESULTS: There was a significant effect of the current environmental conditions on the yolk carotenoid and vitamin E deposition, but this effect varied between antioxidant components. The deposition of yolk carotenoids and vitamin E were linked to the process of yolk formation. Past environmental conditions did not contribute to the variation in yolk carotenoid and vitamin E levels nor did we find significant heritable variation. CONCLUSIONS: The transfer of carotenoids or vitamin E may be an example where current environmental variation is largely passed from the mother to the offspring, despite the numerous intermediate physiological steps that are involved. Differences in the effect of the environmental conditions as experienced by the mother during laying may be due to differences in availability as well as physiological processes such as competitive exclusion or selective absorption.  相似文献   

6.
In the past 30 years, carotenoid‐based animal signals have been an intense focus of research because they can potentially broadcast an honest reflection of individual reproductive potential. Our understanding of the underpinning physiological functions of carotenoid compounds is still emerging, however. Here, we argue that wildlife researchers and managers interested in assessing the impact of environmental quality on animal populations should be taking advantage of the signalling function of carotenoid‐based morphological traits. Using birds as a model taxonomic group, we build our argument by first reviewing the strong evidence that the expression of avian carotenoid displays provides an integrated measure of a multitude of diet‐ and health‐related parameters. We then present evidence that human‐induced rapid environmental change (HIREC) impacts the expression of carotenoid signals across different critical periods of a bird’s lifetime. Finally, we argue that variation in signal expression across individuals, populations and species could be quantified relatively easily at a global scale by incorporating such measurements into widespread bird ringing activities. Monitoring the expression of carotenoid‐based coloration could help to identify how the environmental factors linked to HIREC can affect avian populations and allow for potentially detrimental effects on biodiversity to be detected prior to demographic change.  相似文献   

7.
Carotenoid‐based colours in animals are valuable models for testing theories of sexual selection and life‐history trade‐offs because the pigments used in coloration are chemically tractable in the diet and in the body, where they serve multiple purposes (e.g. health enhancement, photoprotection). An important assumption underlying the hypothesized signalling value of carotenoid coloration is that there is a trade‐off in carotenoid pigment allocation, such that not all individuals can meet the physiological/morphological demands for carotenoids (i.e. carotenoids are limited) and that only those who have abundant supplies or fewer demands become the most colourful. Studies of carotenoid trade‐offs in colourful animals have been limited largely to domesticated species, which may have undergone artificial selection that changed the historical/natural immunomodulatory roles of carotenoids, to young animals lacking carotenoid‐based signals or to species displaying carotenoid‐based skin and bare parts. We studied the health benefits of carotenoids during moult in house finches (Carpodacus mexicanus), which display sexually selected, carotenoid‐based plumage coloration. We manipulated dietary carotenoid availability during both winter (nonmoult) and autumn (moult) in captive males and females and found that carotenoid‐supplemented birds mounted stronger immune responses (to phytohemagglutinin injection and to a bacterial inoculation in blood) than control birds only during moult. This study provides experimental, seasonal support for a fundamental tenet of Lozano's ‘carotenoid trade‐off’ hypothesis and adds to a growing list of animal species that benefit immunologically from ingesting higher dietary carotenoid levels. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 560–572.  相似文献   

8.
类胡萝卜素是苹果果实色泽形成的一个重要影响因子,其种类和含量决定果实是否具有良好的外观和丰富的营养。本文综述了近年来有关苹果果实类胡萝卜素方面的研究进展,并对苹果类胡萝卜素的种类和含量,苹果发育和贮藏过程中类胡萝卜素含量的变化规律,生物合成途径中相关基因的表达,以及环境因子对类胡萝卜素积累的影响等方面进行了阐述。  相似文献   

9.
The enhanced interest in carotenoid research arises partly because of their application in the food and health industries and partly because of the necessity to find a commercially viable natural source for their mass production. The bottlenecks in finding a natural source of carotenoids which can compete with the synthetic products is the mass production of the organism that produces carotenoids, cell harvesting and extraction methods of carotenoids. The microalga Botryococcus braunii is an interesting organism for its commercial value as a rich source of carotenoids. It contains lutein as major carotenoid which is considered to be one of the beneficial carotenoids in human health applications. The current paper reviews the status of B. braunii as an alternative source of carotenoid production on the commercial scale addressing aspects like cultures of algae, factors that enhance the production and accumulation of carotenoids, cell harvesting methods, and carotenoid extraction. The paper also presents an overview of identification, characterization and structural elucidation of carotenoids from B. braunii and their bioactivity.  相似文献   

