首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gut microbial diversity and the core microbiota of the Jinhua pig, which is a traditional, slow-growing Chinese breed with a high body-fat content, were examined from a total of 105 fecal samples collected from 6 groups of pigs at 3 weaning ages that originated from 2 strains and were raised on 3 different pig farms. The bacterial community was analyzed following high-throughput pyrosequencing of 16S rRNA genes, and the fecal concentrations of short-chain fatty acids (SCFAs) were measured by gas chromatograph. Our results showed that Firmicutes and Bacteroidetes were the dominant phyla, and Lactobacillus, Streptococcus, Clostridium, SMB53, and Bifidobacterium were the most abundant genera. Fifteen predominant genera present in every Jinhua pig sample constituted a phylogenetic core microbiota and included the probiotics Lactobacillus and Bifidobacterium, and the SCFA-producing bacteria Clostridium, Prevotella, Bacteroides, Coprococcus, Roseburia, Ruminococcus, Blautia, and Butyricicoccus. Comparisons of the microbiota compositions and SCFA concentrations across the 6 groups of pigs demonstrated that genetic background and weaning age affected the structure of the gut microbiota more significantly than the farm. The relative abundance of the core genera in the pigs, including Lactobacillus, Clostridium, Prevotella, Bacteroides, Roseburia, Ruminococcus, Blautia, and Butyricicoccus varied dramatically in pigs among the 2 origins and 3 weaning ages, while Oscillospira, Megasphaera, Parabacteroides, and Corynebacterium differed among pigs from different farms. Interestingly, there was a more significant influence of strain and weaning age than of rearing farm on the SCFA concentrations. Therefore, strain and weaning age appear to be the more important factors shaping the intestinal microbiome of pigs.  相似文献   

2.
Dysbiosis, or imbalance in the gut microbiome, has been implicated in auto-immune, inflammatory, neurological diseases as well as in cancers. More recently it has also been shown to be associated with ocular diseases. In the present study, the association of gut microbiome dysbiosis with bacterial Keratitis, an inflammatory eye disease which significantly contributes to corneal blindness, was investigated. Bacterial and fungal gut microbiomes were analysed using fecal samples of healthy controls (HC, n?=?21) and bacterial Keratitis patients (BK, n?=?19). An increase in abundance of several anti-inflammatory organisms including Dialister, Megasphaera, Faecalibacterium, Lachnospira, Ruminococcus and Mitsuokella and members of Firmicutes, Veillonellaceae, Ruminococcaceae and Lachnospiraceae was observed in HC compared to BK patients in the bacterial microbiome. In the fungal microbiome, a decrease in the abundance of Mortierella, Rhizopus, Kluyveromyces, Embellisia and Haematonectria and an increase in the abundance of pathogenic fungi Aspergillus and Malassezia were observed in BK patients compared to HC. In addition, heatmaps, PCoA plots and inferred functional profiles also indicated significant variations between the HC and BK microbiomes, which strongly suggest dysbiosis in the gut microbiome of BK patients. This is the first study demonstrating the association of gut microbiome with the pathophysiology of BK and thus supports the gut–eye axis hypothesis. Considering that Keratitis affects about 1 million people annually across the globe, the data could be the basis for developing alternate strategies for treatment like use of probiotics or fecal transplantation to restore the healthy microbiome as a treatment protocol for Keratitis.  相似文献   

3.
4.

Objective

To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber.

Results

E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis.

