首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some introduced species compete directly with native species for resources and their spread can alter communities, while others do not proliferate and remain benign. This study compares community structure and diversity in adjacent areas dominated by the introduced alga Avrainvillea sp. or native algal species on a hard substrate reef. The biomass and species composition of 15 paired plots (30 in total, plot type based on dominance of Avrainvillea sp. or native species) were quantified. Plots dominated by Avrainvillea sp. had a significantly different assemblage of species characterized by lower algal diversity, mostly Dictyota spp. and Laurencia sp., and a higher abundance and diversity of invertebrates, such as small arthropods, polychaetes, and brittlestars. These results suggest that as Avrainvillea sp. becomes more abundant on hard substrate reefs, it will engineer a different community composed of algal epiphytes and an invertebrate assemblage more typically associated with algae in soft sediments.  相似文献   

2.
To investigate patterns of biotic community composition at different spatial scales and biological contexts, we used environmental DNA metabarcoding to characterize eukaryotic and prokaryotic assemblages present in the phytotelmata of three bromeliad species (Aechmea gamosepala, Vriesea friburgensis, and Vriesea platynema) at a single Atlantic Forest site in southern Brazil. We sampled multiple individuals per species and multiple tanks from each individual, totalizing 30 samples. We observed very high levels of diversity in these communities, and remarkable variation across individuals and even among tanks from the same individual. The alpha diversity was higher for prokaryotes than eukaryotes, especially for A. gamosepala and V. platynema samples. Some biotic components appeared to be species‐specific, while most of the biota was shared among species, but varied substantially in frequency among samples. Interestingly, V. friburgensis communities (which were sampled at nearby locations) tended to be more heterogeneous across samples, for both eukaryotes and prokaryotes. The opposite was true for V. platynema, whose samples were more broadly spaced but whose communities were more similar to each other. Our results indicate that additional attention should be devoted to within‐individual heterogeneity when assessing bromeliad phytotelmata biodiversity, and highlight the complexity of the biotic assemblages gathered in these unique habitats.  相似文献   

3.
Tank-forming bromeliads, suspended in the rainforest canopy, possess foliage arranged in compact rosettes capable of long-term retention of rainwater. This large and unique aquatic habitat is inhabited by microorganisms involved in the important decomposition of impounded material. Moreover, these communities are likely influenced by environmental factors such as pH, oxygen, and light. Bacterial community composition and diversity was determined for the tanks of several bromeliad species (Aechmea and Werauhia) from northern Costa Rica, which span a range of parameters, including tank morphology and pH. These were compared with a nearby forest soil sample, an artificial tank (amber bottle), and a commercially available species (Aechmea). Bacterial community diversity, as measured by 16S rRNA analysis and tRFLP, showed a significant positive correlation with tank pH. A majority of 16S rRNA bacterial phylotypes found in association with acidic bromeliad tanks of pH < 5.1 were affiliated with the Alphaproteobacteria, Acidobacteria, Planctomycetes, and Bacteroidetes, and were similar to those found in acidic peat bogs, yet distinct from the underlying soil community. In contrast, bromeliads with tank pH > 5.3, including the commercial bromeliad with the highest pH (6.7), were dominated by Betaproteobacteria, Firmicutes, and Bacteroidetes. To empirically determine the effect of pH on bacterial community, the tank pH of a specimen of Aechmea was depressed, in the field, from 6.5 to 4.5, for 62 days. The resulting community changed predictably with decreased abundance of Betaproteobacteria and Firmicutes and a concomitant increase in Alphaproteobacteria and Acidobacteria. Collectively, these results suggest that bromeliad tanks provide important habitats for a diverse microbial community, distinct from the surrounding environment, which are influenced greatly by acid–base conditions. Additionally, total organic carbon (∼46%) and nitrogen (∼2%) of bromeliad-impounded sediment was elevated relative to soil and gene surveys confirmed the presence of both chitinases and nitrogenases, suggesting that bromeliad tanks may provide important habitats for microbes involved in the biological cycling of carbon and nitrogen in tropical forests.  相似文献   

