首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract The tribe Leptodirini (Leiodidae: Cholevinae) is one of the largest radiations of Coleoptera in the subterranean environment. Although subjected to systematic and evolutionary studies, the phylogeny remains poorly understood. We assessed the phylogeny of the western Mediterranean lineages (Iberian Peninsula, Pyrenees and Sardinia) based on a cladistic analysis of fourteen characters of external morphology and twenty characters of the male and female genitalia, studied in 182 species belonging to thirty‐nine genera. We tested the monophyly of the traditional two main divisions of the group (infraflagellates and supraflagellates), as well as that of some ‘phyletic series’. The final matrix contained fifty‐eight terminal taxa, twenty‐four of which had different character state combinations. The strict consensus of the sixty most parsimonious trees recovered a monophyletic Leptodirini, but not their separation into infraflagellates and supraflagellates. The supraflagellates formed a paraphyletic group with respect to the infraflagellates (corresponding to our sampled ‘Speonomus’ series), with Notidocharis sister to all other included Leptodirini, and Speonomidius sister to Leptodirini excluding Notidocharis. The series ‘Spelaeochlamys’, including the Sardinian genera but excluding Pseudochlamys, was recovered as monophyletic with weak support. The ‘Quaestus’ series formed a polytomy with Pseudochlamys plus the ‘Speonomus’ series (including Bathysciola), which was recovered as monophyletic with strong support. Speonomus, Bathysciola, Quaestus and Troglophyes were para‐ or polyphyletic. Our results suggested the respective monophyletic origin of the Leptodirini from the Pyrenees (Pseudochlamys plus the ‘Speonomus’ series) and the Mediterranean coast plus Sardinia (series ‘Spelaeochlamys’). On the contrary, the Leptodirini of the Atlantic north coast of the Iberian Peninsula (series ‘Quaestus’ and ‘Speonomidius’) were not monophyletic.  相似文献   

2.
Leiodidae are the second largest subterranean radiation of beetles at family rank. To explore morphological trends linked with troglobiontic habits and characters with potential phylogenetic significance, the head of the cave-dwelling species Troglocharinus ferreri (Cholevinae, Leptodirini) was examined in detail. Overall, the general pattern is similar to what is found in Catops ventricosus (Cholevini). Shared apomorphic features include a fully exposed anterolateral concavity containing the antennal socket, a distinct bead above this depression, a bilobed lip-like structure anterad the labrum, a flat elevated portion of the ventral mandibular surface, and a ventral process at the proximomesal edge of this mandibular area. The tentorial structures are well-developed as in C. ventricosus, with a large laminatentorium and somewhat shortened dorsal arms. The mouthparts are largely unmodified, with the exception of unusually well-developed extrinsic maxillary muscles. Features of T. ferreri obviously linked with subterranean habits are the complete lack of compound eyes, circumocular ridges, and optic lobes. A series of characters is similar to conditions found in other genera of Leptodirini: the head capsule completely lacks a protruding ocular region, a distinct neck is missing, the transverse occipital crest is indistinct, and the antennae are elongate and lack a distinct club. Two different trends of cephalic transformations occur in troglobiontic Leptodirini, with some genera like Troglocharinus and Leptodirus having elongated head capsules and antennae, and others having broadened, more transverse heads. In contrast, the modifications are more uniform in the closely related Ptomaphagini, with a pattern distinctly differing from Leptodirini: the head is transverse, with a distinctly protruding ocular region, a distinct transverse occipital crest, and a very narrow neck region.  相似文献   

3.
Abstract The monophyly of the aleocharine beetle tribe Hoplandriini is established and the phylogenetic relationships of sixteen genus-group taxa are resolved. Three primary lineages are recognized: the Ligulata + (( Platandria + Tetrallus ) + ( Paroplandria + ( Ditropandria + ( Omoplandria + ( Nosora + Tinotoma ))))) clade forms a sister group to the (( Hoplandria + undescribed species 5, 4, 6) + undescribed species 1, 2, 3) clade, and together form the sister group to Pseudoplandria . On the basis of phylogenetic inference, three subtribes are proposed within Hoplandriini. Hoplandriina is composed of Hoplandria s.l and two as yet undescribed genera from the New World. Platandriina, subtr.n., is composed of Ditropandria , Paroplandria , Platandria , Tetrallus , Omoplandria , Nosora and Tinotoma from the Nearctic, Neotropical, Oriental and Palearctic Regions. Pseudoplandriina, subtr.n., is composed of genus Pseudoplandria , primarily from the Oriental Region with one species from the Palearctic Region.  相似文献   