Conclusions

Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.
  相似文献   

5.
The strains designated in this paper asMicrococcus lysodeikticus, M. sodonensis, M. flavus, Sarcina flava, S. pelagia, S. variabilis, S. marginata, S. subflava, S. citrea, S. lutea andStaphylococcus afermentans have similar DNA base compositions. The mole % GC (guanine plus cytosine) contents in DNA of these strains ranged from 71.8 to 73.3 as calculated from the denaturation temperature (Tm). They may be, therefore, closely related. However, at variance with Kocur and Martinec (1962) they do not seem to be identical withMicrococcus luteus (Schroeter 1872) Cohn 1872, because the neotype culture of the latter species has a different content of guanine and cytosine in its DNA (GC=66.3%). Sarcina aurantiaca, Micrococcus dentrificans andM. luteus have a similar DNA base composition. However, they are not identical as they differ from each other in several physiological characters. In the strains designated asStaphylococcus roseus andSarcina erythromyxa the content of GC varies within the range 72–72.8%. These species do not differ from each other physiologically. They form a pink pigment, reduce nitrates, do not hydrolyze casein and gelatin, and do not produce urease. They seem, therefore, to be identical, which confirms the conclusion of Kocur and Martinec (1962) who designated them asMicrococcus roseus Flügge 1886. Micrococcus conglomeratus differs significantly in DNA base composition from almost all strains of the groupM. lysodeikticus—Staphylococcus afermentans, also fromMicrococcus luteus, M. roseus andM. denitrificans. It differs fromSarcina aurantiaca only physiologically.  相似文献   

6.

Background

Modifiable lifestyle factors (e.g. dietary intake and physical activity) are important contributors to weight gain during college. The purpose of this study was to evaluate whether associations exist between body mass index, physical activity, screen time, dietary consumption (fat, protein, carbohydrates, and fiber), and gut microbial diversity during the first year of college. Racially/ethnically diverse college students (n?=?82; 61.0% non-white) at a large Southwestern university completed self-reported physical activity and 24-h recall dietary assessments, height and weight measurements, and provided one fecal sample for gut microbiome analysis. Fecal microbial community composition was assessed with Illumina MiSeq next-generation sequencing of PCR amplified 16S rRNA genes. Post-hoc analyses compared microbial diversity by groups of high and low physical activity and fiber intake using QIIME and LEfSe bioinformatics software.

Results

No statistically significant differences were observed between body mass index and gut microbiome abundance and diversity. Median daily consumption of dietary fiber was 11.2 (7.6, 14.9) g/d, while the median self-reported moderate-to-vigorous physical activity (MVPA) was 55.7 (27.9, 79.3) min/d and screen time 195.0 (195.0, 315.0) min/d. Microbial analysis by LEfSe identified Paraprevotellaceae, Lachnospiraceae, and Lachnospira as important phylotypes in college students reporting greater MVPA, while Enterobacteriaceae and Enterobacteriales were more enriched among students reporting less MVPA (p?<?0.05). Barnesiellaceae, Alphaproteobacteria, and Ruminococcus were more abundant taxa among those consuming less than the median fiber intake (p?<?0.05). Post-hoc analyses comparing weighted UniFrac distance metrics based on combined categories of high and low MVPA and fiber revealed that clustering distances between members of the high MVPA-low fiber group were significantly smaller when compared to distances between members of all other MVPA-fiber groups (p?<?0.0001).

Conclusions

Habitual fiber consumption and MVPA behaviors help explain the differential abundance of specific microbial taxa and overall gut microbial diversity differences in first-year college students.
  相似文献   

7.
Uveitis (UVT), an inflammatory disease of the eye significantly contributes to vision impairment and blindness. Uveitis is associated with systemic infectious and autoimmune diseases, but in most cases, the aetiology remains unidentified. Dysbiosis in the gut microbiome has been implicated in autoimmune diseases, inflammatory diseases, cancers and mental disorders. In a mice model of autoimmune UVT, it was observed that manipulating the gut microbiome reduces the inflammation and disease severity. Further, alterations in the bacterial gut microbiome and their metabolites were reported in UVT patients from a Chinese cohort. Hence, it is worth comparing the bacterial gut microbiome of UVT patients with that of healthy controls (HC) to ascertain whether dysbiosis of the gut microbiome has implications in UVT. Our analyses showed reduced diversity of several anti-inflammatory organisms including Faecalibacterium, Bacteroides, Lachnospira, Ruminococcus and members of Lachnospiraceae and Ruminococcaceae families, and enrichment of Prevotella (proinflammatory) and Streptococcus (pathogenic) OTUs in UVT microbiomes compared to HC. In addition, decrease in probiotic and antibacterial organisms was observed in UVT compared to HC microbiomes. Heatmap and PCoA plots also indicated significant variations in the microbiomes of UVT versus HC. This is the first study demonstrating dysbiosis in the gut bacterial communities of UVT patients in an Indian cohort and suggests a role of the gut microbiome in the pathophysiology of UVT.  相似文献   