10.
Photosynthetic organisms possess carotenoids that function either as accessory, photoprotective, or structural pigments. Therefore, the carotenoid profile provides information about certain photoacclimation and photoprotection responses. Carotenoids are also important chemosystematic markers because specific enzymes mediate each step of carotenoid biosynthesis. For red algae, diverse and often contradictory carotenoid compositions have been reported. As a consequence, it is difficult to infer the physiological importance of carotenoids in Rhodophyta. To characterize the relationship between carotenoid composition, rhodophycean phylogeny, and the presence of potentially photoprotective pigments, we analyzed the carotenoid composition of 65 subtropical species from 12 orders and 18 rhodophyte families. Our results showed that red algae do not present a unique carotenoid profile. However, a common profile was observed up to the level of order, with exception of the Ceramiales and the Corallinales. The main difference between profiles is related to the xanthophyll that represents the major carotenoid. In some species lutein is the major carotenoid while in others it is substituted by zeaxanthin or antheraxanthin. The presence of this epoxy carotenoid together with the presence of violaxanthin that are xanthophyll cycle (XC)‐related pigments was found in four of the 12 analyzed orders. The carotenoid pigment profiles are discussed in relation to Rhodophyta phylogeny, and it is suggested that the xanthophyll cycle‐related pigments appeared early in the evolution of eukaryotic phototrophs.  相似文献   

11.
Carotenoids are essential dietary components utilized not only in pigmentation but also as immuno-stimulants and antioxidants. Reduced availability can have consequences on individual health and survival, thus making carotenoids a good indicator of environmental stress. We compared carotenoid profiles and plumage colour characteristics of an endangered passerine species in New Zealand, between its remnant island source population and two reintroduced island populations. Circulating carotenoids were predominantly lutein (mean of 82.2%) and zeaxanthin (mean of 14.8%), and these were the major carotenoids present as yellow pigments in the males' plumage. There were clear differences in total carotenoid concentrations and plumage colour among the three populations. Circulating carotenoid concentration was significantly higher in one of the reintroduced populations, and the yellow plumage of males was significantly higher in both reintroduced populations in comparison with the remnant population (reflected as a significant increase in hue). Understanding how these differences arise may be of importance to this species given the health benefits carotenoids impart and our ability to select plant species containing these compounds or artificially supplement them.  相似文献   

12.
The evolution and maintenance of conspicuous animal traits and communication signals have long fascinated biologists. Many yellow–red conspicuous traits are coloured by carotenoid pigments, and in some species they are displayed at a very young age. In nestling birds, the functions and proximate mechanisms of carotenoid‐pigmented traits are probably different and not as well known as those of adults. Here we investigated how Montagu's harrier (Circus pygargus) nestlings within structured families used a limited resource, carotenoid pigments, and whether they used these for increasing coloration (deposition in integuments) or for mounting a response to a phytohaemagglutinin (PHA) challenge, which measures pro‐inflammatory potential and aspects of cellular immune responsiveness. We manipulated carotenoid availability, using dietary carotenoid supplementations, and show that when supplemented, nestlings primarily allocated supplemental carotenoids to increase their coloration, irrespective of their sex, but depending of their position within the brood. Responses to PHA challenge were condition‐dependent, but depending on carotenoid availability. Moreover, how nestlings allocated carotenoids depended on their rank within the brood, which in turn influenced their level of carotenoid limitation (first‐hatched nestlings being less constrained than later‐hatched nestlings). We discuss why nestlings would use supplemental carotenoids for increasing bare parts coloration rather than for responding to a PHA challenge, and the potential benefits for doing so in a parent–offspring communication context. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 13–24.  相似文献   

13.
It is debated whether alien plants in new environments benefit from being mycorrhizal and whether widely distributed natives and aliens differ in their associations with mycorrhizal fungi. Here, we compared whether species differing in their origin status, i.e. natives, archaeophytes (alien species introduced before the year 1500) and neophytes (introduced after the year 1500), and arbuscular mycorrhizal (AM) status (obligate, facultative, non‐mycorrhizal) differ in their area of occupancy in Germany (i.e. number of occupied grid cells, each ~130 km²). We used generalized linear models, incorporating main effects and up to three‐way interactions combining AM status, origin status and plant functional traits. The latter were chosen to describe the possible trade‐off in carbon allocation either towards the symbiosis or to other plant structures, such as storage organs (significant interactions involving traits were assumed to indicate the existence of such trade‐offs). AM status significantly explained the area of occupancy of natives and neophytes – with facultative mycorrhizal species occupying the largest area in both groups – but was less pronounced among archaeophytes. Archaeophytes may have reduced dependency on AM fungi, as they are generally agricultural weeds and the symbiosis potentially becomes obsolete for plants growing in habitats providing a steady provision of nutrients. Trait interactions between AM status and other functional traits were almost exclusively detected for neophytes. While facultative mycorrhizal neophytes benefit from trade‐offs with other traits related to high C cost in terms of area of occupancy, such trade‐offs were almost absent among natives. This indicates that natives and neophytes benefit differently from the symbiosis and suggests that native AM fungal partners might be less important for neophytic than for native plant species or that more time is required to establish similar relationships between neophytes and native fungal symbionts.  相似文献   