4.
The aleocharine subtribe Homalotina Heer represents one of the most diverse lineages of Staphylinidae. Despite its wide distribution and diversity, the phylogenetic relationships of the subtribe remain poorly understood. Here, we present the first cladistic analysis of the Homalotina based on morphological data. The subtribe is hypothesized to be a monophyletic group consisting of seven genera (Anomognathus Solier, Cephaloxynum Bernhauer, Holisomimus Cameron, Homalota Mannerheim, Neomalota Cameron, Stenomastax Cameron, and Thecturota Casey). The dataset for phylogenetic analysis comprised 83 characters representing 245 character states derived from adult morphology. These data were analysed using equal weighting and implied weighting schemes (k = 1–6) and results support the monophyly of the subtribe based on two synapomorphic characters (complete postoccipital sutures on head, posterolateral margin of metacoxae with macrosetae) and three homoplastic characters (medial setae on prementum not extended to apex of ligula, medial setae on labium contiguous, posterolateral angle of elytron slightly sinuate). Generic relationships differ in each analysis within the Homalotina (EW, IW with k = 1, 2–4, 5–6) although there are some identical topologies among the IW trees. Clades A, B, C, D, H, J and G were resolved as monophyletic in all weighting regimes. The monophyly of the genera is relatively well supported except for the genera Homalota and Stenomastax. Homalota species were recovered in four independent clades (clade C, D, I, K) and the Stenomastax species were recovered in two independent lineages. Candidates for the possible new genera are discussed. We herein transfer Homalota flavomaculata Bernhauer to the genus Stenomastax, resulting in the new combination [Stenomastax flavomaculata (Bernhauer)]. Our preliminary character correlation tests using phylogenetic pairwise comparisons did not support the hypothesis of association between flattened body form, and subcortical habitat and anterior shift of antennal insertion in Homalotini.  相似文献   

5.
The water scavenger beetle tribe Hydrobiusini contains 47 species in eight genera distributed worldwide. Most species of the tribe are aquatic, although several species are known to occur in waterfalls or tree mosses. Some members of the tribe are known to communicate via underwater stridulation. While recent morphological and molecular‐based phylogenies have affirmed the monophyly of the tribe as currently circumscribed, doubts remain about the monophyly of included genera. Here we use morphological and molecular data to infer a species‐level phylogeny of the Hydrobiusini. The monophyly of the tribe is decisively supported, as is the monophyly of most genera. The genus Hydrobius was found to be polyphyletic, and as a result the genus Limnohydrobius stat. rev. is removed from synonymy with Hydrobius, yielding three new combinations: L. melaenus comb.n. , L. orientalis comb.n. , and L. tumbius comb.n. Recent changes to the species‐level taxonomy of Hydrobius are reviewed. The morphology of the stridulatory apparatus has undergone a single remarkable transformation within the lineage, from a simple, unmodified pars stridens to one that is highly organized and complex. We present an updated key to genera, revised generic diagnoses and a list of the known distributions for all species within the tribe.  相似文献   

6.
7.
With 71 genera and over 2700 described species, Philonthina is the most speciose subtribe of rove beetle tribe Staphylinini and forms a major component of the largest remaining higher systematics challenge in Staphylinini, the ‘Staphylinini propria’ clade. A related systematics issue concerns the position of the genus Holisus (Hyptiomina), which was recovered within the Neotropical philonthine lineage in several recent analyses of morphology. With the aims of resolving the phylogeny of Philonthina and the position and, thus, validity of Hyptiomina, we performed phylogenetic analyses of the tribe Staphylinini based on molecular (six genes, 4471 bp) and morphological (113 characters) data including 138 taxa from all relevant lineages of Staphylinini. We found that ‘Staphylinini propria’ is a monophylum consisting of six lineages: current subtribes Anisolinina, Philonthina, Staphylinina and Xanthopygina; and two new subtribes, Algonina Schillhammer and Brunke and Philothalpina Chatzimanolis and Brunke. While the previously hypothesized Neotropical lineage of Philonthina was corroborated, Holisus was recovered as a separate subtribe, outside of Philonthina, within an informal ‘Southern Hemisphere clade’. Based on our analyses, we propose tentative new concepts of the polyphyletic genera Belonuchus and Philonthus. We propose the following taxonomic changes: synonymy of the subtribes Staphylinina Latreille (valid name) and Eucibdelina Sharp; resurrection of genera Barypalpus Cameron and Trapeziderus Motschulsky from synonymy with Rientis Sharp and Belonuchus Nordmann, respectively; transfer of 38 Belonuchus species, 16 Hesperus Fauvel species and one Philonthus Stephens species to Trapeziderus as new combinations; transfer of two Hesperus species to Eccoptolonthus Bernhauer as new combinations; transfer of one Belonuchus species to Paederomimus Sharp as a new combination; and transfer of Pridonius Blackwelder new status from its position as a subgenus of Quedius (subtribe Quediina) to Philonthina as a genus, and new combinations for its two described species.  相似文献   