8.
Khapra beetle, Trogoderma granarium (Coleoptera: Dermestidae), is among the world’s most invasive and destructive pests of stored agricultural products. Its pest status is enhanced by the ability of the larvae to undergo diapause, which increases their tolerance to adverse conditions including insecticides and extreme temperatures. The ability of insects to tolerate extreme conditions can be influenced by their associated bacterial community (the microbiome). Understanding this relationship may lead to improved methods of pest control, but the microbiome of T. granarium is unknown. Here we use next-generation sequencing to address three main questions: 1) How similar are the microbiomes of the closely-related species T. granarium and T. variabile? 2) How does the microbiome change across life stage and physiological state? 3) How is the microbiome of adult T. granarium affected by extreme temperatures? Our results show that the core microbiomes of T. granarium and T. variabile are similar in composition. However, adults of former species have a microbiome dominated by Spiroplasma bacteria (99% of amplified sequences), whereas Spiroplasma in the latter species is almost absent (< 2%). The microbiome of T. granarium differs across life stage (feeding vs non-feeding life stages); its presence in eggs confirms the vertical transmission of Spiroplasma. High temperatures significantly reduced the relative abundance of Spiroplasma, but an effect of low temperatures on the microbiome of T. granarium was not detected. Given its dominance in a key pest species, further study of the interaction between Spiroplasma and its T. granarium host is warranted.  相似文献   

9.
Social corbiculate bees such as honey bees and bumble bees maintain a specific beneficial core microbiome which is absent in wild bees. It has been suggested that maintaining this microbiome can prevent disease and keep bees healthy. The main aim of our study was to identify if there are any core bacterial groups in the non-corbiculate bees Ceratina and Megalopta that have been previously overlooked. We additionally test for associations between the core bee microbes and pollen provisions to look for potential transmission between the two. We identify three enterotypes in Ceratina samples, with thirteen core bacterial phylotypes in Ceratina females: Rosenbergiella, Pseudomonas, Gilliamella, Lactobacillus, Caulobacter, Snodgrassella, Acinetobacter, Corynebacterium, Sphingomonas, Commensalibacter, Methylobacterium, Massilia, and Stenotrophomonas, plus 19 in pollen (6 of which are shared by bees). Unlike Apis bees, whose gut microbial community differs compared to their pollen, Ceratina adults and pollen largely share a similar microbial composition and enterotype difference was largely explained by pollen age. Megalopta displays a highly diverse composition of microbes throughout all adults, yet Lactobacillus and Saccharibacter were prevalent in 90% of adults as core bacteria. Only Lactobacillus was both a core bee and pollen provision microbe in all three species. The consequences of such diversity in core microbiota between bee genera and their associations with pollen are discussed in relation to identifying potentially beneficial microbial taxa in wild bees to aid the conservation of wild, understudied, non-model bee species.  相似文献   

10.
Candida albicans is the most common human fungal pathogen and can grow as yeast or filaments, depending on the environmental conditions. The filamentous form is of particular interest because it can play a direct role in adherence and pathogenicity. Therefore, the purpose of this study was to evaluate the effects of three clinical strains of Lactobacillus on C. albicans filamentation as well as their probiotic potential in pathogen-host interactions via an experimental candidiasis model study in Galleria mellonella. We used the reference strain Candida albicans ATCC 18804 and three clinical strains of Lactobacillus: L. rhamnosus strain 5.2, L. paracasei strain 20.3, and L. fermentum strain 20.4. First, the capacity of C. albicans to form hyphae was tested in vitro through association with the Lactobacillus strains. After that, we verified the ability of these strains to attenuate experimental candidiasis in a Galleria mellonella model through a survival curve assay. Regarding the filamentation assay, a significant reduction in hyphae formation of up to 57% was observed when C. albicans was incubated in the presence of the Lactobacillus strains, compared to a control group composed of only C. albicans. In addition, when the larvae were pretreated with Lactobacillus spp. prior to C. albicans infection, the survival rate of G. mellonela increased in all experimental groups. We concluded that Lactobacillus influences the growth and expression C. albicans virulence factors, which may interfere with the pathogenicity of these microorganisms.  相似文献   

11.