4.
1. A substantial fraction of the freshwater available in neotropical forests is impounded within the rosettes of bromeliads that form aquatic islands in a terrestrial matrix. The ecosystem functioning of bromeliads is known to be influenced by the composition of the contained community but it is not clear whether bromeliad food webs remain functionally similar against a background of variation in the understorey environment. 2. We considered a broad range of environmental conditions, including incident light and incoming litter, and quantified the distribution of a very wide range of freshwater organisms (from viruses to macroinvertebrates) to determine the factors that influence the functional structure of bromeliad food webs in samples taken from 171 tank‐bromeliads. 3. We observed a gradient of detritus‐based to algal‐based food webs from the understorey to the overstorey. Algae, rotifers and collector and predatory invertebrates dominated bromeliad food webs in exposed areas, whereas filter‐feeding insects had their highest densities in shaded forest areas. Viruses, bacteria and fungi showed no clear density patterns. Detritus decomposition is mainly due to microbial activity in understorey bromeliads where filter feeders are the main consumers of microbial and particulate organic matter (POM). Algal biomass may exceed bacterial biomass in sun‐exposed bromeliads where amounts of detritus were lower but functional diversity was highest. 4. Our results provide evidence that tank‐bromeliads, which grow in a broad range of ecological conditions, promote aquatic food web diversity in neotropical forests. Moreover, although bromeliad ecosystems have been categorised as detritus‐based systems in the literature, we show that algal production can support a non‐detrital food web in these systems.  相似文献   

5.
At present, information on the effects of ultraviolet radiation (UVR) on structure and diversity of polar, in particular Arctic, benthic communities is scarce. It is unclear whether and to what extent communities of different successional age are susceptible to UVR and whether UVR effects known to be detrimental at the species level can be buffered at the community level. In a subtidal field study on Spitsbergen (Norwegian Arctic), we investigated the potential effect of distinct UVR regimes on macrobenthic communities of different successional ages, grown on ceramic tiles. Total taxon cover, taxon composition, evenness, and richness were assessed after experimental exposure of 4 and 8 weeks. Overall, 17 algal and invertebrate taxa were encountered in the study and diatoms dominated the communities regardless of successional age or radiation treatment. UVR effects were dependent on both exposure time and community age. We did not find overall detrimental UVB effects. In contrast, abundance of several species increased in UVR-exposed communities. Especially, UVA seemed to have a beneficial effect in that several green and brown algal taxa increased in abundance (e.g. Ulothrix flacca, Chlorophyta, and Desmarestia sp., Phaeophyceae). In general, UVR effects depended on species composition and thus on successional age of communities, with later successional communities likely to be able to buffer and alleviate possible negative effects of UVR at species level. Overall, the presented study provides a first insight into the complex role UVR plays in structuring Arctic epibenthic communities.  相似文献   

6.
Hundreds of studies that have explored how biodiversity affects the productivity and stability of ecosystems have produced a consensus that communities composed of more species tend to have higher biomass that is more stable through time. However, the majority of this work stems from studies performed using highly simplified food webs, often composed of just primary producers competing for inorganic resources in the absence of trophic interactions. When studies have incorporated trophic interactions, diversity‐function relationships have been more variable, leaving open the question of how biodiversity affects the functioning of ecosystems with more trophic levels. Here we report the results of a laboratory experiment that used freshwater microcosms to test for effects of algal diversity (one or four species) on community biomass and temporal variability in the presence and absence of two different herbivore species (cladocerans Ceriodaphnia dubia and Daphnia pulex). When no herbivores were present, we found the classic pattern observed in hundreds of other studies – as species richness of algae increased, algal biomass increased, and the temporal variation in biomass decreased. This pattern was retained when one of the herbivores (C. dubia) was present. Ceriodaphnia dubia exhibited weak and non‐selective grazing on the focal algae, leaving the effect of diversity on biomass and variability essentially intact. In contrast, D. pulex exhibited strong and selective grazing in algal polycultures that qualitatively altered both diversity–function relationships. As algal richness increased, total algal biomass decreased and variation through time increased. These changes were coupled with larger and less variable populations of D. pulex. Our results show that herbivory leads to a richer array of diversity–function relationships than often observed in studies focused on just one trophic level, and suggests trophic interactions should be given more attention in work that seeks to determine how biodiversity impacts the functioning of ecosystems.  相似文献   

7.