14.
Nutrients that are limited in availability, such as carotenoids, are potentially involved in trade-offs between homeostasis and reproduction. Despite their importance, factors that affect the capacity of female birds to meet their carotenoid requirements are poorly understood. We used δ15N stable isotope analysis to relate foraging behavior to yolk carotenoid deposition in two seabirds, Cassin’s auklet (Ptychoramphus aleuticus) and rhinoceros auklet (Cerorhinca monocerata), during each of five years. As expected from their narrower trophic range, Cassin’s auklets produced yolks with fewer carotenoid types than did rhinoceros auklets (one vs. three). Cassin’s auklets also fed on a lower trophic level diet richer in carotenoids, yet had lower total yolk carotenoid levels, which suggests a role for species-specific adaptations for carotenoid uptake and utilization. Within both species, lower trophic-level feeding was linked to higher yolk carotenoid levels, but through different mechanisms. In Cassin’s auklets, it was due to a population-wide response to environmental variation: in warm-water years, all females fed at a low trophic level and produced carotenoid-rich yolks. In rhinoceros auklets, it was due to individual differences similarly expressed in all years: females fed across a wide trophic range, and those that fed at a low trophic level produced carotenoid-rich yolks. Rhinoceros auklets bred more successfully in years when their yolks were rich in carotenoids, probably due to a correlated response to stronger marine primary production. Our results are novel because they link avian yolk carotenoid deposition to behavioral and environmental variations.  相似文献   

15.
The carotenoid content of 10 different organs obtained at autopsy from 16 humans was determined using a high-performance liquid chromatography assay. The same qualitative pattern of carotenoids found in serum was found for all the tissues, although there were important quantitative differences in the different carotenoids between organs. The median levels of zeaxanthins, lycopene and beta-carotene varied disproportionately between organs; similar levels of one carotenoid for two organs would not predict similar levels of another carotenoid for the same organs. Similarly, there was not a consistent relationship between all the carotenoids for a given organ. The uneven but wide tissue distribution of most dietary carotenoids may indicate an active biological role for these compounds.  相似文献   

16.
Males in many bird species develop elaborate carotenoid‐based plumage ornaments that play an important role as signals of individual quality in intra‐ or intersexual selection. In the present study, we investigated which of several factors related to male condition and health affect the brightness and coloration of the carotenoid‐based orange–red breeding plumage in males of the red bishop (Euplectes orix), a polygynous and sexually dimorphic weaverbird species. The study revealed a very complex pattern, with the relationships between plumage traits and both heterophil‐to‐lymphocyte ratio and blood parasite load varying considerably among seasons, suggesting a strong influence of environmental conditions. Furthermore, overall condition of males strongly affected the association pattern between plumage traits and other factors, with males in bad condition being forced to allocate resources away from plumage elaboration to body maintenance or the enhancement of immune functions, whereas males in good condition can afford to invest in plumage ornamentation without obvious detrimental effects on health. Thus, females cannot rely on plumage characteristics alone to gather information on male quality, but have to assess additional traits that advertise general male health status. Perhaps surprisingly, testosterone levels were not related to male plumage characteristics. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 384–397.  相似文献   