8.
9.
Representatives of the beetle family Lampyridae ("fireflies", "lightningbugs") are well known for their use of light signals for species recognition during mate search. However, not all species in this family use light for mate attraction, but use chemical signals instead. The lampyrids have a worldwide distribution with more than 2000 described species, but very little is known about their phylogenetic relationships. Within North America, some lampyrids use pheromones as the major mating signal whereas others use visual signals such as extended glows or short light flashes. Here, we use a phylogenetic approach to illuminate the relationships of North American lampyrids and the evolution of their mating signals. Specifically, to establish the first phylogeny of all North American lampyrid genera, we sequenced nuclear (18S) and mitochondrial (16S and COI) genes to investigate the phylogenetic relationships of 26 species from 16 North American (NA) genera and one species from the genus Pterotus that was removed recently from the Lampyridae. To test the monophyly of the NA firefly fauna we sequenced the same genes from three European lampyrids and three Asian lampyrids, and included all available Genbank data (27 additional Asian lampyrids and a former lampyrid from Asia, Rhagophthalmus). Our results show that the North American lampyrids are not monophyletic. Different subgroups are closely related to species from Europe, Asia and tropical America, respectively. The present classification of fireflies into subfamilies and tribes is not, for the most part, supported by our phylogenetic analysis. Two former lampyrid genera, Pterotus and Rhagophthalmus, which have recently been removed from this family, are in fact nested within the Lampyridae. Further, we found that the use of light as a sexual signal may have originated one or four times among lampyrids, followed by nine or four losses, respectively. Short flashes originated at least twice and possibly three times independently among our study taxa. The use of short flashes as a mating signal was replaced at least once by the use of long glows, and light signals as mating signals were lost at least three times in our study group and replaced by pheromones as the main signal mode.  相似文献   

10.
《Journal of morphology》2017,278(10):1354-1379
We analysed pretarsal characters of 87 species of Leiodidae (including 10 cholevines and representatives of all tribes and ca. 60% of the genera of non‐cholevines), five species of Agyrtidae, and nine representatives of outgroup taxa (Hydraenidae, Staphylinidae, Hydrophilidae, and Histeridae) using scanning electron microscopy. We focused our observations on the architecture of the empodium (including the sclerites and associated setae), the shape and composition of the medial projection of the distal margin of the terminal tarsomere, and the armature of the claws, which were considered a promising source of information for delimiting supraspecific taxa in our previous study. We identified several diagnostic features and recognize potential synapomorphies at the tribal, subtribal and generic levels. The internal systematic arrangement and/or even the monophyletic status of most of the subfamilies of Leiodidae (Camiarinae, Catopocerinae, Leiodinae, and Platypsyllinae) are challenged. We identified potential synapomorphies for Camiarinae (Camiarini and Agyrtodini) and Leiodinae. The non‐monophyly of Cholevinae is possible because part of the tribe (Anemadini, Eucatopini, and Oritocatopini) shares potentially apomorphic features with Leiodinae (e.g., a triangular medial projection with a diagonal row of conical spines), whereas another part (Leptodirini and Ptomaphagini) shares a potentially apomorphic feature with Coloninae and Platypsyllinae (a typical medial projection with two distinct triangular projections).  相似文献   

11.
A taxonomic study of the genus Zeadolopus Broun in Korea is presented. Two species, Zeadolopus chaosicus Daffner and Z. japonica (Champion), are recognized and the latter is recorded for the first time in Korea. A key, diagnoses, and illustrations of diagnostic characters are provided.  相似文献   