Caribbean coral cover has decreased substantially in recent decades, with much of the live coral being replaced by macroalgae. Encrusting red algae in the genus Ramicrusta have become abundant throughout the region and have demonstrated widespread harm to corals by overgrowing living tissue, causing colony mortality, and impairing coral recruitment. In this research, Ramicrusta textilis was identified by morpho-anatomy and DNA sequencing from nine sites around St. Thomas, US Virgin Islands, and 3D photogrammetry was used to measure the rate of algal growth on stony corals. 3D models of individual coral colonies (five species plus controls, N = 72) competing with R. textilis revealed differential competitive abilities among taxa, with Siderastrea siderea being the only species capable of inhibiting overgrowth by the alga (mean linear algal growth − 1.1 mm yr−1). Important reef building coral species such as Orbicella annularis and Orbicella faveolata were poor competitors (mean linear algal growth + 15 mm yr−1 and + 7.7 mm yr−1, respectively), indicating that the emergence of the alga could have significant impacts on Caribbean coral reef species diversity, community composition, and structural complexity.

  相似文献   

8.
Temporal changes of biomass and dominant species in benthic algal communities were investigated in a littoral sand-beach zone in the north basin of Lake Biwa from December 1999 to September 2000. Chlorophyll-a amounts of benthic algal communities per unit area of the sandy sediments rapidly increased from late April to June. Increases in biomass of the benthic algal communities are considered to result from the propagation of filamentous green algae Oedogonium sp. and Spirogyra sp. The cell numbers of filamentous green algae and chlorophyll-a amounts of benthic algal communities at depths of 30 and 50cm at a station protected by a breakwater in May were significantly higher than those of a station exposed directly to wave activity. Thus, the biomass accumulation of the benthic algal communities seems to be regulated strongly by wave disturbance. The development of filamentous green algae may contribute to the increase in biomass of the benthic algal community and to the changes in seasonal patterns of biomass in the sand-beach zone of Lake Biwa. We consider that the development of the filamentous green algal community in the littoral zone of Lake Biwa is the result of eutrophication.  相似文献   

9.
Nematode-trapping fungi are ubiquitous in terrestrial habitats in dung, soils, litter and woody debris and they also occur in freshwater, but only one species has been found in marine habitats. The purpose of this study was therefore to investigate whether nematode-trapping fungi occurred in mangrove habitats. To achieve this we assessed the diversity of nematode-trapping fungi on decaying litter from mangroves, freshwater and terrestrial habitats (22 sites) in Hong Kong. Composite samples (n = 1,320) of decaying litter (wood and leaves) were examined and a total of 31 species of nematode-trapping fungi belonging to four genera, Arthrobotrys, Monacrosporium, and Dactylella were recorded. Twenty-nine species reported in this study are new records for Hong Kong and 16 species are new records from mangrove habitats worldwide. Nematode trapping fungi are therefore present in marine environments. Commonly encountered taxa were Arthrobotrys oligospora and Monacrosporium thaumasium which are abundant in all habitats. A. oligospora, M. thaumasium and Arthrobotrys musiformis were frequent (> 10%). Twenty-six species were rare (0.16–9.32%). Species richness and diversity was higher in terrestrial than in freshwater and mangrove habitats (ANOVA, < 0.001). A higher mean diversity was observed on decaying leaves as compared to decaying wood in all habitats (< 0.001). Based on Shannon diversity index, it was also observed that taxa characterized by adhesive nets were more frequent in all habitats. This can be explained by the fact that these taxa may have a better competitive saprotrophic ability which would allow them to compete favourably in nutrient limited environments. Abiotic factors that could be linked to differences in species diversity between decaying wood and leaves are also discussed.  相似文献   

10.
Changes in epilithic algal communities colonizing introduced substrata were determined in a stream polluted with oil refinery effluent at Digboi (Assam, India). The number of algal taxa was reduced but the growth of blue-green algae, particularly two species ofOscillatoria, was encouraged. Epilithic biomass (as chlorophylla) also declined at polluted stations. The algal community of the upstream station was markedly different from the community occurring just after the confluence of effluent; however, the differences were gradually reduced downstream, indicating improvement in water quality. Of the various criteria tested for possible relationships with the level of pollutants, species richness, Shannon diversity and biomass showed significant relationships. The study demonstrates the usefulness of algal criteria for monitoring oil pollution in running waters.  相似文献   