17.
While rodents and other mammals have traditionally served as models for studying carotenoid physiology, many wild animals from a variety of other taxa utilize carotenoids for self-maintenance and reproduction and accumulate far greater concentrations than those found in mammals. Though we have basic understandings of the control and value of carotenoids in some wild animal systems, many gaps remain. For example, parasites and pathogens impose severe survival constraints on free-ranging organisms, but little is known of how carotenoids work in concert with the immune system to combat natural infectious challenges. Furthermore, due to the high mortality rate from which many young animals suffer, health and carotenoid status during the early stages of development may be critical to survival. The relative importance of dietary versus physiological mechanisms for carotenoid uptake has also been understudied in the wild. To begin to shed light on these issues, we studied relationships between dietary and tissue carotenoids, hematological immune parameters, and endoparasitism of wild mallard (Anas platyrhynchos) ducklings at a variety of ages. Lutein, zeaxanthin, β-cryptoxanthin, β-carotene, and canthaxanthin were the most common carotenoids in liver, plasma, and gut contents. We found that, early in development (when food intake is limited), carotenoids were comparatively concentrated in internal tissue (e.g., liver), presumably a carry-over from maternal contributions in yolk, but as ducklings approached independence (and increasingly fed on their own) concentrations were greatest in gut contents. Canthaxanthin concentrations were lower in the plasma and liver of older individuals compared to younger ducklings, even though gut canthaxanthin concentration did not change with age. Additionally, β-carotene was nearly absent from circulation, despite moderate levels within the gut, suggesting a high rate of conversion to retinol. Using principal components analysis, we revealed a correlation between an increased ability to assimilate dietary carotenoids and lower levels of chronic stress (as assessed by lower heterophil-to-lymphocyte ratios) and a correlation between a reduced carotenoid status and increased investment in the immune system (as assessed by higher total leukocyte count). We also found that individuals without parasites had an overall reduced carotenoid status. Thus, we demonstrate age-specific differences in carotenoid allocation in growing animals from a precocial bird species and provide correlational evidence that parasitism and health in wild animals are related to carotenoid status and assimilation ability.  相似文献   

18.
The role of melanin ‘badges of status’, in male–male competition has been well‐studied, in contrast, carotenoid based plumage has largely been examined in the context of female mate choice. Recent work has shown that carotenoid signals can also function in male–male competition, although the functions of the two types of signals is currently unclear. Here, we examine the relationships between colouration, dominance and aggression in the crimson finch Neochmia phaeton, a species where males have both conspicuous red carotenoid plumage and a black melanin patch. We examined the importance of carotenoid and melanin based signals in three contexts: 1) among free‐living birds interacting at a feeding station: we found that neither colour signal influenced the outcome of interactions; 2) in staged dyadic contest in captivity: we found that coloration from carotenoid pigments was positively related to the probability of winning a contest, while the size of the melanin plumage patch was not related to winning; and 3) in staged dyadic contests where male plumage colour had been masked: we found that the number of interactions required to determine dominance increased. While the underlying natural plumage colour was still important in these contests, birds with more intense carotenoid colouration were now more likely to lose. These results confirm carotenoid‐based signalling in male–male contests. However this signal is used in conjunction with other factors such as self‐assessment and body condition. Contrary to traditional expectations, the black melanin patch was not found to be important in this context.  相似文献   

19.
Vertebrates commonly use carotenoid‐based traits as social signals. These can reliably advertise current nutritional status and health because carotenoids must be acquired through the diet and their allocation to ornaments is traded‐off against other self‐maintenance needs. We propose that the coloration more generally reveals an individual’s ability to cope with stressful conditions. We tested this idea by manipulating the nematode parasite infection in free‐living red grouse (Lagopus lagopus scoticus) and examining the effects on body mass, carotenoid‐based coloration of a main social signal and the amount of corticosterone deposited in feathers grown during the experiment. We show that parasites increase stress and reduce carotenoid‐based coloration, and that the impact of parasites on coloration was associated with changes in corticosterone, more than changes in body mass. Carotenoid‐based coloration appears linked to physiological stress and could therefore reveal an individual’s ability to cope with stressors.  相似文献   

20.
Carotenoids are pigments synthesised by autotrophic organisms. For nestlings of raptorial species, which obtain carotenoids from the consumption of other heterotrophic species, the access to these pigments can be crucial. Carotenoids, indeed, have fundamental health maintenance functions, especially important in developing individuals as nestling kestrels. The aim of this study was to investigate how body carotenoid levels and skin pigmentation vary in kestrel nestlings (Falco tinnunculus) in relation to nesting parameters. Furthermore, we experimentally altered carotenoid availability (short- medium- and long-term) for nestlings and investigated skin and serum variance. The skin colour variance of 151 nestlings was explained by nest of origin, age and by the body condition (body mass corrected by age), older nestlings with higher body condition being redder. No difference in skin colour was detected between sexes. Differences in hue (skin “redness”) between treatments did not emerge during the first week, but did occur 15 days after administration between long-term supplemented and control chicks. In contrast, the serum carotenoid concentration showed a treatment-dependent increase after 5 days from the first carotenoid administration and at least after two supplemented feedings. In general, hue but not serum carotenoids, was correlated with the body condition of nestlings. Based on the increased skin pigmentation of nestling kestrels in the long-term experimental group, we suggest carotenoid availability to be limited for colour expression. The small increase of serum carotenoids due to supplementation is consistent with the hypothesis that there is a physiological constraint on these pigments, as well as an environmental limitation. The presented results are useful for the understanding of carotenoid uptake and accumulation by a wild raptorial species, located at the top of the food web, highlighting that carotenoids are a limited resource for kestrel nestlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号