12.
A large‐scale phylogenetic study is presented for Cucujoidea (Coleoptera), a diverse superfamily of beetles that historically has been taxonomically difficult. This study is the most comprehensive analysis of cucujoid taxa to date, with DNA sequence data sampled from eight genes (four nuclear, four mitochondrial) for 384 coleopteran taxa, including exemplars of 35 (of 37) families and 289 genera of Cucujoidea. Maximum‐likelihood analyses of these data present many significant relationships, some proposed previously and some novel. Tenebrionoidea and Lymexyloidea are recovered together and Cleroidea forms the sister group to this clade. Chrysomeloidea and Curculionoidea are recovered as sister taxa and this clade (Phytophaga) forms the sister group to the core Cucujoidea (Cucujoidea s.n .). The nitidulid series is recovered as the earliest‐diverging core cucujoid lineage, although the earliest divergences among core Cucujoidea are only weakly supported. The cerylonid series (CS) is recovered as monophyletic and is supported as a major Cucujiform clade, sister group to the remaining superfamilies of Cucujiformia. Currently recognized taxa that were not recovered as monophyletic include Cucujoidea, Endomychidae, Cerylonidae and Bothrideridae. Biphyllidae and Byturidae were recovered in Cleroidea. The remaining Cucujoidea were recovered in two disparate major clades: one comprising the nitidulid series + erotylid series + Boganiidae and Hobartiidae + cucujid series, and the other comprising the cerylonid series. Propalticidae are recovered within Laemophloeidae. The cerylonid series includes two major clades, the bothriderid group and the coccinellid group. Akalyptoischiidae are recovered as a separate clade from Latridiidae. Eupsilobiinae are recovered as the sister taxon to Coccinellidae. In light of these findings, many formal changes to cucujiform beetle classification are proposed. Biphyllidae and Byturidae are transferred to Cleroidea. The cerylonid series is formally recognized as a new superfamily, Coccinelloidea stat.n. Current subfamilies elevated (or re‐elevated) to family status include: Murmidiidae stat.n. , Teredidae stat.n. , Euxestidae stat.n. , Anamorphidae stat.rev. , Eupsilobiidae stat.n. , and Mycetaeidae stat.n. The following taxa are redefined and characterized: Cleroidea s.n. , Cucujoidea s.n. , Cerylonidae s.n. , Bothrideridae s.n. , Endomychidae s.n. A new subfamily, Cyclotominae stat.n. , is described. Stenotarsinae syn.n. is formally subsumed within a new concept of Endomychinae s.n.  相似文献   

13.
Abstract Phylogenetic relationships within the family Corylophidae were investigated. Twenty ingroup taxa and six outgroups were included in a cladistic analysis, based on 48 characters derived from adult and larval morphology. Phylogenetic analysis confirms that Corylophidae are monophyletic within the superfamily Cucujoidea and may be subdivided into two subfamilies: the Australian Periptycinae and the cosmopolitan Corylophinae containing 10 tribes: Foadiini trib.n. , Cleidostethini, Aenigmaticini, Parmulini, Sericoderini, Peltinodini, Orthoperini, Corylophini, Teplinini and Rypobiini. All currently recognized family‐group taxa are thoroughly diagnosed, and keys to their identification based on adults and larvae are provided. Two new genera and three species are described: Weirus gen.n ., containing only W. tozer sp . n . (Australia: Queensland), and Stanus gen.n. , with the two species S. bowesteadi sp.n . (New Zealand) and S. tasmanicus sp.n. (Tasmania). The larvae of Pakalukodes bimaculatus?lipiński et al. from Queensland and of Stanus bowesteadi sp.n. from New Zealand are described and illustrated for the first time.  相似文献   

14.
15.
Eight genes (nuclear: 18S, 28S, H3, CAD; mitochondrial: 12S, 16S, COI, COII) and morphology were used to infer the evolutionary history of Corylophidae, some of the smallest free‐living insects. The study included 36 corylophid exemplars, representing approximately 60% of the known generic diversity of the family and 16 cucujoid outgroup taxa. Multiple partitioning strategies, molecular datasets, combined datasets and different taxon sampling regimes using maximum likelihood and mixed‐model Bayesian inference were utilized to analyse these data. Most results were highly concordant across analyses. There was strong agreement across (i) partitioning strategies, (ii) maximum likelihood and Bayesian inference analyses of the molecular data, and (iii) Bayesian inference of the molecular data alone and Bayesian inference of the combined morphological and molecular data when all terminal taxa were included. When a strict taxon sampling protocol was employed so that only single generic exemplars were included, deep relationships were affected in the resulting phylogenetic hypotheses. Under such narrow sampling strategies, deep phylogenetic relationships were also sensitive to the choice of generic exemplars. Although it is often challenging to obtain single representatives for many taxa in higher‐level phylogenetic analyses, these results indicate the importance of using denser taxon sampling approaches even at the specific level for genera included in such studies. Molecular data alone support Anamorphinae (Endomychidae) strongly as the sister group of Corylophidae. In combined data analyses, Coccinellidae is recovered as the sister group to Corylophidae. In all analyses, Corylophidae and the subfamily Corylophinae are recovered as monophyletic. The monophyly of Periptyctinae was untested, as only a single species was included. All included corylophine tribes were recovered as monophyletic with the exception of Aenigmaticini; Aenigmaticum Matthews forms the sister group to Orthoperus Stephens and Stanus?lipiński et al. is recovered as the sister group of Sericoderus Stephens. Stanus tasmanicus?lipiński et al. is transferred to a new genus, Pseudostanus Robertson, ?lipiński & McHugh gen.n. incertae sedis. We propose a new tribe, Stanini Robertson, ?lipiński & McHugh trib.n. for Stanus bowesteadi?lipiński et al. and a new concept of Aenigmaticini sensu.n. to include only the nominate genus. Anatomical transitions associated with corylophid miniaturization are highlighted. Key phenotypic modifications and elevated rates of substitution in nuclear rRNA genes are evident in a subgroup of Corylophinae that includes the most diminutive species. Other taxonomic and evolutionary implications are discussed in light of the results.  相似文献   