11.
Mediterranean coastal areas are characterised by heavily transformed landscapes and an ever-increasing number of ponds are subjected to strong alterations. Although benthic diatoms and macroinvertebrates are widely used as indicators in freshwater ecosystems, little is still known about the diatom communities of lowland freshwater ponds in the Mediterranean region, and, furthermore, there are few macroinvertebrate-based methods to assess their ecological quality, especially in Italy. This article undertakes an analysis of benthic diatom and macroinvertebrate communities of permanent freshwater ponds, selected along a gradient of anthropogenic pressures, to identify community indicators (taxa and/or metrics) useful to evaluate the effect of human impacts. A series of 21 ponds were sampled along Tyrrhenian coast in central Italy. Five of these ponds, in a good conservations status and surrounded by woodland were selected as ‘reference sites’ for macroinvertebrates and epipelic diatoms. The remaining sixteen ponds were located in an agricultural landscape subject to different levels of human impact. The total number of macroinvertebrate taxa found in each pond was significantly higher in reference sites than in both the intermediate and heavily degraded ones, whereas the diatom species richness did not result in a good community variable to evaluate the pond ecological quality. The analysis revealed a substantial difference among the compositions of diatom communities between reference ponds and degraded ponds. The former were characterised by the presence of several species belonging to genera, such as Pinnularia sp., Eunotia sp., Stauroneis sp., Neidium sp., all of which were mostly absent from degraded ponds. Furthermore, the taxonomic richnesses of some macroinvetebrate groups (Odonata, Ephemeroptera, Trichoptera, Coleoptera), and taxa composition attributes of macroinvertebrate communities (total abundance, percentages of top three dominant taxa, percentages of Pleidae, Ancylidae, Hirudinea, Hydracarina) significantly correlated with variables linked with anthropogenic pressures. The results of the investigation suggested that diatoms tended more to reflect water chemistry through changes in community structure, whereas invertebrates responded to physical habitat changes primarily through changes in taxonomic richness. The methodologies developed for the analysis of freshwater benthic diatom and macroinvertebrate communities may have a considerable potential as a tool for assessing the ecological status of this type of water body, complying with the European Union Water Framework Directive 2000/60/EC. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

12.
The faunas of tank bromeliads were sampled over two years in three forest types at different elevations in the Luquillo Experimental Forest, Puerto Rico, and the diversity of their animal communities compared. Bromeliad plants behaved as islands in that, within forests, the species richness and abundance of their animal communities were significantly and positively correlated with increase in plant size. The amount of canopy debris they accumulated was similarly correlated with increase in plant size. Overall diversity was lowest in the dwarf forest, where plants were uniformly small. Animal communities were stable from year to year, and could be characterised for each forest type and for compartments within the plant. They showed a pattern of high dominance, which increased with elevation (Mc-Naughton index 37, 54, and 73, respectively, for the tabonuco, palo Colorado, and dwarf forest). Alpha-diversity for sites sampled in each year reflected net primary productivity (NPP) of the forest, declining with increasing elevation when animal abundance measures were used (jackknife estimates of Simpson's diversity index 6.54 & 11.04 [tabonuco], 3.53 & 6.22 [palo Colorado], and 2.75 & 2.17 [dwarf forest]). Species richness over the two years, however, was highest in the intermediate palo Colorado forest (187 species), compared to 146 and 88 in the tabonuco and dwarf forests, respectively. These figures were close to jackknife estimates of maximum species richness. The difference in species richness between tabonuco and palo Colorado forests was significant in one year only. In addition to NPP, other factors, such as litter quality and the structural complexity of the habitat in the palo Colorado forest, may have influenced species richness. The most abundant species in individual plants were also the most widely occurring, confirming known patterns of abundance and distribution in other functional groups. Diversity within bromeliad microcosms at different elevations supported known relationships between diversity, productivity, and habitat complexity along gradients and was not related to differences in the total bromeliad habitat available for colonization.  相似文献   