Background

There are growing evidences showing that gut microbiota should play an important role in host appetite and feeding behavior. However, what kind of microbe(s) and how they affect porcine appetite remain unknown.

Results

In this study, 280 commercial Duroc pigs were raised in a testing station with the circadian feeding behavior records for a continuous period of 30–100?kg. We first analyzed the influences of host gender and genetics in porcine average daily feed intake (ADFI), but no significant effect was observed. We found that the Prevotella-predominant enterotype had a higher ADFI than the Treponema enterotype-like group. Furthermore, 12 out of the 18 OTUs positively associated with the ADFI were annotated to Prevotella, and Prevotella was the hub bacteria in the co-abundance network. These results suggested that Prevotella might be a keystone bacterial taxon for increasing host feed intake. However, some bacteria producing short-chain fatty acids (SCFAs) and lactic acid (e.g. Ruminococcaceae and Lactobacillus) showed negative associations with the ADFI. Predicted function capacity analysis showed that the genes for amino acid biosynthesis had significantly different enrichment between pigs with high and low ADFI.

Conclusions

The present study provided important information on the profound effect of gut microbiota on porcine appetite and feeding behavior. This will profit us to regulate porcine appetite through modulating the gut microbiome in the pig industry.
  相似文献   

12.
This study aimed to investigate the relationship between the intestinal Lactobacillus species and diet of elderly subjects in a longevity area in Southern China. Healthy elderly subjects ranging from 80 to 99 years old were respectively selected from the regions of Bama and Nanning, Guangxi, China. The nested polymerase chain reaction and denaturing gradient gel electrophoresis (PCR-DGGE) technology was used to analyze the intestinal Lactobacillus community structure. Results showed that Weissella confusa, L. mucosae, L. crispatus, L. salivarius, and L. delbrueckii were the representative Lactobacillus of elderly subjects. Among them, L. crispatus and L. delbrueckii were the dominant Lactobacillus of all species. In comparison to Nanning elderly subjects, the detection frequencies of W. confusa and L. salivarius were significantly increased in Bama elderly subjects (P < 0.01), whereas L. mucosae was significantly decreased (P < 0.01). Interestingly, it was also found that there were 4 kinds of representative Lactobacillus, which were significantly correlated with dietary fiber. W. confusa (P < 0.01) and L. salivarius (P < 0.05) were significantly positively correlated with the intake of dietary fiber, while L. mucosae (P < 0.01) and L. crispatus (P < 0.05) were significantly negatively correlated with the intake of dietary fiber, respectively. Results confirmed that different diets had obvious effects on the intestinal Lactobacillus community structure of elderly subjects in Southern China, which may provide a certain theoretical basis for the elderly’s healthy food strategic design and probiotics product development.  相似文献   

13.
Species of Lactobacillus, Pediococcus, Oenococcus, and Leuconostoc play an important role in winemaking, as either inoculants or contaminants. The metabolic products of these lactic acid bacteria have considerable effects on the flavor, aroma, and texture of a wine. However, analysis of a wine’s microflora, especially the bacteria, is rarely done unless spoilage becomes evident, and identification at the species or strain level is uncommon as the methods required are technically difficult and expensive. In this work, we used Raman spectral fingerprints to discriminate 19 strains of Lactobacillus, Pediococcus, and Oenococcus. Species of Lactobacillus and Pediococcus and strains of O. oeni and P. damnosus were classified with high sensitivity: 86–90 and 84–85%, respectively. Our results demonstrate that a simple, inexpensive method utilizing Raman spectroscopy can be used to accurately identify lactic acid bacteria isolated from wine.  相似文献   

14.

Objective

To reveal the shifts of microbial communities along ammonium gradients, and the relationship between microbial community composition and the anaerobic digestion performance using a high throughput sequencing technique.

Results

Methane production declined with increasing ammonium concentration, and was inhibited above 4 g l?1. The volatile fatty acids, especially acetate, accumulated with elevated ammonium. Prokaryotic populations showed different responses to the ammonium concentration: Clostridium, Tepidimicrobium, Sporanaerobacter, Peptostreptococcus, Sarcina and Peptoniphilus showed good tolerance to ammonium ions. However, Syntrophomonas with poor tolerance to ammonium may be inhibited during anaerobic digestion. During methanogenesis, Methanosarcina was the dominant methanogen.