16.
Phylogeny and systematics of the Trogidae (Coleoptera: Scarabaeoidea)   总被引:2,自引:0,他引:2  
Abstract. A cladistic analysis of the Trogidae using eighteen adult characters resulted in a monophyletic group from which the genera Glaresis Erichson, Afroglaresis Petrovitz and Cryptogenius Westwood are excluded. The Trogidae as here defined comprises three genera, Trox Fabricius (with two subgenera, Trox and Phoberus Macleay), Omorgus Erichson (with three subgenera, Omorgus, Afromorgus subg.n. and Haroldomorgus subg.n.) and Polynoncus Burmeister.  相似文献   

17.
The taxonomy of the Iberian Leptodirini species of the section Anillochlamys Jeannel, 1909 has been revised. The proposed classification is based on the study of the genital structures of both sexes, in particular the internal sac of the aedeagus. According to the different models of internal sacs, the following genera, species and subspecies are identified: genus Anillochlamys Jeannel, 1909: A. aurouxi Español, 1965, A. bueni Jeannel, 1909 (= A. avariae Comas, 1977 n.syn.), A. cullelli Lagar, 1978, A. moroderi Bolívar, 1923 (= A. negrei Comas, 1990 n. syn.), A. subtruncatus Jeannel, 1930 (= A. baguenai Jeannel, 1930) and A. tropicus (Abeille, 1881) (= Adelops hispanicus Ehlers, 1893; A. tropicus var. apicalis Jeannel, 1909); genus Paranillochlamys Zariquiey, 1940: P. catalonicus (Jeannel, 1913), P. urgellesi (Español, 1965) and P. velox Zariquiey, 1940 (= P. velox montadai Lagar, 1963 n. syn.); genus Pseudochlamys Comas, 1977: P. raholai (Zariquiey, 1922) (= Anillochlamys raholai luis-bofilli Zariquiey, 1940 n. syn.); genus Spelaeochlamys Dieck, 1870 (= Typhlochlamys Español, 1975 n.syn.): S.bardisai (Español, 1975) (= Typhlochlamys escolai Comas, 1978 n. syn.), S. ehlersi Dieck, 1870 and S. ehlersi verai Comas, 1977 n. stat.  相似文献   

18.
External and internal structures of the head of adults of Clambus are described and illustrated in detail. The results are compared with structural features found in the clambid genus Calyptomerus, in representatives of other scirtoid families, and also in species of other coleopteran suborders, notably Myxophaga. The results tentatively support the monophyly of Scirtoidea and a close relationship between Clambidae and Eucinetidae is suggested by one shared derived feature of the mandible, a long and slender apical tooth with a serrate edge. The monophyly of Clambidae is very strongly supported and Acalyptomerus is probably the sistergroup of a clade Calyptomerus + Clambinae. Potential scirtoid autapomorphies are the loss of the dorsal tentorial arms, a bulging gula, a strongly transverse labrum, and a ridge separating the mediostipes from the lacinia. However, all these features are homoplasious. The monophyly of Clambidae is supported by modifications of the head capsule which is strongly flattened and broadened, by a deep clypeofrontal incision enabling vertical antennal movements, and a series of antennal features. Synapomorphies of Clambinae + Calyptomerus (Clambidae excluding Acalyptomerus) are the conglobate body form with the ventral side of the head capsule in contact with the mesocoxae, and compound eyes integrated in the contour of the head. The completely subdivided eye is an autapomorphy of Clambus. An entire series of features is shared by Clambidae (or Scirtoidea) and Myxophaga. Most of them are apomorphies that apparently evolved independently in both groups. However, the presence of well‐developed maxillary and labial glands is arguably a retained groundplan feature of Coleoptera, with parallel loss in Archostemata, Adephaga and various groups of Polyphaga. J. Morphol. 277:615–633, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号