13.
Hybridization and genome doubling (allopolyploidy) have led to evolutionary novelties as well as to the origin of new clades and species. Despite the importance of allopolyploidization, the dynamics of postpolyploid diploidization (PPD) at the genome level has been only sparsely studied. The Microlepidieae (MICR) is a crucifer tribe of 17 genera and c. 56 species endemic to Australia and New Zealand. Our phylogenetic and cytogenomic analyses revealed that MICR originated via an intertribal hybridization between ancestors of Crucihimalayeae (= 8; maternal genome) and Smelowskieae (= 7; paternal genome), both native to the Northern Hemisphere. The reconstructed ancestral allopolyploid genome (= 15) originated probably in northeastern Asia or western North America during the Late Miocene (c. 10.6–7 million years ago) and reached the Australian mainland via long‐distance dispersal. In Australia, the allotetraploid genome diverged into at least three main subclades exhibiting different levels of PPD and diversity: 1.25‐fold descending dysploidy (DD) of = 15 → = 12 (autopolyploidy → 24) in perennial Arabidella (3 species), 1.5‐fold DD of n = 15 → = 10 in the perennial Pachycladon (11 spp.) and 2.1–3.75‐fold DD of = 15 → = 7–4 in the largely annual crown‐group genera (42 spp. in 15 genera). These results are among the first to demonstrate multispeed genome evolution in taxa descending from a common allopolyploid ancestor. It is suggested that clade‐specific PPD can operate at different rates and efficacies and can be tentatively linked to life histories and the extent of taxonomic diversity.  相似文献   

14.
Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 μg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 μg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.  相似文献   

15.
Microalgae as a biofuel source are of great interest. Bacterial phycosphere inhabitants of algal cultures are hypothesized to contribute to productivity. In this study, the bacterial composition of the Chlorella sorokiniana phycosphere was determined over several production cycles in different growing seasons by 16S rRNA gene sequencing and identification. The diversity of the phycosphere increased with time during each individual reactor run, based on Faith’s phylogenetic diversity metric versus days post-inoculation (R = 0.66, P < 0.001). During summer months, Vampirovibrio chlorellavorus, an obligate predatory bacterium, was prevalent. Bacterial sequences assigned to the Rhizobiales, Betaproteobacteriales and Chitinophagales were positively associated with algal biomass productivity. Applications of the general biocide, benzalkonium chloride, to a subset of experiments intended to abate V. chlorellavorus appeared to temporarily suppress phycosphere bacterial growth, however, there was no relationship between those bacterial taxa suppressed by benzalkonium chloride and their association with algal productivity, based on multinomial model correlations. Algal health was approximated using a model-based metric, or the ‘Health Index’ that indicated a robust, positive relationship between C. sorokiniana fitness and presence of members belonging to the Burholderiaceae and Allorhizobium–Neorhizobium–Pararhizobium–Rhizobium clade. Bacterial community composition was linked to the efficiency of microalgal biomass production and algal health.  相似文献   

16.
Bird's nest ferns (Asplenium spp.) support large numbers of invertebrates, including centipedes. As top invertebrate predators, centipedes drive ecosystem function, for example, by regulating decomposer populations, but we know little of their ecology in forest canopies. We provide the first detailed observations of the diversity and structure of the centipede communities of bird's nest ferns, revealing the importance of these epiphytes as nurseries for centipedes. We collected 305 centipedes equating to ˜11,300 mg of centipede biomass from 44 bird's nest ferns (22 of which were from the high canopy and 22 from the low canopy) in primary tropical rainforest in Sabah, Malaysian Borneo. Most abundant were the Scolopendromorpha (= 227 individuals), followed by the Geophilomorpha (= 59), Lithobiomorpha (= 14), and Scutigeromorpha (= 5). Although we observed very little overlap in species between the forest strata, scolopendromorph centipedes dominated throughout the canopy. Null model analysis revealed no significant competitive interactions; on the contrary, we observed centipedes sharing nest sites within the ferns on three of the ten occasions that we found nests. All nests belonged to centipedes of the family Scolopendridae, which are typically aggressive, and usually show negative spatial association. This study reveals a diverse community of canopy centipedes, providing further evidence of the importance of bird's nest ferns to a wide range of animals, many of which use the ferns at critical life stages. Future conservation strategies should regard these ubiquitous epiphytes as umbrella species and protect them accordingly in landscape management decisions.  相似文献   