Conclusion

Excessive ammonium inhibited methane production probably by decoupling the linkage between acidification process and methanogenesis, and finally resulted in different performance in anaerobic digestion.
  相似文献   

15.

Objectives

The objective of this study was to evaluate the ability of Lactobacillus curvatus CRL705, CRL1532, and CRL1533 and Lactobacillus sakei CRL1613 to survive under simulated gastrointestinal conditions. Moreover, a microencapsulation approach was proposed to improve gastrointestinal survival. Finally, experiments were performed to demonstrate that Lactobacillus spp. can modulate the ability of Listeria monocytogenes FBUNT to adhere to and invade Caco-2 cells.

Results

Lactobacillus strains were encapsulated in alginate beads to enhance the survival of bacteria under in vitro gastrointestinal conditions. All strains hydrolyzed bile salts using chenodeoxycholic acid as a substrate and adhered to Caco-2 cells. Cell-free supernatants (CFSs) showed antimicrobial activity against L. monocytogenes as demonstrated by agar diffusion assays. The average percentages of L. monocytogenes adhesion decreased from 67.74 to 41.75 and 38.7% in the presence of 50 and 90% (v/v), respectively, for all CFSs tested. The highest concentrations of CFSs completely inhibited the L. monocytogenes invasion of Caco-2 cells.

Conclusions

The studied Lactobacillus strains have protective effects against the adhesion and invasion of L. monocytogenes FBUNT. Alginate encapsulation of these bacteria improved gastrointestinal tolerance such that they could be further studied as potential probiotics against intestinal pathogenic bacteria.
  相似文献   

16.
Paocai is a traditional Chinese fermented food and typically produced via spontaneous fermentation. We have investigated the microbial community utilized for the fermentation of industrialized Qingcai paocai using the combination of Illumina MiSeq sequencing, PCR-mediated denaturing gradient gel electrophoresis (PCR-DGGE) and quantitative PCR (qPCR) assay. Three main phyla, namely Firmicutes, Proteobacteria and Bacteroidetes, were identified by both MiSeq sequencing and PCR-DGGE. The dominant genera observed in the fermentation were Lactobacillus, Pseudomonas, Vibrio and Halomonas. Most genera affiliated with Proteobacteria or Bacteroidetes were detected more often during the earlier part of the fermentation, while Lactobacillus (affiliated with Firmicutes) was dominant during the later fermentation stages. Fungal community analysis revealed that Debaryomyces, Pichia and Kazachstania were the main fungal genera present in industrialized Qingcai paocai, with Debaryomyces being the most dominant during the fermentation process. The quantities of dominant genera Lactobacillus and Debaryomyces were monitored using qPCR and shown to be 109–1012 and 106–1010 copies/mL, respectively. During the later fermentation process of industrialized Qingcai paocai, Lactobacillus and Debaryomyces were present at 1011 and 108 copies/mL, respectively. These results facilitate further understanding of the unique microbial ecosystem during the fermentation of industrialized Qingcai paocai and guide future improvement of the fermentation process.  相似文献   

17.
The purpose of this work was to analyse the diversity and dynamics of lactic acid bacteria (LAB) throughout the fermentation process in Atole agrio, a traditional maize based food of Mexican origin. Samples of different fermentation times were analysed using culture-dependent and -independent approaches. Identification of LAB isolates revealed the presence of members of the genera Pediococcus, Weissella, Lactobacillus, Leuconostoc and Lactococcus, and the predominance of Pediococcus pentosaceus and Weissella confusa in liquid and solid batches, respectively. High-throughput sequencing (HTS) of the 16S rRNA gene confirmed the predominance of Lactobacillaceae and Leuconostocaceae at the beginning of the process. In liquid fermentation Acetobacteraceae dominate after 4 h as pH decreased. In contrast, Leuconostocaceae dominated the solid fermentation except at 12 h that were overgrown by Acetobacteraceae. Regarding LAB genera, Lactobacillus dominated the liquid fermentation except at 12 h when Weissella, Lactococcus and Streptococcus were the most abundant. In solid fermentation Weissella predominated all through the process. HTS determined that Lactobacillus plantarum and W. confusa dominated in the liquid and solid batches, respectively. Two oligotypes have been identified for L. plantarum and W. confusa populations, differing in a single nucleotide position each. Only one of the oligotypes was detected among the isolates obtained from each species, the biological significance of which remains unclear.  相似文献   