17.
A. McMinn  A. Martin  K. Ryan 《Polar Biology》2010,33(11):1547-1556
The phytoplankton and sea ice algal communities at the end of winter in McMurdo Sound were dominated by Fragilariopsis sublineata, with Thalassiosira antarctica, Melosira adele, Pinnularia quadreata, Entomoneis kjellmannii and heterotrophic dinoflagellates also present. Sea ice algal biomass at the end of winter was very low, only 0.050 ± 0.019 mg chla m−2 in 2007 and 0.234 ± 0.036 mg chla m−2 in 2008, but this increased to 0.377 ± 0.078 mg chla m−2 by early October in 2007 and to 1.07 ± 0.192 by late September in 2008. Under ice phytoplankton biomass remained consistently below 0.1 μg chla l−1 throughout the measuring period in both years. The photosynthetic parameters Fv/Fm, rETRmax and α document microalgal communities that are mostly healthy and well adapted to their low light under ice environment. Our results also suggest that species such as Fragilariopsis sublineata are well adapted to deal with low winter light levels but are unlikely to survive an increase in irradiance, whereas other taxa, such as Thalassiosira antarctica, will do better in a higher light environment.  相似文献   

18.
Phytotelmata are vegetal structures that hold water from the rain, and organic matter from the forest and the soil, resulting in small, compartmentalized bodies of water, which provide an essential environment for the establishment and development of many organisms. These microenvironments generally harbor endemic species, but many organisms that are found in lakes and rivers, are also present. Here, we report, for the first time, the occurrence of the ciliate genus Paramecium in the tank of the bromeliad species Aechmaea distichantha. The identification of the Paramecium species was performed based on live observations, protargol impregnation, scanning electronic microscopy, and sequencing of the 18s rRNA. The absence of Paramecium from bromeliad tank water was highlighted in several earlier investigations, and may be due to the fact that this species is unable to make cysts. The occurrence of Paramecium multimicronucleatum in our samples may be explained by the proximity between the bromeliads and the river, a potential source of the species. Further, we also believe that the counting methodology used in our study provides a more accurate analysis of the species diversity, since we investigated all samples within a maximum period of 6 h after sampling, allowing minimum loss of specimens.  相似文献   

19.
The community structure of mesozooplankton was investigated in Dolgaya Bay (southern Barents Sea), a subarctic fjord, using a Juday net (0.168-mm mesh size) in July, 2008. A total of 39 species and higher taxa were found. Average abundance, biomass and diversity (±standard error) were 153,403 ± 15,855 ind m−2, 570 ± 61 mg dry mass m−2, and 2.25 ± 0.09, respectively. Copepods were the most numerous species. The mesozooplankton communities were dominated by omnivores (Oithona similis and Acartia spp.). Vertical distribution of the mesozooplankton was characterized by copepod dominance at each sampled layer. There were no significant correlations among physical variables and biological parameters, except negative correlation for the mean biomass and mean water temperature.  相似文献   

20.
We assessed the impacts of co‐occurring invasive plant species on fire regimes and postfire native communities in the Mojave Desert, western USA. We analyzed the distribution and co‐occurrence patterns of three invasive annual grasses (Bromus rubens, Bromus tectorum, and Schismus spp.) known to alter fuel conditions and community structure, and an invasive forb (Erodium cicutarium) which dominates postfire sites. We developed species distribution models (SDMs) for each of the four taxa and analyzed field plot data to assess the relationship between invasives and fire frequency, years postfire, and the impacts on postfire native herbaceous diversity. Most of the Mojave Desert is highly suitable for at least one of the four invasive species, and 76% of the ecoregion is predicted to have high or very high suitability for the joint occurrence of B. rubens and B. tectorum and 42% high or very high suitability for the joint occurrence of the two Bromus species and E. cicutarium. Analysis of cover from plot data indicated two or more of the species occurred in 77% of the plots, with their cover doubling with each additional species. We found invasive cover in burned plots increased for the first 20 years postfire and recorded two to five times more cover in burned than unburned plots. Analysis also indicated that native species diversity and evenness as negatively associated with higher levels of relative cover of the four invasive taxa. Our findings revealed overlapping distributions of the four invasives; a strong relationship between the invasives and fire frequency; and significant negative impacts of invasives on native herbaceous diversity in the Mojave. This suggests predicting the distributions of co‐occurring invasive species, especially transformer species, will provide a better understanding of where native‐dominated communities are most vulnerable to transformations following fire or other disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号