18.
To identify and investigate the role of surface layer proteins (SLPs) on the probiotic properties of Lactobacillus strains, SLPs were extracted from Lactobacillus bulgaricus fb04, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM by 5 mol/L lithium chloride. The molecular masses of the four SLPs were approximately 45–47 kDa as analyzed by SDS-PAGE. Hydrophobic amino acids were the main components of the four SLPs. The secondary structure content of the four SLPs showed extensive variability among different strains. After the SLPs were removed from the cell surface, the autoaggregation ability, coaggregation ability, and gastrointestinal tolerability of the four lactobacilli were significantly reduced as compared with the intact cells (P?<?0.05). When exposed to bile salt stress, L. rhamnosus fb06, L. gasseri fb07, and L. acidophilus NCFM expressed more SLPs as determined by Bradford method. In conclusion, the four lactobacilli all possessed functional SLPs, which had positive contributions to the probiotic properties of the four Lactobacillus strains. This research could reveal the biological contributions of SLPs from Lactobacillus strains and offer a theoretical basis for the application of lactobacilli and their SLPs in food and pharmaceutical industries.  相似文献   

19.

Aims

We investigated the possible transgenerational transfer of bacterial seed endophytes across three consecutive seed generations of Crotalaria pumila growing on a metal mining site in Mexico.

Methods

Seeds were collected during three successive years in the semi-arid region of Zimapan, Mexico. Total communities of seed endophytes were investigated using DNA extraction from surface sterilized seeds and 454 pyrosequencing of the V5-V7 hypervariable regions of the 16S rRNA gene.

Results

The communities consisted of an average of 75 operational taxonomic units (OTUs); richness and diversity did not change across years. Methylobacterium, Staphylococcus, Corynebacterium, Propionibacterium and eight other OTUs constituted >60% of the community in each generation. The microbiome was dominated by Methylobacterium (present in >80% of samples). Functions associated with the microbiome were C and N fixation, oxidative phosphorylation and photosynthesis activity.

Conclusions

The bacterial endophytic communities were similar across three consecutive seed generations. Among the core microbiome Methylobacterium strains were the most abundant and they can contribute to nutrient acquisition, plant growth promotion and stress resilience to their host in metal contaminated mine residues. Identification of the seed microbiome of C. pumila may lead to novel and more efficient inoculants for microbe-assisted phytoremediation.
  相似文献   

20.
Lactobacilli have been shown to inhibit the proliferation of several types of cancer cells, but the effects of vaginal Lactobacilli on cervical cancer cells have seldom been reported. We incubated Caski cells with supernatants of predominant strains in the vagina and investigated their effects on cell growth and the possible mechanisms. Cell-free supernatants of Lactobacillus crispatus, L. jensenii, and L. gasseri were prepared and purified. Caski cells were treated with various concentrations of Lactobacillus supernatants (LS). The effect of LS on cell growth was investigated using MTT assays. The influence of LS on the cell cycle and expression of human papillomavirus (HPV) E6 and E7 oncogenes was determined by flow cytometry and RT-PCR, respectively. LS-inhibited Caski cell proliferation caused morphological changes in a pH-independent manner. Flow cytometric analysis revealed that cells exposed to LS exhibited a significant increase of cell number in S phase and a strong decrease of cell number in G2/M phase. Expression of HPV E6 and E7 oncogenes, as well as CDK2 and cyclin A was decreased after treatment with LS, while expression of p21 was increased. Supernatants of L. crispatus, L. jensenii, and L. gasseri have inhibitory effects on the viability of cervical cancer cells via regulation of HPV oncogenes and cell cycle-related genes. Lactobacillus, as a promising treatment for cancer, is being assessed for its effect, and these results provide further evidence in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号